Potchanapond Graidist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6808895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low Piperine Fractional Piper nigrum Extract Enhanced the Antitumor Immunity via Regulating the Th1/Th2/Treg Cell Subsets on NMU-Induced Tumorigenesis Rats. Planta Medica, 2022, 88, 527-537.	0.7	7
2	Anticancer Effects and Molecular Action of 7-α-Hydroxyfrullanolide in G2/M-Phase Arrest and Apoptosis in Triple Negative Breast Cancer Cells. Molecules, 2022, 27, 407.	1.7	6
3	The attenuation effect of low piperine <i>Piper nigrum</i> extract on doxorubicin-induced toxicity of blood chemical and immunological properties in mammary tumour rats. Pharmaceutical Biology, 2022, 60, 96-107.	1.3	4
4	Potential Stereoselective Binding of Trans-(±)-Kusunokinin and Cis-(±)-Kusunokinin Isomers to CSF1R. Molecules, 2022, 27, 4194.	1.7	4
5	Trans-(â^')-Kusunokinin: A Potential Anticancer Lignan Compound against HER2 in Breast Cancer Cell Lines?. Molecules, 2021, 26, 4537.	1.7	5
6	(â^')-Kusunokinin as a Potential Aldose Reductase Inhibitor: Equivalency Observed via AKR1B1 Dynamics Simulation. ACS Omega, 2021, 6, 606-614.	1.6	16
7	Effects of trans‑(±)‑kusunokinin on chemosensitive and chemoresistant ovarian cancer cells. Oncology Letters, 2021, 23, 59.	0.8	3
8	Inhibition of CSF1R and AKT by (±)-kusunokinin hinders breast cancer cell proliferation. Biomedicine and Pharmacotherapy, 2020, 129, 110361.	2.5	19
9	(â^')-Kusunokinin inhibits breast cancer in N-nitrosomethylurea-induced mammary tumor rats. European Journal of Pharmacology, 2020, 882, 173311.	1.7	14
10	Anticancer activity of synthetic (±)-kusunokinin and its derivative (±)-bursehernin on human cancer cell lines. Biomedicine and Pharmacotherapy, 2019, 117, 109115.	2.5	16
11	Anti‑breast cancer potential of frullanolide from Grangea maderaspatana plant by inducing apoptosis. Oncology Letters, 2019, 17, 5283-5291.	0.8	12
12	Novel Compound Heterozygous Mutations in the TRAPPC9 Gene in Two Siblings With Autism and Intellectual Disability. Frontiers in Genetics, 2019, 10, 61.	1.1	28
13	Enhanced Oral Bioavailability of Curcumin Using a Supersaturatable Self-Microemulsifying System Incorporating a Hydrophilic Polymer; In Vitro and In Vivo Investigations. AAPS PharmSciTech, 2018, 19, 730-740.	1.5	37
14	Structure-guided cancer blockade between bioactive bursehernin and proteins: Molecular docking and molecular dynamics study. Journal of Molecular Graphics and Modelling, 2017, 74, 215-224.	1.3	6
15	(â~')-Kusunokinin and piperloguminine from Piper nigrum: An alternative option to treat breast cancer. Biomedicine and Pharmacotherapy, 2017, 92, 732-743.	2.5	30
16	Starchâ€based carbohydrates display the bifidogenic and butyrogenic properties in pHâ€controlled faecal fermentation. International Journal of Food Science and Technology, 2017, 52, 2647-2653.	1.3	25
17	Isomaltooligosaccharide synthesised from rice starch and its prebiotic properties <i>inÂvitro</i> . International Journal of Food Science and Technology, 2017, 52, 2589-2595.	1.3	17
18	Senescence Process in Primary Wilms' Tumor Cell Culture Induced by p53 Independent p21 Expression. Journal of Cancer, 2016, 7, 1867-1876.	1.2	9

#	Article	IF	CITATIONS
19	Anti-cancer effects of Piper nigrum via inducing multiple molecular signaling in vivo and in vitro. Journal of Ethnopharmacology, 2016, 188, 87-95.	2.0	59
20	5,7,4⿲-Trihydroxy-6,8-diprenylisoflavone and lupalbigenin, active components of Derris scandens , induce cell death on breast cancer cell lines. Biomedicine and Pharmacotherapy, 2016, 81, 235-241.	2.5	11
21	Anticancer and Cancer Prevention Effects of Piperine-Free <i>Piper nigrum</i> Extract on N-nitrosomethylurea-Induced Mammary Tumorigenesis in Rats. Cancer Prevention Research, 2016, 9, 74-82.	0.7	42
22	Influence of surfactants in self-microemulsifying formulations on enhancing oral bioavailability of oxyresveratrol: Studies in Caco-2 cells and in vivo. International Journal of Pharmaceutics, 2016, 498, 294-303.	2.6	32
23	Cytotoxic Activity of Piper cubeba Extract in Breast Cancer Cell Lines. Nutrients, 2015, 7, 2707-2718.	1.7	53
24	The dose dependent in vitro responses of MCF-7 and MDA-MB-231 cell lines to extracts of Vatica diospyroides symington type SS fruit include effects on mode of cell death. Pharmacognosy Magazine, 2015, 11, 148.	0.3	6
25	Proteomics analysis of siRNA-mediated silencing of Wilms' tumor 1 in the MDA-MB-468 breast cancer cell line. Oncology Reports, 2014, 31, 1754-1760.	1.2	3
26	Extracts fromVatica diospyroidesType SS Fruit Show Low Dose Activity against MDA-MB-468 Breast Cancer Cell-Line via Apoptotic Action. BioMed Research International, 2014, 2014, 1-8.	0.9	4
27	Dioscorealide B from the Traditional Thai Medicine Hua-Khao-Yen Induces Apoptosis in MCF-7 Human Breast Cancer Cells via Modulation of Bax, Bak and Bcl-2 Protein Expression. Natural Product Communications, 2010, 5, 1934578X1000501.	0.2	2
28	Fortilin binds Ca2+ and blocks Ca2+-dependent apoptosis in vivo. Biochemical Journal, 2007, 408, 181-191.	1.7	65
29	Antiapoptotic Protein Partners Fortilin and MCL1 Independently Protect Cells from 5-Fluorouracil-induced Cytotoxicity. Journal of Biological Chemistry, 2004, 279, 40868-40875.	1.6	57