Xu Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/680873/publications.pdf

Version: 2024-02-01

91712 53660 11,023 68 45 69 citations h-index g-index papers 72 72 72 12782 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Single-layer graphene prevents Cassie-wetting failure of structured hydrophobic surface for efficient condensation. Journal of Colloid and Interface Science, 2022, 615, 302-308.	5.0	7
2	Structures, properties and applications of two-dimensional metal nitrides: from nitride MXene to other metal nitrides. 2D Materials, 2022, 9, 022001.	2.0	19
3	Tunable Infrared Sensing Properties of MXenes Enabled by Intercalants. Advanced Optical Materials, 2022, 10, .	3.6	8
4	Optimizing Ion Pathway in Titanium Carbide MXene for Practical Highâ€Rate Supercapacitor. Advanced Energy Materials, 2021, 11, 2003025.	10.2	152
5	Allâ€MXene Cottonâ€Based Supercapacitorâ€Powered Human Body Thermal Management System. ChemElectroChem, 2021, 8, 648-655.	1.7	33
6	Interconnected Twoâ€dimensional Arrays of Niobium Nitride Nanocrystals as Stable Lithium Host. Batteries and Supercaps, 2021, 4, 106-111.	2.4	7
7	Allâ€MXene Cottonâ€Based Supercapacitorâ€Powered Human Body Thermal Management System. ChemElectroChem, 2021, 8, 607-607.	1.7	9
8	Polypyrrole Nanotube Sponge Host for Stable Lithium-Metal Batteries under Lean Electrolyte Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 2543-2551.	3.2	11
9	Mechanisms of the Planar Growth of Lithium Metal Enabled by the 2D Lattice Confinement from a Ti ₃ C ₂ Ti> _{MXene Intermediate Layer. Advanced Functional Materials, 2021, 31, 2010987.}	7.8	33
10	Electronic Modulation of Nonâ€van der Waals 2D Electrocatalysts for Efficient Energy Conversion. Advanced Materials, 2021, 33, e2008422.	11.1	190
11	Emerging Topochemical Strategies for Designing Two-Dimensional Energy Materials. Micromachines, 2021, 12, 867.	1.4	2
12	V ₂ CT _{<i>x</i>} MXene Artificial Solid Electrolyte Interphases toward Dendrite-Free Lithium Metal Anodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 9961-9969.	3.2	13
13	Substrate-Independent Ti ₃ C ₂ T _{<i>x</i>} MXene Waterborne Paint for Terahertz Absorption and Shielding. ACS Nano, 2021, 15, 13646-13652.	7.3	54
14	In-situ growth of MAX phase coatings on carbonised wood and their terahertz shielding properties. Journal of Advanced Ceramics, 2021, 10, 1291-1298.	8.9	15
15	Transition metal nitrides for electrochemical energy applications. Chemical Society Reviews, 2021, 50, 1354-1390.	18.7	580
16	Laser writing of the restacked titanium carbide MXene for high performance supercapacitors. Energy Storage Materials, 2020, 32, 418-424.	9.5	31
17	Enhanced Rate Capability of Ionâ€Accessible Ti ₃ C ₂ T <i>_x</i> Advanced Energy Materials, 2020, 10, 2001411.	10.2	50
18	Ti ₃ C ₂ T <i>_x</i> MXene Sponge Composite as Broadband Terahertz Absorber. Advanced Optical Materials, 2020, 8, 2001120.	3.6	91

#	Article	IF	CITATIONS
19	Intercalation in Twoâ€Dimensional Transition Metal Carbides and Nitrides (MXenes) toward Electrochemical Capacitor and Beyond. Energy and Environmental Materials, 2020, 3, 306-322.	7.3	66
20	Confined growth of pyridinic N–Mo ₂ C sites on MXenes for hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 7109-7116.	5.2	148
21	Structural and Electronic Optimization of MoS ₂ Edges for Hydrogen Evolution. Journal of the American Chemical Society, 2019, 141, 18578-18584.	6.6	292
22	Tuning the Electrochemical Performance of Titanium Carbide MXene by Controllable In Situ Anodic Oxidation. Angewandte Chemie, 2019, 131, 18013-18019.	1.6	38
23	Tuning the Electrochemical Performance of Titanium Carbide MXene by Controllable In Situ Anodic Oxidation. Angewandte Chemie - International Edition, 2019, 58, 17849-17855.	7.2	117
24	Creating oxygen-vacancies in MoO3- nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan. Nano Energy, 2019, 58, 455-465.	8.2	266
25	Twoâ€Dimensional Arrays of Transition Metal Nitride Nanocrystals. Advanced Materials, 2019, 31, e1902393.	11.1	93
26	Sizeâ€Independent Fast Ion Intercalation in Twoâ€Dimensional Titania Nanosheets for Alkaliâ€Metalâ€Ion Batteries. Angewandte Chemie, 2019, 131, 8832-8837.	1.6	13
27	Sizeâ€Independent Fast Ion Intercalation in Twoâ€Dimensional Titania Nanosheets for Alkaliâ€Metalâ€Ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 8740-8745.	7.2	53
28	MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Materials, 2019, 20, 455-461.	9.5	136
29	Scalable Synthesis of Ultrathin Mn ₃ N ₂ Exhibiting Roomâ€Temperature Antiferromagnetism. Advanced Functional Materials, 2019, 29, 1809001.	7.8	67
30	Topochemical synthesis of 2D materials. Chemical Society Reviews, 2018, 47, 8744-8765.	18.7	232
31	Atmosphericâ€Pressure Synthesis of 2D Nitrogenâ€Rich Tungsten Nitride. Advanced Materials, 2018, 30, e1805655.	11.1	104
32	Optimizing MoS ₂ Edges by Alloying Isovalent W for Robust Hydrogen Evolution Activity. ACS Catalysis, 2018, 8, 9529-9536.	5.5	83
33	StraPep: a structure database of bioactive peptides. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	1.4	41
34	Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides. ACS Nano, 2017, 11, 2180-2186.	7.3	359
35	Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nature Communications, 2017, 8, 15630.	5.8	258
36	Energy Harvest from Organics Degradation by Two-Dimensional K ⁺ -Intercalated Manganese Oxide. ACS Applied Materials & Interfaces, 2017, 9, 41233-41238.	4.0	8

#	Article	IF	CITATIONS
37	Flexible Transparent Molybdenum Trioxide Nanopaper for Energy Storage. Advanced Materials, 2016, 28, 6353-6358.	11.1	194
38	Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials. Chemistry of Materials, 2016, 28, 3937-3943.	3.2	210
39	Ethanol reduced molybdenum trioxide for Li-ion capacitors. Nano Energy, 2016, 26, 100-107.	8.2	74
40	Microwave Combustion for Modification of Transition Metal Oxides. Advanced Functional Materials, 2016, 26, 7263-7270.	7.8	42
41	Cross-linked carbon network with hierarchical porous structure for high performance solid-state electrochemical capacitor. Journal of Power Sources, 2016, 327, 488-494.	4.0	23
42	Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nature Communications, 2016, 7, 11296.	5.8	379
43	Synthesis of novel TiO ₂ /BiOCl@HHSS composites and its photocatalytic activity enhancement under simulated sunlight. RSC Advances, 2016, 6, 101242-101249.	1.7	16
44	Band gap engineering of MnO ₂ through in situ Al-doping for applicable pseudocapacitors. RSC Advances, 2016, 6, 13914-13919.	1.7	56
45	Twoâ€Dimensional Layered Heterostructures Synthesized from Core–Shell Nanowires. Angewandte Chemie - International Edition, 2015, 54, 8957-8960.	7.2	78
46	A Bamboo-Inspired Nanostructure Design for Flexible, Foldable, and Twistable Energy Storage Devices. Nano Letters, 2015, 15, 3899-3906.	4.5	296
47	Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors. Nanotechnology, 2015, 26, 304004.	1.3	48
48	H _x MoO _{3â^'y} nanobelts with sea water as electrolyte for high-performance pseudocapacitors and desalination devices. Journal of Materials Chemistry A, 2015, 3, 17217-17223.	5.2	33
49	Highly rate and cycling stable electrode materials constructed from polyaniline/cellulose nanoporous microspheres. Journal of Materials Chemistry A, 2015, 3, 16424-16429.	5.2	47
50	Intercalation of cations into partially reduced molybdenum oxide for high-rate pseudocapacitors. Energy Storage Materials, $2015,1,1$ -8.	9.5	92
51	Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy, 2015, 15, 66-74.	8.2	384
52	2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage. Nanoscale, 2015, 7, 16094-16099.	2.8	71
53	Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy, 2015, 11, 568-578.	8.2	183
54	Al-doped \hat{l} ±-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability. Nano Energy, 2015, 11, 226-234.	8.2	186

#	Article	IF	CITATION
55	Freestanding MoO3â^' nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy, 2014, 9, 355-363.	8.2	146
56	Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy, 2014, 6, 1-9.	8.2	182
57	Supercapacitors: Freestanding Mesoporous VN/CNT Hybrid Electrodes for Flexible Allâ€Solidâ€State Supercapacitors (Adv. Mater. 36/2013). Advanced Materials, 2013, 25, 4954-4954.	11.1	6
58	Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy, 2013, 2, 1071-1078.	8.2	348
59	Freestanding Mesoporous VN/CNT Hybrid Electrodes for Flexible Allâ€Solidâ€State Supercapacitors. Advanced Materials, 2013, 25, 5091-5097.	11.1	420
60	Hydrogenated ZnO Core–Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems. ACS Nano, 2013, 7, 2617-2626.	7.3	781
61	High performance flexible supercapacitors based on multilayer PANI/Au electrodes. , 2013, , .		0
62	Flexible Solid-State Supercapacitors Based on Carbon Nanoparticles/MnO ₂ Nanorods Hybrid Structure. ACS Nano, 2012, 6, 656-661.	7.3	961
63	Fiber-Based All-Solid-State Flexible Supercapacitors for Self-Powered Systems. ACS Nano, 2012, 6, 9200-9206.	7.3	596
64	WO _{3â^'<i>x</i>} /MoO _{3â^'<i>x</i>} Core/Shell Nanowires on Carbon Fabric as an Anode for Allâ€Solidâ€State Asymmetric Supercapacitors. Advanced Energy Materials, 2012, 2, 1328-1332.	10.2	401
65	Paperâ€Based Supercapacitors for Selfâ€Powered Nanosystems. Angewandte Chemie - International Edition, 2012, 51, 4934-4938.	7.2	364
66	Highâ€Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films. Advanced Materials, 2011, 23, 5440-5444.	11.1	497
67	Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode. Advanced Materials, 2010, 22, 5292-5296.	11.1	93
68	Giant magnetoresistance in La0.67Ca0.33MnO3 granular system with CuO addition. Materials Research Bulletin, 2008, 43, 631-638.	2.7	18