Therese M Mcbeath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/680898/publications.pdf Version: 2024-02-01

THEDESE M MCREATH

#	Article	IF	CITATIONS
1	The chemical nature of P accumulation in agricultural soils—implications for fertiliser management and design: an Australian perspective. Plant and Soil, 2011, 349, 69-87.	3.7	284
2	Crop residue phosphorus: speciation and potential bio-availability. Plant and Soil, 2012, 359, 375-385.	3.7	155
3	Complex Forms of Soil Organic Phosphorus–A Major Component of Soil Phosphorus. Environmental Science & Technology, 2015, 49, 13238-13245.	10.0	97
4	Improving water productivity in the Australian Grains industry—a nationally coordinated approach. Crop and Pasture Science, 2014, 65, 583.	1.5	79
5	Are farmers in low-rainfall cropping regions under-fertilising with nitrogen? A risk analysis. Agricultural Systems, 2013, 116, 37-51.	6.1	72
6	Summer fallow weed control and residue management impacts on winter crop yield though soil water and N accumulation in a winter-dominant, low rainfall region of southern Australia. Crop and Pasture Science, 2013, 64, 922.	1.5	65
7	Farmer risk-aversion limits closure of yield and profit gaps: A study of nitrogen management in the southern Australian wheatbelt. Agricultural Systems, 2015, 137, 108-118.	6.1	65
8	Polyphosphate-fertilizer solution stability with time, temperature, and pH. Journal of Plant Nutrition and Soil Science, 2007, 170, 387-391.	1.9	63
9	Effect of wheat phosphorus status on leaf surface properties and permeability to foliar-applied phosphorus. Plant and Soil, 2014, 384, 7-20.	3.7	61
10	The effect of soil water status on fertiliser, topsoil and subsoil phosphorus utilisation by wheat. Plant and Soil, 2012, 358, 337-348.	3.7	56
11	Efficacy of zinc oxides as fertilisers. Plant and Soil, 2014, 374, 843-855.	3.7	55
12	Phosphorus speciation in mature wheat and canola plants as affected by phosphorus supply. Plant and Soil, 2014, 378, 125-137.	3.7	51
13	Predicting the response of wheat (Triticum aestivum L.) to liquid and granular phosphorus fertilisers in Australian soils. Soil Research, 2007, 45, 448.	1.1	46
14	Management of crop residues affects the transfer of phosphorus to plant and soil pools: Results from a dual-labelling experiment. Soil Biology and Biochemistry, 2014, 71, 31-39.	8.8	46
15	Changes in P Bioavailability Induced by the Application of Liquid and Powder Sources of P, N and Zn Fertilizers in Alkaline Soils. Nutrient Cycling in Agroecosystems, 2006, 74, 27-40.	2.2	36
16	An assessment of various measures of soil phosphorus and the net accumulation of phosphorus in fertilized soils under pasture. Journal of Plant Nutrition and Soil Science, 2015, 178, 543-554.	1.9	36
17	Break-crop effects on wheat production across soils and seasons in a semi-arid environment. Crop and Pasture Science, 2015, 66, 566.	1.5	27
18	Measuring organic carbon in Calcarosols: understanding the pitfalls and complications. Soil Research, 2012, 50, 397.	1.1	25

THERESE M MCBEATH

#	Article	IF	CITATIONS
19	Assessing crop residue phosphorus speciation using chemical fractionation and solution 31P nuclear magnetic resonance spectroscopy. Talanta, 2014, 126, 122-129.	5.5	24
20	Wheat leaf properties affecting the absorption and subsequent translocation of foliar-applied phosphoric acid fertiliser. Plant and Soil, 2014, 384, 37-51.	3.7	23
21	The fate of fertiliser P in soil under pasture and uptake by subterraneum clover – a field study using 33P-labelled single superphosphate. Plant and Soil, 2016, 401, 23-38.	3.7	23
22	The Timing of Application and Inclusion of a Surfactant Are Important for Absorption and Translocation of Foliar Phosphoric Acid by Wheat Leaves. Frontiers in Plant Science, 2019, 10, 1532.	3.6	23
23	Uptake of phosphorus from surfactant solutions by wheat leaves: spreading kinetics, wetted area, and drying time. Soft Matter, 2016, 12, 209-218.	2.7	22
24	Phosphorus availability in chicken manure is lower with increased stockpiling period, despite a larger orthophosphate content. Plant and Soil, 2013, 373, 359-372.	3.7	21
25	The chemical nature of organic phosphorus that accumulates in fertilized soils of a temperate pasture as determined by solution31P NMR spectroscopy. Journal of Plant Nutrition and Soil Science, 2017, 180, 27-38.	1.9	19
26	Dry Soil Reduces Fertilizer Phosphorus and Zinc Diffusion but Not Bioavailability. Soil Science Society of America Journal, 2012, 76, 1301-1310.	2.2	18
27	Spectral sensitivity of solution 31P NMR spectroscopy is improved by narrowing the soil to solution ratio to 1:4 for pasture soils of low organic P content. Geoderma, 2015, 257-258, 48-57.	5.1	16
28	Combined nitrogen input from legume residues and fertilizer improves early nitrogen supply and uptake by wheat. Journal of Plant Nutrition and Soil Science, 2020, 183, 355-366.	1.9	16
29	Challenges and opportunities for grain farming on sandy soils of semi-arid south and south-eastern Australia. Soil Research, 2020, 58, 323.	1.1	15
30	The use of a zinc-efficient wheat cultivar as an adaptation to calcareous subsoil: a glasshouse study. Plant and Soil, 2010, 336, 15-24.	3.7	14
31	Phosphorus and nitrogen fertiliser use efficiency of wheat seedlings grown in soils from contrasting tillage systems Plant and Soil, 2015, 396, 297-309.	3.7	14
32	Direct recovery of 33 P-labelled fertiliser phosphorus in subterranean clover (Trifolium) Tj ETQq0 0 0 rgBT /Overle Ecosystems and Environment, 2017, 246, 144-156.	ock 10 Tf 5 5.3	50 227 Td (su 13
33	Management practices that maximise gross margins in Australian canola (Brassica napus L.). Field Crops Research, 2020, 252, 107803.	5.1	13
34	Exchangeability of orthophosphate and pyrophosphate in soils: a double isotopic labelling study. Plant and Soil, 2009, 314, 243-252.	3.7	11
35	Assessment of foliar-applied phosphorus fertiliser formulations to enhance phosphorus nutrition and grain production in wheat. Crop and Pasture Science, 2020, 71, 795.	1.5	11
36	A stableâ€isotope methodology for measurement of soilâ€applied zincâ€fertilizer recovery in durum wheat (<i>Triticum durum</i>). Journal of Plant Nutrition and Soil Science, 2013, 176, 756-763.	1.9	9

#	Article	IF	CITATIONS
37	The decomposition of windrowed, chipped logging slash and tree seedling response: A plant growth and nuclear magnetic resonance spectroscopy study. Organic Geochemistry, 2011, 42, 936-946.	1.8	8
38	Soil phosphorus pools with addition of fertiliser phosphorus in a long-term grazing experiment. Nutrient Cycling in Agroecosystems, 2020, 116, 151-164.	2.2	6
39	Combined application of nitrogen and phosphorus to enhance nitrogen use efficiency and close the wheat yield gap on varying soils in semiâ€arid conditions. Journal of Agronomy and Crop Science, 2019, 205, 635-646.	3.5	5
40	Agronomic management combining early-sowing on establishment opportunities, cultivar options and adequate nitrogen is critical for canola (Brassica napus) productivity and profit in low-rainfall environments. Crop and Pasture Science, 2020, 71, 807.	1.5	5
41	Early growing season immobilisation affects post-tillering wheat nitrogen uptake from crop stubble and 15N fertiliser in a sandy soil. Soil Research, 2021, 59, 239.	1.1	1