List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6808949/publications.pdf

Version: 2024-02-01

		94433	175258
171	4,352	37	52
papers	citations	h-index	g-index
172	172	172	3388
all docs	docs citations	times ranked	citing authors

FINIDA COMEZ

#	Article	IF	CITATIONS
1	Electrodeposition of Co, Sm and SmCo from a Deep Eutectic Solvent. Journal of Electroanalytical Chemistry, 2011, 658, 18-24.	3.8	154
2	Electrodeposition of Co–Ni alloys. Journal of Applied Electrochemistry, 1997, 28, 71-79.	2.9	115
3	Electrodeposition of Co–Ni and Co–Ni–Cu systems in sulphate–citrate medium. Electrochimica Acta, 2005, 51, 146-153.	5.2	106
4	Highly active ZnO-based biomimetic fern-like microleaves for photocatalytic water decontamination using sunlight. Applied Catalysis B: Environmental, 2019, 248, 129-146.	20.2	98
5	Facile cost-effective fabrication of Cu@Cu2O@CuO–microalgae photocatalyst with enhanced visible light degradation of tetracycline. Chemical Engineering Journal, 2021, 413, 127477.	12.7	92
6	Influence of the bath composition and the pH on the induced cobalt–molybdenum electrodeposition. Journal of Electroanalytical Chemistry, 2003, 556, 137-145.	3.8	81
7	Electrodeposited cobaltî—,molybdenum magnetic materials. Journal of Electroanalytical Chemistry, 2001, 517, 109-116.	3.8	73
8	Visible-light driven sonophotocatalytic removal of tetracycline using Ca-doped ZnO nanoparticles. Chemical Engineering Journal, 2022, 427, 132006.	12.7	67
9	Nickel electrodeposition on different metallic substrates. Journal of Electroanalytical Chemistry, 1995, 386, 45-56.	3.8	66
10	Efficient magnetic hybrid ZnO-based photocatalysts for visible-light-driven removal of toxic cyanobacteria blooms and cyanotoxins. Applied Catalysis B: Environmental, 2020, 268, 118745.	20.2	61
11	Thick cobalt coatings obtained by electrodeposition. Journal of Applied Electrochemistry, 2002, 32, 693-700.	2.9	60
12	Characterisation of zinc+cobalt alloy phases obtained by electrodeposition. Journal of Electroanalytical Chemistry, 2001, 505, 54-61.	3.8	59
13	Circular zero-residue process using microalgae for efficient water decontamination, biofuel production, and carbon dioxide fixation. Chemical Engineering Journal, 2020, 388, 124278.	12.7	58
14	Title is missing!. Journal of Applied Electrochemistry, 2003, 33, 245-252.	2.9	57
15	Highly reduced ecotoxicity of ZnO-based micro/nanostructures on aquatic biota: Influence of architecture, chemical composition, fixation, and photocatalytic efficiency. Water Research, 2020, 169, 115210.	11.3	57
16	Nano- and micrometric approaches to cobalt electrodeposition on carbon substrates. Journal of Electroanalytical Chemistry, 1997, 422, 139-147.	3.8	55
17	Use of the reverse pulse plating method to improve the properties of cobalt–molybdenum electrodeposits. Surface and Coatings Technology, 2006, 201, 2351-2357.	4.8	55
18	Using deep eutectic solvents to electrodeposit CoSm films and nanowires. Materials Letters, 2011, 65, 3597-3600.	2.6	55

#	Article	IF	CITATIONS
19	Electrodeposition of zinc-nickel alloy coatings: influence of a phenolic derivative. Journal of Applied Electrochemistry, 1990, 20, 635-639.	2.9	53
20	Copper electrodeposition in a deep eutectic solvent. First stages analysis considering Cu(I) stabilization in chloride media. Electrochimica Acta, 2014, 123, 285-295.	5.2	53
21	Electrodeposited Co-Ni alloys for MEMS. Journal of Micromechanics and Microengineering, 2002, 12, 400-405.	2.6	52
22	First stages of silver electrodeposition in a deep eutectic solvent. Comparative behavior in aqueous medium. Electrochimica Acta, 2013, 112, 149-158.	5.2	51
23	Simple Environmentally-Friendly Reduction of 4-Nitrophenol. Catalysts, 2020, 10, 458.	3.5	50
24	Electrocatalytic oxidation of methanol on CoNi electrodeposited materials. International Journal of Hydrogen Energy, 2014, 39, 6705-6713.	7.1	49
25	Hybrid Ni@ZnO@ZnSâ€Microalgae for Circular Economy: A Smart Route to the Efficient Integration of Solar Photocatalytic Water Decontamination and Bioethanol Production. Advanced Science, 2020, 7, 1902447.	11.2	49
26	Properties of Co-Mo coatings obtained by electrodeposition at pH�6.6. Journal of Solid State Electrochemistry, 2004, 8, 497-504.	2.5	47
27	Electrodeposition of zinc + cobalt alloys: inhibitory effect of zinc with convection and pH of solution. Journal of Electroanalytical Chemistry, 1995, 397, 177-184.	3.8	44
28	Electrodeposition of zinc + cobalt alloys: initiations and development of anomalous co-deposition. Journal of Electroanalytical Chemistry, 1997, 421, 157-163.	3.8	44
29	Electrodeposition of soft-magnetic cobalt–molybdenum coatings containing low molybdenum percentages. Journal of Electroanalytical Chemistry, 2004, 568, 29-36.	3.8	43
30	Tin electrodeposition on carbon electrodes. From nuclei to microcrystallites. Journal of Electroanalytical Chemistry, 1999, 465, 63-71.	3.8	42
31	Influence of the composition and crystalline phase of electrodeposited CoNi films in the preparation of CoNi oxidized surfaces as electrodes for urea electro-oxidation. Applied Surface Science, 2016, 360, 816-825.	6.1	41
32	Development and Characterization of Co-Ni Alloys for Microsystems Applications. Journal of the Electrochemical Society, 2002, 149, C201.	2.9	40
33	Electrodeposited CoPt films from a deep eutectic solvent. Surface and Coatings Technology, 2012, 206, 4439-4448.	4.8	40
34	Developing plating baths for the production of cobalt–molybdenum films. Surface and Coatings Technology, 2005, 197, 238-246.	4.8	39
35	Synthesis and characterization of Co@Ag core–shell nanoparticles. Journal of Nanoparticle Research, 2010, 12, 2189-2199.	1.9	39
36	Electrodeposition of nickel on vitreous carbon: Influence of potential on deposit morphology. Journal of Applied Electrochemistry, 1992, 22, 872-876.	2.9	38

#	Article	IF	CITATIONS
37	Surface Sensitive Nickel Electrodeposition in Deep Eutectic Solvent. ACS Applied Energy Materials, 2018, 1, 1016-1028.	5.1	38
38	Green Electrochemical Template Synthesis of CoPt Nanoparticles with Tunable Size, Composition, and Magnetism from Microemulsions Using an Ionic Liquid (bmimPF ₆). ACS Nano, 2014, 8, 4630-4639.	14.6	37
39	Three-dimensional nucleation with diffusion controlled growth: A comparative study of electrochemical phase formation from aqueous and deep eutectic solvents. Journal of Electroanalytical Chemistry, 2017, 793, 119-125.	3.8	37
40	Zinc-nickel coatings: Relationship between additives and deposit properties. Journal of Applied Electrochemistry, 1991, 21, 44-49.	2.9	36
41	Morphology and structure of nickel nuclei as a function of the conditions of electrodeposition. Journal of Electroanalytical Chemistry, 1995, 397, 111-118.	3.8	36
42	Electrodeposition of Co + Ni alloys on modified silicon substrates. Journal of Applied Electrochemistry, 1999, 29, 803-810.	2.9	36
43	Modulation of magnetic and structural properties of cobalt thin films by means of electrodeposition. Journal of Applied Electrochemistry, 2009, 39, 233-240.	2.9	36
44	Electrodeposition of nanostructured Bi2MoO6@Bi2MoO6–x homojunction films for the enhanced visible-light-driven photocatalytic degradation of antibiotics. Applied Catalysis B: Environmental, 2022, 317, 121703.	20.2	35
45	Electrodeposition of zinc+iron alloys. Journal of Electroanalytical Chemistry, 1999, 469, 139-149.	3.8	34
46	Structural, magnetic and corrosion properties of electrodeposited cobalt–nickel–molybdenum alloys. Electrochemistry Communications, 2005, 7, 275-281.	4.7	34
47	Electrodeposition of CoNi and CoNiP alloys in sulphamate electrolytes. Journal of Alloys and Compounds, 2010, 503, 454-459.	5.5	34
48	An approach to the first stages of cobalt–nickel–molybdenum electrodeposition in sulphate–citrate medium. Journal of Electroanalytical Chemistry, 2005, 580, 222-230.	3.8	33
49	Electrodeposited cobalt+copper thin films on ITO substrata. Journal of Electroanalytical Chemistry, 2001, 517, 63-68.	3.8	32
50	Microstructures of soft-magnetic cobalt–molybdenum alloy obtained by electrodeposition on seed layer/silicon substrates. Electrochemistry Communications, 2004, 6, 853-859.	4.7	32
51	Influence of a cationic surfactant in the properties of cobalt–nickel electrodeposits. Electrochimica Acta, 2006, 51, 5703-5709.	5.2	32
52	Intermediate molybdenum oxides involved in binary and ternary induced electrodeposition. Journal of Electroanalytical Chemistry, 2005, 580, 238-244.	3.8	31
53	Design, fabrication and characterization of an externally actuated ON/OFF microvalve. Sensors and Actuators A: Physical, 2008, 147, 600-606.	4.1	31
54	Electrodeposition of zinc + cobalt alloys Journal of Electroanalytical Chemistry, 1994, 370, 73-85.	3.8	30

#	Article	IF	CITATIONS
55	Molybdenum alloy electrodeposits for magnetic actuation. Electrochimica Acta, 2006, 51, 3214-3222.	5.2	30
56	Nanocrystalline CoP coatings prepared by different electrodeposition techniques. Materials Letters, 2011, 65, 2849-2851.	2.6	30
57	Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent: New insights. Electrochemistry Communications, 2017, 78, 51-55.	4.7	30
58	Magnetic composites CoNi–barium ferrite prepared by electrodeposition. Electrochemistry Communications, 2005, 7, 1225-1231.	4.7	29
59	Novel electrodeposition media to synthesize CoNi-Pt Core@Shell stable mesoporous nanorods with very high active surface for methanol electro-oxidation. Electrochimica Acta, 2015, 174, 630-639.	5.2	29
60	Developing plating baths for the production of reflective Ni–Cu films. Electrochimica Acta, 2012, 62, 381-389.	5.2	28
61	Effective ionic-liquid microemulsion based electrodeposition of mesoporous Co–Pt films for methanol oxidation catalysis in alkaline media. Journal of Materials Chemistry A, 2016, 4, 7805-7814.	10.3	28
62	Magnetic Mesoporous Nanocarriers for Drug Delivery with Improved Therapeutic Efficacy. Advanced Functional Materials, 2016, 26, 6601-6611.	14.9	28
63	Characterisation of cobalt/copper multilayers obtained by electrodeposition. Surface and Coatings Technology, 2002, 153, 261-266.	4.8	27
64	Study and preparation of silver electrodeposits at negative potentials. Journal of Electroanalytical Chemistry, 2006, 594, 89-95.	3.8	27
65	Advances in Copper Electrodeposition in Chloride Excess. A Theoretical and Experimental Approach. Electrochimica Acta, 2015, 164, 187-195.	5.2	27
66	Bioinspired ZnO-Based Solar Photocatalysts for the Efficient Decontamination of Persistent Organic Pollutants and Hexavalent Chromium in Wastewater. Catalysts, 2019, 9, 974.	3.5	27
67	Obtention and characterisation of cobalt+copper electrodeposits from a citrate bath. Journal of Electroanalytical Chemistry, 2000, 495, 19-26.	3.8	26
68	Influence of pH on nickel electrodeposition at low nickel(II) concentrations. Journal of Applied Electrochemistry, 1995, 25, 770-775.	2.9	25
69	Tin–cobalt electrodeposition from sulfate–gluconate baths. Journal of Applied Electrochemistry, 2001, 31, 349-354.	2.9	25
70	Facile electrochemical synthesis, using microemulsions with ionic liquid, of highly mesoporous CoPt nanorods with enhanced electrocatalytic performance for clean energy. International Journal of Hydrogen Energy, 2015, 40, 8062-8070.	7.1	25
71	Electrochemical deposition of CoNi micro/nanostructures as new materials for electrochemical sensing of glucose. Materials Letters, 2015, 159, 154-158.	2.6	25
72	Electrodeposition of zinc+iron alloys. Journal of Electroanalytical Chemistry, 1999, 475, 66-72.	3.8	24

#	Article	IF	CITATIONS
73	CoPt nanoscale structures with different geometry prepared by electrodeposition for modulation of their magnetic properties. Electrochimica Acta, 2011, 56, 8232-8238.	5.2	23
74	Electrochemical nucleation of nickel on vitreous carbon electrodes: the influence of organic additives. Journal of Applied Electrochemistry, 1991, 21, 709-715.	2.9	22
75	Electrodeposition of Zincâ€Cobalt Alloys: Tapping Mode AFM Technique Applied to Study the Initial Stages of Deposition. Journal of the Electrochemical Society, 1995, 142, 4091-4096.	2.9	22
76	Electrodeposition of SmCo Nanostructures in Deep Eutectic Solvent. ECS Transactions, 2012, 41, 3-9.	0.5	22
77	Studies of electrodeposition of nickel: different nickel(II) and sulphonated additive concentrations. Journal of Electroanalytical Chemistry, 1992, 333, 47-64.	3.8	20
78	Modification of magnetic and structural properties of Co and Co–Ag electrodeposits by sulphur incorporation. Materials Chemistry and Physics, 2010, 122, 463-469.	4.0	20
79	Enhanced Photocatalytic Removal of Cyanotoxins by Al-Doped ZnO Nanoparticles with Visible-LED Irradiation. Toxins, 2021, 13, 66.	3.4	20
80	Electrochemical behaviour and physical properties of Cu/Co multilayers. Electrochimica Acta, 2003, 48, 1005-1013.	5.2	19
81	Evolution of magnetic and structural properties from Ag nanolayers to several microns Co–Ag deposits prepared by electrodeposition. Journal of Electroanalytical Chemistry, 2009, 635, 63-68.	3.8	19
82	Electrodeposition for obtaining homogeneous or heterogeneous cobalt-copper films. Journal of Solid State Electrochemistry, 2004, 8, 82-88.	2.5	18
83	Temperature dependence of GMR and effect of annealing on electrodeposited Co–Ag granular films. Journal of Magnetism and Magnetic Materials, 2010, 322, 3186-3191.	2.3	18
84	Electrodeposition of nanostructured cobalt films from a deep eutectic solvent: Influence of the substrate and deposition potential range. Electrochimica Acta, 2020, 359, 136928.	5.2	18
85	Enhanced magnetism in electrodeposited-based CoNi composites containing high percentage of micron hard-magnetic particles. Electrochemistry Communications, 2007, 9, 1755-1760.	4.7	17
86	HIV Testing Attitudes and Practices Among Clinicians in the Era of Updated Centers for Disease Control and Prevention Recommendations. Journal of Acquired Immune Deficiency Syndromes (1999), 2009, 50, 114-116.	2.1	17
87	Microemulsions for obtaining nanostructures by means of electrodeposition method. Electrochemistry Communications, 2013, 27, 14-18.	4.7	17
88	Investigating the M(hkl) ionic liquid interface by using laser induced temperature jump technique. Electrochimica Acta, 2019, 311, 30-40.	5.2	17
89	Magnetoresistive granular Cu–Co–Ni coatings prepared by electrodeposition. Journal of Electroanalytical Chemistry, 2006, 596, 87-94.	3.8	16
90	Electrodeposition of Co–Ag films and compositional determination by electrochemical methods. Analytica Chimica Acta, 2007, 602, 187-194.	5.4	16

#	Article	IF	CITATIONS
91	Patient Perspectives with Abbreviated versus Standard Pre-Test HIV Counseling in the Prenatal Setting: A Randomized-Controlled, Non-Inferiority Trial. PLoS ONE, 2009, 4, e5166.	2.5	16
92	Magnetic properties of nanocrystalline CoPt electrodeposited films. Influence of P incorporation. Journal of Solid State Electrochemistry, 2010, 14, 2225-2233.	2.5	16
93	Electrochemical Synthesis of Mesoporous CoPt Nanowires for Methanol Oxidation. Nanomaterials, 2014, 4, 189-202.	4.1	16
94	Electrodeposition of copper–magnetite magnetic composite films. Journal of Applied Electrochemistry, 2007, 37, 575-582.	2.9	15
95	Preparation of Co–Ag films by direct and pulse electrochemical methods. Journal of Electroanalytical Chemistry, 2008, 615, 213-221.	3.8	15
96	Giant magnetoresistance in electrodeposited Co–Ag granular films. Materials Letters, 2011, 65, 1865-1867.	2.6	15
97	Photo-controllable electronic switches based on azopyridine derivatives. Chemical Communications, 2012, 48, 9080.	4.1	15
98	Electrodeposition of Mesoporous Ni-Rich Ni-Pt Films for Highly Efficient Methanol Oxidation. Nanomaterials, 2020, 10, 1435.	4.1	15
99	Efficient and green electrochemical synthesis of 4-aminophenol using porous Au micropillars. Applied Catalysis A: General, 2020, 602, 117698.	4.3	15
100	Recycled cyanobacteria ashes for sono-enhanced photo-Fenton wastewater decontamination. Journal of Cleaner Production, 2020, 267, 121881.	9.3	15
101	On the formation of two-dimensional condensed films at the interface mercury/ferron aqueous buffered solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 224, 237-251.	0.1	14
102	Modulation of the magnetic properties of CoNi coatings by electrodeposition in the presence of a redox cationic surfactant. Applied Surface Science, 2006, 253, 2964-2968.	6.1	14
103	Influence of a magnetic field during the CoNi electrodeposition in the presence of magnetic nanoparticles. Journal of Electroanalytical Chemistry, 2008, 615, 117-123.	3.8	14
104	Electrochemical preparation and characterisation of CoPt magnetic particles. Electrochemistry Communications, 2010, 12, 132-136.	4.7	14
105	Electrochemical growth of CoPt nanowires of different aspect ratio and their magnetic properties. Journal of Electroanalytical Chemistry, 2013, 689, 69-75.	3.8	14
106	Electrodeposition of aluminium from hydrophobic perfluoro-3-oxa-4,5 dichloro-pentan-sulphonate based ionic liquids. Journal of Electroanalytical Chemistry, 2018, 820, 41-50.	3.8	14
107	Oxidation of mesoxalate on gold in basic media. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 190, 95-101.	0.1	13
108	Simultaneous electrodeposition and detection of platinum on silicon surfaces. Journal of Electroanalytical Chemistry, 1998, 441, 147-151.	3.8	13

#	Article	IF	CITATIONS
109	Annealing of Electroplated Co-Cu Films to Induce Magnetoresistance. Journal of the Electrochemical Society, 2004, 151, C731.	2.9	13
110	Extracting deposition parameters for cobalt–molybdenum alloy from potentiostatic current transients. Physical Chemistry Chemical Physics, 2004, 6, 1340-1344.	2.8	13
111	Electrodeposition of cobalt based alloys for MEMS applications. Transactions of the Institute of Metal Finishing, 2005, 83, 248-254.	1.3	13
112	Ternary CoPtP electrodeposition process: Structural and magnetic properties of the deposits. Journal of Electroanalytical Chemistry, 2009, 627, 69-75.	3.8	13
113	Synthesis and structural, magnetic and electrochemical characterization of PtCo nanoparticles prepared by water-in-oil microemulsion. Journal of Nanoparticle Research, 2010, 12, 1149-1159.	1.9	13
114	Electrocodeposition of CoNi/barium ferrite using a forced flow cell. Surface and Coatings Technology, 2010, 205, 195-199.	4.8	13
115	Electrochemical control of composition and crystalline structure of CoNi nanowires and films prepared potentiostatically from a single bath. Journal of Electroanalytical Chemistry, 2013, 703, 88-96.	3.8	13
116	Alginate electrodeposition onto three-dimensional porous Co–Ni films as drug delivery platforms. Physical Chemistry Chemical Physics, 2015, 17, 1630-1636.	2.8	13
117	Relation between the presence of inhibitors and deposit morphology in nickel deposition. Journal of Applied Electrochemistry, 1993, 23, 508-515.	2.9	13
118	First stages of barium ferrite microparticles entrapment in the electrodeposition of CoNi films. Journal of Electroanalytical Chemistry, 2007, 604, 41-47.	3.8	12
119	Metastable Structures of Co and Coâ^'Ag Detected in Electrodeposited Coatings. Crystal Growth and Design, 2009, 9, 1671-1676.	3.0	11
120	Nanowires of NiCo/barium ferrite magnetic composite by electrodeposition. Materials Letters, 2011, 65, 2765-2768.	2.6	11
121	Measurement of the giant magnetoresistance effect in cobalt–silver magnetic nanostructures: nanoparticles. Nanotechnology, 2012, 23, 405701.	2.6	11
122	Conductive microemulsions for template CoNi electrodeposition. Physical Chemistry Chemical Physics, 2013, 15, 14653.	2.8	11
123	Ternary PtCoNi functional films prepared by electrodeposition: Magnetic and electrocatalytic properties. Electrochimica Acta, 2013, 109, 187-194.	5.2	11
124	Electrochemical synthesis of Co7Ni3 and Co6Ni4 nanorods with controlled crystalline phase. Application to methanol electro-oxidation. Journal of Alloys and Compounds, 2015, 646, 669-674.	5.5	11
125	Aluminium electrodeposition from a novel hydrophobic ionic liquid tetramethyl guanidinium-perfluoro-3-oxa-4,5 dichloro-pentan-sulphonate. Journal of Electroanalytical Chemistry, 2017, 793, 85-92.	3.8	11
126	Electrodeposited Ni-Rich Ni–Pt Mesoporous Nanowires for Selective and Efficient Formic Acid-Assisted Hydrogenation of Levulinic Acid to γ-Valerolactone. Langmuir, 2021, 37, 4666-4677.	3.5	11

127	A model for potentiostatic current transients during alloy deposition: cobalt–molybdenum alloy. Journal of Electroanalytical Chemistry, 2003, 557, 9-18.	3.8	10
128	Design and characterization of a magnetic digital flow regulator. Sensors and Actuators A: Physical, 2010, 162, 107-115.	4.1	10
129	Relevant GMR in As-Deposited Coâ^'Ag Electrodeposits: Chronoamperometric Preparation. Journal of Physical Chemistry C, 2010, 114, 12346-12354.	3.1	10
130	Effective new method for synthesizing Pt and CoPt ₃ mesoporous nanorods. New catalysts for ethanol electro-oxidation in alkaline medium. RSC Advances, 2016, 6, 47931-47939.	3.6	10
131	Electrochemical preparation and characterization of magnetic core–shell nanowires for biomedical applications. Electrochemistry Communications, 2016, 63, 18-21.	4.7	10
132	Influence of bath temperature and bath composition on Co–Ag electrodeposition. Electrochimica Acta, 2010, 55, 5760-5767.	5.2	9
133	Magnetic micromechanical structures based on CoNi electrodeposited alloys. Journal of Micromechanics and Microengineering, 2010, 20, 125017.	2.6	9
134	Adsorption of organic layers over electrodeposited magnetite (Fe3O4) thin films. Electrochimica Acta, 2011, 56, 4087-4091.	5.2	9
135	Measurement of the Giant Magnetoresistance Effect in Cobalt–Silver Magnetic Nanostructures: Nanowires. Journal of Physical Chemistry C, 2012, 116, 12250-12257.	3.1	9
136	Electrocatalytic oxidation of mesoxalic acid on a polycrystalline platinum electrode in acid medium. Electrochimica Acta, 1989, 34, 611-618.	5.2	8
137	Electrodeposition of silver as a precursor matrix of magnetoresistive materials. Materials Letters, 2007, 61, 1671-1674.	2.6	8
138	Relevant GMR in As-Deposited Coâ^'Ag Electrodeposits: Pulse Plating Deposition. Journal of Physical Chemistry C, 2010, 114, 9146-9152.	3.1	8
139	Use of CO as a Cleaning Tool of Highly Active Surfaces in Contact with Ionic Liquids: Ni Deposition on Pt(111) Surfaces in IL. ACS Applied Energy Materials, 2018, 1, 4617-4625.	5.1	8
140	Phase transitions in mercury-quinoline derivative systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 215, 345-355.	0.1	7
141	Two- and three-dimensional electrocrystallization of mercurous phthalate on a mercury electrode. Electrochimica Acta, 1989, 34, 781-787.	5.2	7
142	Optimisation of copper electrodeposition processes for Si technology based inductive microsystems. Journal of Electroanalytical Chemistry, 2008, 619-620, 176-182.	3.8	7
143	Increased Uptake of HIV Testing With the Integration of Nurse-Initiated HIV Testing Into Routine Prenatal Care. Journal of Acquired Immune Deficiency Syndromes (1999), 2008, 49, 571-573.	2.1	7
144	Magnetic CoPt (60–70 wt%Pt) microstructures fabricated by the electrochemical method. Journal of Micromechanics and Microengineering, 2012, 22, 055016.	2.6	7

#	Article	IF	CITATIONS
145	Conditions that bicontinuous microemulsions must fulfill to be used as template for electrodeposition of nanostructures. Journal of Electroanalytical Chemistry, 2014, 720-721, 101-106.	3.8	7
146	Janus Electrochemistry: Asymmetric Functionalization in One Step. ACS Applied Materials & Interfaces, 2017, 9, 35404-35410.	8.0	7
147	Removal of Cyanobacteria and Cyanotoxins in Waters. Toxins, 2021, 13, 636.	3.4	6
148	Electrodeposition under a time-dependent boundary condition. Thin Solid Films, 2003, 440, 45-53.	1.8	5
149	Design and electrochemical preparation of inductive copper coils for magnetic particles detection. Sensors and Actuators B: Chemical, 2012, 173, 737-744.	7.8	5
150	Electrosynthesis method of CoPt nanoparticles in percolated microemulsions. RSC Advances, 2014, 4, 34281-34287.	3.6	5
151	One-step electrodeposition from ionic liquid and water as a new method for 2D composite preparation. Electrochemistry Communications, 2014, 46, 79-83.	4.7	5
152	Silver nanoparticles/free-standing carbon nanotube Janus membranes Electrochimica Acta, 2017, 243, 349-356.	5.2	5
153	Influence of the adsorption on the oxidation of oxalic acid on a gold electrode in acid media. Monatshefte Für Chemie, 1989, 120, 651-659.	1.8	4
154	Electrodeposition of CoNiP films with modulated magnetic behaviour. Transactions of the Institute of Metal Finishing, 2011, 89, 194-197.	1.3	4
155	Electrochemical growth of CoNi and Pt–CoNi soft magnetic composites on an alkanethiol monolayer-modified ITO substrate. Physical Chemistry Chemical Physics, 2015, 17, 16575-16586.	2.8	4
156	Sono-electrodeposition transfer of micro-scale copper patterns on to A7 substrates using a mask-less method. Electrochimica Acta, 2016, 207, 207-217.	5.2	4
157	Spectroelectrochemical monitoring of contaminants during the electrochemical filtration process using free-standing carbon nanotube filters. Electrochimica Acta, 2018, 280, 17-24.	5.2	4
158	lonic Liquids in the Field of Metal Electrodeposition. , 2018, , 690-700.		4
159	Electrochemical assessment of high active area of cobalt deposited in deep eutectic solvent. Journal of Electroanalytical Chemistry, 2021, 896, 115177.	3.8	4
160	Oxidation of pyruvate on gold electrode in basic media. Electrochimica Acta, 1987, 32, 677-681.	5.2	3
161	Faradaic impedance methods as applied to the study of the potentiodynamic passivation of zinc in alkaline media. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 247, 323-327.	0.1	3
162	Electrocatalytic oxidation of mesoxalic acid on a polycrystalline platinum electrode modified by foreign metals. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 1845-1849.	1.7	3

#	Article	IF	CITATIONS
163	Electrochemical synthesis of Co–Ag/Ag multilayered nanowires for GMR applications. Materials Letters, 2013, 111, 101-103.	2.6	3
164	Magnetically actuated microvalve for disposable drug infusor. , 2007, , .		2
165	3D distribution of magnetic CoNi alloy nanoparticles electrodeposited on vertically aligned MWCNT showing exceptional coercive field. Materials Letters, 2014, 124, 8-11.	2.6	2
166	Theoretical J–t transients for binary alloys. Different deposition regimes. Physical Chemistry Chemical Physics, 2003, 5, 3226-3233.	2.8	1
167	Electrochemical preparation and magnetic properties of submicrometric core–shell CoPt–CoNi particles. Journal of Electroanalytical Chemistry, 2010, 650, 36-40.	3.8	1
168	Assessing the Chemical Stability and Cytotoxicity of Electrodeposited Magnetic Mesoporous Fe–Pt Films for Biomedical Applications. Langmuir, 2021, 37, 8801-8810.	3.5	0
169	Electrochemical Control of the Core-Shell Cobalt-Platinum Nanoparticles. , 2015, , 1-11.		Ο
170	Electrochemical Control of the Core-Shell Cobalt-Platinum Nanoparticles. , 2016, , 769-782.		0
171	Synthesis and Stability of Pt ₃ Co and Pt _{0.7≤≪} Co Films Voltammetrically Activated in Acidic Medium for Methanol Fuel Cell Application. Journal of Advances in Nanomaterials, 2017, , .	0.4	0