
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6808835/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                             | lF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Risk assessment of urban yellow fever virus transmission in Kenya: is <i>Aedes aegypti</i> an efficient vector?. Emerging Microbes and Infections, 2022, , 1-26.                                                                                                    | 3.0 | 2         |
| 2  | Editorial: Current Knowledge on Pathogenic and Endosymbiotic Tick-Borne Bacteria. Frontiers in<br>Veterinary Science, 2022, 9, 900510.                                                                                                                              | 0.9 | 0         |
| 3  | Jingmen Tick Virus in Ticks from Kenya. Viruses, 2022, 14, 1041.                                                                                                                                                                                                    | 1.5 | 17        |
| 4  | Tickâ€borne pathogens, including Crimeanâ€Congo haemorrhagic fever virus, at livestock markets and slaughterhouses in western Kenya. Transboundary and Emerging Diseases, 2021, 68, 2429-2445.                                                                      | 1.3 | 25        |
| 5  | Sourcing Elephant Ivory from a Sixteenth-Century Portuguese Shipwreck. Current Biology, 2021, 31, 621-628.e4.                                                                                                                                                       | 1.8 | 7         |
| 6  | With or without a Vaccine—A Review of Complementary and Alternative Approaches to Managing<br>African Swine Fever in Resource-Constrained Smallholder Settings. Vaccines, 2021, 9, 116.                                                                             | 2.1 | 24        |
| 7  | Molecular detection and characterization of novel haemotropic Mycoplasma in free-living mole rats from South Africa. Infection, Genetics and Evolution, 2021, 89, 104739.                                                                                           | 1.0 | 3         |
| 8  | A survey of mosquito-borne and insect-specific viruses in hospitals and livestock markets in western<br>Kenya. PLoS ONE, 2021, 16, e0252369.                                                                                                                        | 1.1 | 13        |
| 9  | Molecular characterization of Trypanosoma vivax in tsetse flies confirms the presence of the<br>virulent Tvv4 genotype in Kenya: Potential implications for the control of trypanosomiasis in Shimba<br>Hills. Infection, Genetics and Evolution, 2021, 93, 104953. | 1.0 | 2         |
| 10 | Prevalence and Diversity of the Rat-bite Fever Agent, in Three Invasive, Commensal Species from South<br>Africa. Yale Journal of Biology and Medicine, 2021, 94, 217-226.                                                                                           | 0.2 | 2         |
| 11 | Tsetse Bloodmeal Analyses Incriminate the Common Warthog Phacochoerus africanus as an Important<br>Cryptic Host of Animal Trypanosomes in Smallholder Cattle Farming Communities in Shimba Hills,<br>Kenya. Pathogens, 2021, 10, 1501.                              | 1.2 | 4         |
| 12 | Molecular prevalence and risk factors associated with tick-borne pathogens in cattle in western<br>Kenya. BMC Veterinary Research, 2021, 17, 363.                                                                                                                   | 0.7 | 10        |
| 13 | A continent-wide high genetic load in African buffalo revealed by clines in the frequency of deleterious alleles, genetic hitchhiking and linkage disequilibrium. PLoS ONE, 2021, 16, e0259685.                                                                     | 1.1 | 2         |
| 14 | Seroprevalence of Rift valley fever in South African domestic and wild suids (1999–2016).<br>Transboundary and Emerging Diseases, 2020, 67, 811-821.                                                                                                                | 1.3 | 8         |
| 15 | Multi-locus sequence analyses reveal a clonal L. borgpetersenii genotype in a heterogeneous invasive<br>Rattus spp. community across the City of Johannesburg, South Africa. Parasites and Vectors, 2020, 13,<br>570.                                               | 1.0 | 5         |
| 16 | Genome Sequences of Three African Swine Fever Viruses of Genotypes I, III, and XXII from South Africa<br>and Zambia, Isolated from Ornithodoros Soft Ticks. Microbiology Resource Announcements, 2020, 9, .                                                         | 0.3 | 11        |
| 17 | Photoperiodic effects on the male gonads of the Namibian gerbil, Gerbilliscus cf. leucogaster from central Namibia. Mammalian Biology, 2020, 100, 165-171.                                                                                                          | 0.8 | 0         |
| 18 | Mass Die-Off of African Elephants in Botswana: Pathogen, Poison or a Perfect Storm?. African Journal<br>of Wildlife Research, 2020, 50, .                                                                                                                           | 0.2 | 8         |

| #  | Article                                                                                                                                                                                                              | IF               | CITATIONS          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 19 | Entomological assessment of dengue virus transmission risk in three urban areas of Kenya. PLoS<br>Neglected Tropical Diseases, 2019, 13, e0007686.                                                                   | 1.3              | 18                 |
| 20 | A natural gene drive system influences bovine tuberculosis susceptibility in African buffalo: Possible implications for disease management. PLoS ONE, 2019, 14, e0221168.                                            | 1.1              | 1                  |
| 21 | Bartonella diversity and zoonotic potential in indigenous Tete Veld rats (Aethomys ineptus) from<br>South Africa. Infection, Genetics and Evolution, 2019, 73, 44-48.                                                | 1.0              | 2                  |
| 22 | Evaluation of a Virus Neutralisation Test for Detection of Rift Valley Fever Antibodies in Suid Sera.<br>Tropical Medicine and Infectious Disease, 2019, 4, 52.                                                      | 0.9              | 10                 |
| 23 | Bartonellae of Synanthropic Four-Striped Mice ( <i>Rhabdomys pumilio</i> ) from the Western Cape<br>Province, South Africa. Vector-Borne and Zoonotic Diseases, 2019, 19, 242-248.                                   | 0.6              | 1                  |
| 24 | Epidemiology of African swine fever in Africa today: Sylvatic cycle versus socioâ€economic imperatives.<br>Transboundary and Emerging Diseases, 2019, 66, 672-686.                                                   | 1.3              | 89                 |
| 25 | Multiâ€locus phylogeny of African pipits and longclaws (Aves: Motacillidae) highlights taxonomic<br>inconsistencies. Ibis, 2019, 161, 781-792.                                                                       | 1.0              | 2                  |
| 26 | The reproductive pattern of the <i>Gerbilliscus</i> cf. <i>leucogaster</i> (Rodentia: Muridae) from<br>Namibia. Canadian Journal of Zoology, 2019, 97, 57-62.                                                        | 0.4              | 2                  |
| 27 | Genetic insights into dispersal distance and disperser fitness of African lions (Panthera leo) from the<br>latitudinal extremes of the Kruger National Park, South Africa. BMC Genetics, 2018, 19, 21.               | 2.7              | 11                 |
| 28 | Attempted molecular detection of the thermally dimorphic human fungal pathogen Emergomyces africanus in terrestrial small mammals in South Africa. Medical Mycology, 2018, 56, 510-513.                              | 0.3              | 15                 |
| 29 | Multi-locus sequence typing of African swine fever viruses from endemic regions of Kenya and<br>Eastern Uganda (2011–2013) reveals rapid B602L central variable region evolution. Virus Genes, 2018, 54,<br>111-123. | 0.7              | 29                 |
| 30 | Multi-locus phylogeny of southern African Acontias aurantiacus (Peters) subspecies (Scincidae:) Tj ETQq0 0 0 rgBT<br>taxa. Zootaxa, 2018, 4442, 427-440.                                                             | /Overlock<br>0.2 | 2 10 Tf 50 30<br>4 |
| 31 | Molecular assessment of Bartonella in Gerbillus nanus from Saudi Arabia reveals high levels of prevalence, diversity and co-infection. Infection, Genetics and Evolution, 2018, 65, 244-250.                         | 1.0              | 6                  |
| 32 | Genetic responsiveness of African buffalo to environmental stressors: A role for epigenetics in balancing autosomal and sex chromosome interactions?. PLoS ONE, 2018, 13, e0191481.                                  | 1.1              | 6                  |
| 33 | The pattern of reproduction in the mole-rat <i>Heliophobius</i> from Tanzania: do not refrain during the long rains!. Canadian Journal of Zoology, 2017, 95, 107-114.                                                | 0.4              | 10                 |
| 34 | Subterranean Mammals: Reservoirs of Infection or Overlooked Sentinels of Anthropogenic<br>Environmental Soiling?. EcoHealth, 2017, 14, 662-674.                                                                      | 0.9              | 2                  |
| 35 | Pattern of ovulation in an ancient, solitary mole-rat lineage: Heliophobius argenteocinereus emini<br>from Tanzania. Canadian Journal of Zoology, 2017, 95, 737-743.                                                 | 0.4              | 2                  |
| 36 | Dengue and yellow fever virus vectors: seasonal abundance, diversity and resting preferences in three<br>Kenyan cities. Parasites and Vectors, 2017, 10, 628.                                                        | 1.0              | 33                 |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Assessment of risk of dengue and yellow fever virus transmission in three major Kenyan cities based on Stegomyia indices. PLoS Neglected Tropical Diseases, 2017, 11, e0005858.                                        | 1.3 | 30        |
| 38 | Population differentiation in the context of Holocene climate change for a migratory marine species, the southern elephant seal. Journal of Evolutionary Biology, 2016, 29, 1667-1679.                                 | 0.8 | 19        |
| 39 | Can Mathematics be Biology's next microscope in disease research at the interface?. Biomath, 2016, 5, 1612237.                                                                                                         | 0.3 | 0         |
| 40 | Evidence of a contact zone between twoRhabdomys dilectus(Rodentia: Muridae) mitotypes in Gauteng<br>province, South Africa. African Zoology, 2015, 50, 63-68.                                                          | 0.2 | 13        |
| 41 | Molecular detection of novel Anaplasmataceae closely related to Anaplasma platys and Ehrlichia<br>canis in the dromedary camel (Camelus dromedarius). Veterinary Microbiology, 2015, 179, 310-314.                     | 0.8 | 64        |
| 42 | Virus genome dynamics under different propagation pressures: reconstruction of whole genome haplotypes of west nile viruses from NGS data. BMC Genomics, 2015, 16, 118.                                                | 1.2 | 16        |
| 43 | New insights into the role of ticks in African swine fever epidemiology. OIE Revue Scientifique Et<br>Technique, 2015, 34, 503-511.                                                                                    | 0.5 | 43        |
| 44 | First molecular assessment of the African swine fever virus status of <i>Ornithodoros</i> ticks from<br>Swaziland. Onderstepoort Journal of Veterinary Research, 2014, 81, E1-5.                                       | 0.6 | 7         |
| 45 | Population Genetics of Two Key Mosquito Vectors of Rift Valley Fever Virus Reveals New Insights into<br>the Changing Disease Outbreak Patterns in Kenya. PLoS Neglected Tropical Diseases, 2014, 8, e3364.             | 1.3 | 31        |
| 46 | Drivers and risk factors for circulating African swine fever virus in Uganda, 2012–2013. Research in<br>Veterinary Science, 2014, 97, 218-225.                                                                         | 0.9 | 25        |
| 47 | Diversity of novel arenaviruses in South Africa. International Journal of Infectious Diseases, 2014, 21, 185.                                                                                                          | 1.5 | О         |
| 48 | African Swine Fever Virus. , 2014, , 579-588.                                                                                                                                                                          |     | 1         |
| 49 | Positive Selection of Deleterious Alleles through Interaction with a Sex-Ratio Suppressor Gene in<br>African Buffalo: A Plausible New Mechanism for a High Frequency Anomaly. PLoS ONE, 2014, 9, e111778.              | 1.1 | 4         |
| 50 | Phytochemical analysis and in-vitro anti-African swine fever virus activity of extracts and fractions<br>of Ancistrocladus uncinatus, Hutch and Dalziel (Ancistrocladaceae). BMC Veterinary Research, 2013, 9,<br>120. | 0.7 | 4         |
| 51 | Eastern rock sengis as reservoir hosts of Anaplasma bovis in South Africa. Ticks and Tick-borne<br>Diseases, 2013, 4, 503-505.                                                                                         | 1.1 | 13        |
| 52 | African swine fever virus eradication in Africa. Virus Research, 2013, 173, 228-246.                                                                                                                                   | 1.1 | 152       |
| 53 | Retrospective genetic characterisation of Encephalomyocarditis viruses from African elephant and swine recovers two distinct lineages in South Africa. Veterinary Microbiology, 2013, 162, 23-31.                      | 0.8 | 9         |
| 54 | Common Host-Derived Chemicals Increase Catches of Disease-Transmitting Mosquitoes and Can<br>Improve Early Warning Systems for Rift Valley Fever Virus. PLoS Neglected Tropical Diseases, 2013, 7,<br>e2007.           | 1.3 | 43        |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Sheep Skin Odor Improves Trap Captures of Mosquito Vectors of Rift Valley Fever. PLoS Neglected<br>Tropical Diseases, 2012, 6, e1879.                                                                                                                            | 1.3 | 18        |
| 56 | A mathematical epidemiological model of gram-negativeBartonellabacteria: does differential<br>ectoparasite load fully explain the differences in infection prevalence ofRattus rattusandRattus<br>norvegicus?. Journal of Biological Dynamics, 2012, 6, 763-781. | 0.8 | 6         |
| 57 | Risk factors for farm-level African swine fever infection in major pig-producing areas in Nigeria,<br>1997–2011. Preventive Veterinary Medicine, 2012, 107, 65-75.                                                                                               | 0.7 | 56        |
| 58 | Trapping of Rift Valley Fever (RVF) vectors using Light Emitting Diode (LED) CDC traps in two arboviral disease hot spots in Kenya. Parasites and Vectors, 2012, 5, 94.                                                                                          | 1.0 | 18        |
| 59 | Cost Implications of African Swine Fever in Smallholder Farrow-to-Finish Units: Economic Benefits of<br>Disease Prevention Through Biosecurity. Transboundary and Emerging Diseases, 2012, 59, 244-255.                                                          | 1.3 | 48        |
| 60 | Bartonellae of the Namaqua rock mouse, Micaelamys namaquensis (Rodentia: Muridae) from South<br>Africa. Veterinary Microbiology, 2012, 157, 132-136.                                                                                                             | 0.8 | 13        |
| 61 | Multiple Geographic Origins of Commensalism and Complex Dispersal History of Black Rats. PLoS ONE, 2011, 6, e26357.                                                                                                                                              | 1.1 | 250       |
| 62 | Cryptic species, biogeographic complexity and the evolutionary history of<br>the <i>Ectemnorhinus</i> group in the sub-Antarctic, including a description of <i>Bothrometopus<br/>huntleyi</i> , n. sp Antarctic Science, 2011, 23, 211-224.                     | 0.5 | 15        |
| 63 | Inter-island dispersal of flightless Bothrometopus huntleyi (Coleoptera: Curculionidae) from the sub-Antarctic Prince Edward Island archipelago. Antarctic Science, 2011, 23, 225-234.                                                                           | 0.5 | 9         |
| 64 | Genetic monitoring detects an overlooked cryptic species and reveals the diversity and distribution of three invasive Rattus congeners in south Africa. BMC Genetics, 2011, 12, 26.                                                                              | 2.7 | 78        |
| 65 | Trophic interrelationships between the exotic Nile tilapia, Oreochromis niloticus and indigenous<br>tilapiine cichlids in a subtropical African river system (Limpopo River, South Africa). Environmental<br>Biology of Fishes, 2011, 92, 479-489.               | 0.4 | 40        |
| 66 | Molecular characterisation of African swine fever viruses from Nigeria (2003–2006) recovers<br>multiple virus variants and reaffirms CVR epidemiological utility. Virus Genes, 2010, 41, 361-368.                                                                | 0.7 | 34        |
| 67 | Rainfall-driven sex-ratio genes in African buffalo suggested by correlations between Y-chromosomal haplotype frequencies and foetal sex ratio. BMC Evolutionary Biology, 2010, 10, 106.                                                                          | 3.2 | 15        |
| 68 | A Case of Multi-vector and Multi-host Epidemiological Model: Bartonella Infection. , 2010, , .                                                                                                                                                                   |     | 0         |
| 69 | Molecular monitoring of African swine fever virus using surveys targeted at adult Ornithodoros<br>ticks : a re-evaluation of Mkuze Game Reserve, South Africa. Onderstepoort Journal of Veterinary<br>Research, 2009, 76, 385-92.                                | 0.6 | 17        |
| 70 | The tusked king cricket, Libanasidus vittatus (Kirby, 1899) (Anostostomatidae), from South Africa:<br>morphological and molecular evidence suggest two cryptic species. Insect Systematics and Evolution,<br>2009, 40, 85-103.                                   | 0.2 | 2         |
| 71 | Role of Wild Suids in the Epidemiology of African Swine Fever. EcoHealth, 2009, 6, 296-310.                                                                                                                                                                      | 0.9 | 149       |
| 72 | Genetic clues from olfactory cues: brown hyaena scent marks provide a non-invasive source of DNA for genetic profiling. Conservation Genetics, 2009, 10, 759-762.                                                                                                | 0.8 | 4         |

| #  | Article                                                                                                                                                                                                                                                                  | IF                | CITATIONS      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 73 | A host speciesâ€informative internal control for molecular assessment of African swine fever virus infection rates in the African sylvatic cycle <i>Ornithodoros</i> vector. Medical and Veterinary Entomology, 2009, 23, 399-409.                                       | 0.7               | 24             |
| 74 | Intraspecific Patterns of Mitochondrial Variation in Natural Population Fragments of a Localized<br>Desert Dung Beetle Species, Pachysoma gariepinum (Coleoptera: Scarabaeidae). Journal of Heredity,<br>2008, 99, 464-475.                                              | 1.0               | 4              |
| 75 | Mass Mortality of Adult Male Subantarctic Fur Seals: Are Alien Mice the Culprits?. PLoS ONE, 2008, 3, e3757.                                                                                                                                                             | 1.1               | 12             |
| 76 | Do individual and combined data analyses of molecules and morphology reveal the generic status of<br>'Pachysoma' MacLeay (Coleoptera: Scarabaeidae)?. Insect Systematics and Evolution, 2007, 38, 311-330.                                                               | 0.2               | 2              |
| 77 | Selection at the Y Chromosome of the African Buffalo Driven by Rainfall. PLoS ONE, 2007, 2, e1086.                                                                                                                                                                       | 1.1               | 13             |
| 78 | Genetic characterisation of African swine fever viruses from outbreaks in southern Africa<br>(1973–1999). Veterinary Microbiology, 2007, 121, 45-55.                                                                                                                     | 0.8               | 151            |
| 79 | Intra-genotypic resolution of African swine fever viruses from an East African domestic pig cycle: a combined p72-CVR approach. Virus Genes, 2007, 35, 729-735.                                                                                                          | 0.7               | 56             |
| 80 | Molecular and morphometric assessment of the taxonomic status of Ectemnorhinus weevil species<br>(Coleoptera: Curculionidae, Entiminae) from the sub-Antarctic Prince Edward Islands. Journal of<br>Zoological Systematics and Evolutionary Research, 2006, 44, 200-211. | 0.6               | 19             |
| 81 | Retrospective genetic analysis of SAT-1 type foot-and-mouth disease outbreaks in southern Africa.<br>Archives of Virology, 2006, 151, 285-298.                                                                                                                           | 0.9               | 32             |
| 82 | Molecular epidemiology of African swine fever in East Africa. Archives of Virology, 2005, 150, 2439-2452.                                                                                                                                                                | 0.9               | 135            |
| 83 | Intra- and Inter-Genotypic Size Variation in the Central Variable Region of the 9RL Open Reading Frame of Diverse African Swine Fever Viruses. Virus Genes, 2005, 31, 357-360.                                                                                           | 0.7               | 33             |
| 84 | Phylogeography of the Namib Desert dung beetles Scarabaeus (Pachysoma) MacLeay (Coleoptera:) Tj ETQq0 0 (                                                                                                                                                                | ) rgBT /Ov<br>1.4 | erlgck 10 Tf 5 |
| 85 | Co-circulation of two genetically distinct viruses in an outbreak of African swine fever in<br>Mozambique: no evidence for individual co-infection. Veterinary Microbiology, 2004, 103, 169-182.                                                                         | 0.8               | 72             |
| 86 | Low linkage disequilibrium indicative of recombination in foot-and-mouth disease virus gene sequence<br>alignments. Journal of General Virology, 2004, 85, 1095-1100.                                                                                                    | 1.3               | 28             |
| 87 | A first molecular epidemiological study of SAT-2 type foot-and-mouth disease viruses in West Africa.<br>Epidemiology and Infection, 2004, 132, 525-532.                                                                                                                  | 1.0               | 25             |
| 88 | An investigation into the source and spread of foot and mouth disease virus from a wildlife conservancy in Zimbabwe. OIE Revue Scientifique Et Technique, 2004, 23, 783-790.                                                                                             | 0.5               | 50             |
| 89 | Foot and mouth disease in Mali: the current situation and proposed control strategies. OIE Revue<br>Scientifique Et Technique, 2004, 23, 863-872.                                                                                                                        | 0.5               | 8              |
| 90 | An investigation into natural resistance to African swine fever in domestic pigs from an endemic area<br>in southern Africa. OIE Revue Scientifique Et Technique, 2004, 23, 965-977.                                                                                     | 0.5               | 77             |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Molecular epidemiology of SAT3-type foot-and-mouth disease. Virus Genes, 2003, 27, 283-290.                                                                                                                                              | 0.7 | 41        |
| 92  | Morphometric measurement selection: an invertebrate case study based on weevils from sub-Antarctic<br>Marion Island. Polar Biology, 2003, 27, 38-49.                                                                                     | 0.5 | 1         |
| 93  | Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Archives of Virology, 2003, 148, 693-706.                                                                                                    | 0.9 | 347       |
| 94  | Retrospective genetic analysis of SAT-1 type foot-and-mouth disease outbreaks in West Africa<br>(1975–1981). Veterinary Microbiology, 2003, 93, 279-289.                                                                                 | 0.8 | 28        |
| 95  | Development of a TaqMan® PCR assay with internal amplification control for the detection of African swine fever virus. Journal of Virological Methods, 2003, 107, 53-61.                                                                 | 1.0 | 392       |
| 96  | Foot and mouth disease in wildlife. Virus Research, 2003, 91, 145-161.                                                                                                                                                                   | 1.1 | 216       |
| 97  | The implications of virus diversity within the SAT 2 serotype for control of foot-and-mouth disease in sub-Saharan Africa. Journal of General Virology, 2003, 84, 1595-1606.                                                             | 1.3 | 96        |
| 98  | Genetic heterogeneity in the foot-and-mouth disease virus Leader and 3C proteinases. Gene, 2002, 289, 19-29.                                                                                                                             | 1.0 | 49        |
| 99  | The Possible Role That Buffalo Played in the Recent Outbreaks of Footâ€andâ€Mouth Disease in South Africa. Annals of the New York Academy of Sciences, 2002, 969, 187-190.                                                               | 1.8 | 49        |
| 100 | Isolation of a non-haemadsorbing, non-cytopathic strain of African swine fever virus in Madagascar.<br>Epidemiology and Infection, 2001, 126, 453-459.                                                                                   | 1.0 | 30        |
| 101 | Genetic heterogeneity of SAT-1 type foot-and-mouth disease viruses in southern Africa. Archives of Virology, 2001, 146, 1537-1551.                                                                                                       | 0.9 | 82        |
| 102 | Molecular epidemiology of serotype O foot-and-mouth disease virus with emphasis on West and South<br>Africa. Virus Genes, 2001, 22, 345-351.                                                                                             | 0.7 | 40        |
| 103 | Natural transmission of foot-and-mouth disease virus between African buffalo (Syncerus caffer) and<br>impala (Aepyceros melampus) in the Kruger National Park, South Africa. Epidemiology and Infection,<br>2000, 124, 591-598.          | 1.0 | 112       |
| 104 | Possibility of sexual transmission of footâ€and―mouth disease from African buffalo to cattle.<br>Veterinary Record, 1999, 145, 77-79.                                                                                                    | 0.2 | 43        |
| 105 | Persistent infection of African buffalo (Syncerus caffer) with SAT-type foot-and-mouth disease viruses: rate of fixation of mutations, antigenic change and interspecies transmission. Journal of General Virology, 1996, 77, 1457-1467. | 1.3 | 104       |
| 106 | Mitochondrial DNA Sequence Relationships of the Extinct Blue Antelope Hippotragus leucophaeus. Die<br>Naturwissenschaften, 1996, 83, 178-182.                                                                                            | 0.6 | 11        |
| 107 | Dynamics of Rodent-Borne Zoonotic Diseases and Their Reservoir Hosts: Invasive Rattus in South<br>Africa. Proceedings of the Vertebrate Pest Conference, 0, 25, .                                                                        | 0.1 | 5         |