Thomas Bechtold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6808624/publications.pdf Version: 2024-02-01

	117571	161767
4,419	34	54
citations	h-index	g-index
211	211	3783
docs citations	times ranked	citing authors
	citations 211	4,41934citationsh-index211211

#	Article	IF	CITATIONS
1	Characterisation of reduction state of cystine linkages on wool fibre surface under heterogeneous reaction conditions. Polymer Testing, 2022, 106, 107438.	2.3	5
2	Surface Activation of High Performance Polymer Fibers: A Review. Polymer Reviews, 2022, 62, 757-788.	5.3	20
3	Distinguishing liquid ammonia from sodium hydroxide mercerization in cotton textiles. Cellulose, 2022, 29, 4183-4202.	2.4	10
4	Characterisation of enzyme catalysed hydrolysation stage of poly(lactic acid) fibre surface by nanoscale thermal analysis: New mechanistic insight. Materials and Design, 2022, 219, 110810.	3.3	3
5	Localised Catalyst Printing for Flexible Conductive Lines by Electroless Copper Deposition on Textiles. , 2022, , .		5
6	Complexation-mediated surface modification of polyamide-66 textile to enhance electroless copper deposition. Materials Chemistry and Physics, 2022, 288, 126383.	2.0	7
7	Swelling of kappa carrageenan hydrogels in simulated body fluid for hypothetical vessel occlusion applications. Journal of Biomaterials Applications, 2022, 37, 588-599.	1.2	2
8	Investigation on the Behavior of κ â€Carrageenan Hydrogels for Compressive Intraâ€Vessel Disintegration. Macromolecular Bioscience, 2021, 21, 2000348.	2.1	2
9	Investigation of the decomplexation of polyamide/ <scp>CaCl₂</scp> complex toward a green, nondestructive recovery of polyamide from textile waste. Journal of Applied Polymer Science, 2021, 138, 51170.	1.3	10
10	Multi-Point Flexible Temperature Sensor Array and Thermoelectric Generator Made from Copper-Coated Textiles. Sensors, 2021, 21, 3742.	2.1	16
11	Towards the Functional Ageing of Electrically Conductive and Sensing Textiles: A Review. Sensors, 2021, 21, 5944.	2.1	15
12	Thermal stability of natural dye lakes from Canadian Goldenrod and onion peel as sustainable pigments. Journal of Cleaner Production, 2021, 315, 128195.	4.6	17
13	Quantification of aniline and N-methylaniline in indigo. Scientific Reports, 2021, 11, 21135.	1.6	7
14	The role of electrode orientation to enhance mass transport in redox flow batteries. Electrochemistry Communications, 2020, 111, 106650.	2.3	10
15	Treatment of polyamide 66 fabric for increased ultraviolet protection. Textile Reseach Journal, 2020, 90, 1881-1888.	1.1	5
16	Anodic Coating of 1.4622 Stainless Steel with Polydopamine by Repetitive Cyclic Voltammetry and Galvanostatic Deposition. Industrial & Engineering Chemistry Research, 2020, 59, 236-244.	1.8	5
17	Surface coated cellulose fibres as a biobased alternative to functional synthetic fibres. Journal of Cleaner Production, 2020, 275, 123857.	4.6	7
18	Piezo-Sensitive Fabrics from Carbon Black Containing Conductive Cellulose Fibres for Flexible Pressure Sensors. Materials, 2020, 13, 5150.	1.3	11

#	Article	IF	CITATIONS
19	Investigation of Interfacial Diffusion in PA/PP- <i>g</i> -MAH Laminates Using Nanoscale Infrared Spectroscopy. Langmuir, 2020, 36, 9886-9893.	1.6	3
20	Reactive Modification of Fiber Polymer Materials for Textile Applications. , 2020, , 21-41.		0
21	Special Issue "Textile-Based Advanced Materials: Construction, Properties and Applications― Materials, 2020, 13, 5766.	1.3	2
22	Activation of carbon tow electrodes for use in iron aqueous redox systems for electrochemical applications. Journal of Materials Chemistry C, 2020, 8, 7755-7764.	2.7	4
23	Calcium-iron-D-gluconate complexes for the indirect cathodic reduction of indigo in denim dyeing: A greener alternative to non-regenerable chemicals. Journal of Cleaner Production, 2020, 266, 121753.	4.6	14
24	Water-based slurries for high-energy LiFePO4 batteries using embroidered current collectors. Scientific Reports, 2020, 10, 5565.	1.6	18
25	Tunable colors and conductivity by electroless growth of Cu/Cu2O particles on sol-gel modified cellulose. Nano Research, 2020, 13, 2658-2664.	5.8	11
26	Grafting of wool fibers through disulfide bonds: An advanced application of S-protected thiolated starch. International Journal of Biological Macromolecules, 2020, 147, 473-481.	3.6	2
27	Textile-Integrated Thermocouples for Temperature Measurement. Materials, 2020, 13, 626.	1.3	21
28	Multivalent Ions as Reactive Crosslinkers for Biopolymers—A Review. Molecules, 2020, 25, 1840.	1.7	34
29	Polymer Interface Reactions. , 2020, , 55-96.		1
30	A second life for lowâ€grade wool through formation of allâ€keratin composites in cystine reducing calcium chloride–water–ethanol solution. Journal of Chemical Technology and Biotechnology, 2019, 94, 3384-3392.	1.6	9
31	Conductive textiles via electroless deposition for flexible electronics. , 2019, , .		0
32	Mechanistic insights into the electrochemical oxidation of dopamine by cyclic voltammetry. Journal of Electroanalytical Chemistry, 2019, 836, 94-101.	1.9	72
33	Electrochemistry of Iron(II/III)â€N,N'â€ethyleneâ€bisâ€{oâ€hydroxyphenylglycine) Complexes in Aqueous Solution Indicates Potential for Use in Redox Flow Batteries. ChemElectroChem, 2019, 6, 3311-3318.	1.7	15
34	Structural elucidation of mixed carrageenan gels using rheometry. Food Hydrocolloids, 2019, 95, 533-539.	5.6	15
35	Flexible Textile Strain Sensor Based on Copper-Coated Lyocell Type Cellulose Fabric. Polymers, 2019, 11, 784.	2.0	23
36	Sex-related differences in clothing-microclimate and subjective perceptions while wearing two outdoor jackets during submaximal exercise in a cool environment. Journal of the Textile Institute, 2019, 110, 1343-1351.	1.0	2

#	Article	IF	CITATIONS
37	Spatial Structure Investigation of Porous Shell Layer Formed by Swelling of PA66 Fibers in CaCl ₂ /H ₂ O/EtOH Mixtures. Langmuir, 2019, 35, 4902-4908.	1.6	14
38	2. Textile fibres. , 2019, , 17-92.		0
39	14. Surfactants, detergents and laundry. , 2019, , 419-438.		0
40	1. Textiles. , 2019, , 1-16.		1
41	4. Basic interactions between fibre polymers and sorptives. , 2019, , 115-138.		0
42	5. Thermodynamics and kinetics in fibre chemistry. , 2019, , 139-166.		0
43	11. Pre-treatment. , 2019, , 329-352.		0
44	12. Finishing. , 2019, , 353-396.		0
45	15. Environmental aspects of textiles. , 2019, , 439-458.		0
46	Extraction of polyphenolic substances from bark as natural colorants for wool dyeing. Coloration Technology, 2019, 135, 32-39.	0.7	17
47	Tailored fibre placement of carbon fibre rovings for reinforced polypropylene composite part 1: PP infusion of carbon reinforcement. Composites Part B: Engineering, 2019, 162, 703-711.	5.9	7
48	Modelling of phase separation of alginate-carrageenan gels based on rheology. Food Hydrocolloids, 2019, 89, 765-772.	5.6	15
49	The effect of different water vapor permeable jackets on moisture management, subjective perceptions and physiological parameters during submaximal exercise in a cool environment. Textile Reseach Journal, 2019, 89, 528-540.	1.1	3
50	Salt sorption on regenerated cellulosic fibers: electrokinetic measurements. Cellulose, 2018, 25, 3307-3314.	2.4	8
51	Development and Characterization of Fiber-Based Pressure Sensors. Proceedings (mdpi), 2018, 2, .	0.2	0
52	Effect of fibre orientation on the mechanical properties of polypropylene–lyocell composites. Cellulose, 2018, 25, 7197-7210.	2.4	88
53	Monitoring the State-of-Charge in All-Iron Aqueous Redox Flow Batteries. Journal of the Electrochemical Society, 2018, 165, A3164-A3168.	1.3	8
54	Quantification of triethanolamine through measurement of catalytic current in alkaline	1.9	5

54 iron-d-gluconate solution. Journal of Electroanalytical Chemistry, 2018, 830-831, 50-55.

#	Article	IF	CITATIONS
55	Modification of polypropylene fibres with cationic polypropylene dispersion for improved dyeability. Coloration Technology, 2018, 134, 400-407.	0.7	3
56	Conductive layers through electroless deposition of copper on woven cellulose lyocell fabrics. Surface and Coatings Technology, 2018, 348, 13-21.	2.2	38
57	Green reducing agents for indigo dyeing on cotton fabrics. Journal of Cleaner Production, 2018, 197, 106-113.	4.6	68
58	Controlled Surface Modification of Polyamide 6.6 Fibres Using CaCl2/H2O/EtOH Solutions. Polymers, 2018, 10, 207.	2.0	18
59	Analysis of the Fibroin Solution State in Calcium Chloride/Water/Ethanol for Improved Understanding of the Regeneration Process. Fibres and Textiles in Eastern Europe, 2018, 26, 43-50.	0.2	5
60	Effects of functional shirts with different fiber compositions on thermoregulation in well-trained runners. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2017, 231, 75-82.	0.4	1
61	In-situ deposition of Cu 2 O micro-needles for biologically active textiles and their release properties. Carbohydrate Polymers, 2017, 165, 255-265.	5.1	81
62	Surface modification of textile material through deposition of regenerated silk fibroin. Journal of Applied Polymer Science, 2017, 134, 45098.	1.3	11
63	Cathodic decolourisation of reactive dyes in model effluents released from textile dyeing. Journal of Cleaner Production, 2017, 142, 1397-1405.	4.6	36
64	A novel silver-containing absorbent wound dressing based on spacer fabric. Journal of Materials Chemistry B, 2017, 5, 6786-6793.	2.9	20
65	Alkali pretreatments and crosslinking of lyocell fabrics. Cellulose, 2017, 24, 3991-4002.	2.4	8
66	Analysis of moisture sorption in lyocell-polypropylene composites. Cellulose, 2017, 24, 1837-1847.	2.4	9
67	New Three-Dimensional Porous Electrode Concept: Vertically-Aligned Carbon Nanotubes Directly Grown on Embroidered Copper Structures. Nanomaterials, 2017, 7, 438.	1.9	9
68	2-Azidoimidazolium Ions Captured by N-Heterocyclic Carbenes: Azole-Substituted Triazatrimethine Cyanines. Crystals, 2016, 6, 40.	1.0	5
69	Metal mordanting in dyeing with natural colourants. Coloration Technology, 2016, 132, 107-113.	0.7	56
70	Sorption behavior of reactive dyed labelled fibroin on fibrous substrates. Journal of Applied Polymer Science, 2016, 133, .	1.3	4
71	Effects of two different battings (sheep wool versus polyester microfiber) in an outdoor jacket on the heat and moisture management and comfort sensation in the cold. Textile Reseach Journal, 2016, 86, 191-201.	1.1	4
72	X-ray micro tomography of three-dimensional embroidered current collectors for lithium-ion batteries. Journal of Power Sources, 2016, 306, 826-831.	4.0	8

#	Article	IF	CITATIONS
73	Multi-chamber electroosmosis using textile reinforced agar membranes – A promising concept for the future of hemodialysis. Carbohydrate Polymers, 2016, 136, 81-86.	5.1	7
74	Printing of reactive silicones for surface modification of textile material. Journal of Applied Polymer Science, 2015, 132, .	1.3	5
75	Copper(<scp>i</scp>)oxide microparticles – synthesis and antimicrobial finishing of textiles. Journal of Materials Chemistry B, 2015, 3, 5886-5892.	2.9	18
76	Caregiver's vision of bedding textiles for elderly. Fashion and Textiles, 2015, 2, .	1.3	3
77	Cotton fabrics with UV blocking properties through metal salts deposition. Applied Surface Science, 2015, 357, 1878-1889.	3.1	103
78	Performance limitation and the role of core temperature when wearing light-weight workwear under moderate thermal conditions. Journal of Thermal Biology, 2015, 47, 83-90.	1.1	8
79	Production scale plasma modification of polypropylene baselayer for improved water management properties. Journal of Applied Polymer Science, 2015, 132, .	1.3	11
80	Aqueous thiocyanate–urea solution as a powerful non-alkaline swelling agent for cellulose fibres. Carbohydrate Polymers, 2015, 116, 124-130.	5.1	9
81	Sodium metabisulfite in blue jeans: an unexpected cause of textile contact dermatitis. Contact Dermatitis, 2014, 70, 190-192.	0.8	18
82	Microclimate in ski boots – Temperature, relative humidity, and water absorption. Applied Ergonomics, 2014, 45, 515-520.	1.7	18
83	Direct carbamation of cellulose fiber sheets. Cellulose, 2014, 21, 627-640.	2.4	5
84	One-sided surface modification of cellulose fabric by printing a modified TEMPO-mediated oxidant. Carbohydrate Polymers, 2014, 106, 142-147.	5.1	8
85	Copper(I)oxide surface modified cellulose fibers—Synthesis, characterization and antimicrobial properties. Surface and Coatings Technology, 2014, 254, 344-351.	2.2	82
86	Characterisation of embroidered 3D electrodes by use of anthraquinone-1,5-disulfonic acid as probe system. Journal of Power Sources, 2014, 254, 224-231.	4.0	5
87	High current density 3D electrodes manufactured by technical embroidery. Journal of Solid State Electrochemistry, 2013, 17, 2303-2309.	1.2	6
88	Sorption of iron(III)–alginate complexes on cellulose fibres. Cellulose, 2013, 20, 2481-2490.	2.4	8
89	Treatments to impart antimicrobial activity to clothing and household cellulosic-textiles – why "Nano―silver?. Journal of Cleaner Production, 2013, 39, 17-23.	4.6	90
90	All-cellulose composites from woven fabrics. Composites Science and Technology, 2013, 78, 30-40.	3.8	6

#	Article	IF	CITATIONS
91	Ion-interactions as driving force in polysaccharide assembly. Carbohydrate Polymers, 2013, 93, 316-323.	5.1	30
92	Assessment of moisture management performance of multilayer compression bandages. Textile Reseach Journal, 2013, 83, 871-880.	1.1	10
93	Viscose as an alternative to aramid in workwear: Influence on endurance performance, cooling, and comfort. Textile Reseach Journal, 2013, 83, 2085-2092.	1.1	16
94	Moisture management properties of ski-boot liner materials. Textile Reseach Journal, 2012, 82, 99-107.	1.1	12
95	Wash–dry cycle induced changes in lowâ€ordered parts of regenerated cellulosic fibers. Journal of Applied Polymer Science, 2012, 126, E397.	1.3	16
96	Ca2+ sorption on regenerated cellulose fibres. Carbohydrate Polymers, 2012, 90, 937-942.	5.1	14
97	Copper inclusion in cellulose using sodium d-gluconate complexes. Carbohydrate Polymers, 2012, 90, 1345-1352.	5.1	31
98	Polysaccharide Fibres in Textiles. , 2012, , 187-214.		0
99	Steam Processing of Regenerated Cellulose Fabric in Concentrated LiCl/Urea Solutions. Macromolecular Materials and Engineering, 2012, 297, 540-549.	1.7	7
100	Investigation of the spinnability of cellulose/alkaline ferric tartrate solutions. Carbohydrate Polymers, 2012, 87, 195-201.	5.1	5
101	Sorption of anionic polysaccharides by cellulose. Carbohydrate Polymers, 2012, 87, 695-700.	5.1	12
102	Analysis of crystallinity changes in cellulose II polymers using carbohydrate-binding modules. Carbohydrate Polymers, 2012, 89, 213-221.	5.1	23
103	Production of a concentrated natural dye from Canadian Goldenrod (Solidago canadensis) extracts. Dyes and Pigments, 2012, 93, 1416-1421.	2.0	46
104	Aluminium based dye lakes from plant extracts for textile coloration. Dyes and Pigments, 2012, 94, 533-540.	2.0	42
105	Application of ATR-FT-IR Single-Fiber Analysis for the Identification of a Foreign Polymer in Textile Matrix. International Journal of Polymer Analysis and Characterization, 2011, 16, 259-268.	0.9	20
106	Temperature, relative humidity and water absorption in ski boots. Procedia Engineering, 2011, 13, 44-50.	1.2	9
107	What Does LiOH Treatment Offer for Lyocell Fibers? Investigation of Structural Changes. Industrial & Engineering Chemistry Research, 2011, 50, 9087-9094.	1.8	4
108	A study on the dyeing characteristics and electrochemical behaviour of lawsone–indigo mixtures. Coloration Technology, 2011, 127, 153-158.	0.7	8

#	Article	IF	CITATIONS
109	Surface activation of dyed fabric for cellulase treatment. Biotechnology Journal, 2011, 6, 1280-1285.	1.8	14
110	Indirect cathodic reduction of dispersed indigo by 1,2-dihydroxy-9,10-anthraquinone-3-sulphonate (Alizarin Red S). Journal of Solid State Electrochemistry, 2011, 15, 1875-1884.	1.2	8
111	The influence of alkali pretreatments in lyocell resin finishing—Changes in fiber accessibility to crosslinker and catalyst. Carbohydrate Polymers, 2011, 86, 612-620.	5.1	9
112	pH Dependent redox behaviour of Alizarin Red S (1,2-dihydroxy-9,10-anthraquinone-3-sulfonate) – Cyclic voltammetry in presence of dispersed vat dye. Dyes and Pigments, 2011, 91, 324-331.	2.0	39
113	Alkali treatment of cellulose II fibres and effect on dye sorption. Carbohydrate Polymers, 2011, 84, 299-307.	5.1	52
114	Indirect cathodic reduction of dispersed CI Vat Blue 1 (indigo) by dihydroxy-9,10-anthraquinones in cyclic voltammetry experiments. Journal of Electroanalytical Chemistry, 2011, 654, 29-37.	1.9	8
115	Electrochemical characteristics and dyeing properties of selected 9,10-anthraquinones as mediators for the indirect cathodic reduction of dyes. Dyes and Pigments, 2010, 87, 194-203.	2.0	24
116	Swelling and dissolution mechanism of regenerated cellulosic fibers in aqueous alkaline solution containing ferric–tartaric acid complex—Part II: Modal fibers. Carbohydrate Polymers, 2010, 82, 1068-1073.	5.1	7
117	Functionalisation of cellulosic substrates by a facile solventless method of introducing carbamate groups. Carbohydrate Polymers, 2010, 82, 1191-1197.	5.1	30
118	Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose, 2010, 17, 103-115.	2.4	214
119	Swelling and dissolution mechanism of lyocell fiber in aqueous alkaline solution containing ferric tartaric acid complex. Cellulose, 2010, 17, 521-532.	2.4	11
120	Nonalkali swelling solutions for regenerated cellulose. Cellulose, 2010, 17, 913-922.	2.4	10
121	NaOH/urea aqueous solutions improving properties of regeneratedâ€cellulosic fabrics. Journal of Applied Polymer Science, 2010, 115, 2865-2874.	1.3	5
122	Alkali pretreatment and resin finishing of lyocell: Effect of sodium hydroxide pretreatments. Journal of Applied Polymer Science, 2010, 115, 2898-2910.	1.3	5
123	Swelling and dissolution mechanism of regenerated cellulosic fibers in aqueous alkaline solution containing ferric tartaric acid complex: Part I. Viscose fibers. Carbohydrate Polymers, 2010, 82, 761-767.	5.1	14
124	Changes in the Inter―and Intra―Fibrillar Structure of Lyocell (TENCEL®) Fibers after KOH Treatment. Macromolecular Symposia, 2010, 294, 24-37.	0.4	12
125	Alkali treatments of lyocell in continuous processes. I. Effects of temperature and alkali concentration on the treatments of plain woven fabrics. Journal of Applied Polymer Science, 2009, 113, 3646-3655.	1.3	12
126	The reduction of dispersed indigo by cathodically formed 1,2,4-trihydroxynaphthalene. Dyes and Pigments, 2009, 83, 21-30.	2.0	17

#	Article	IF	CITATIONS
127	Model calculations to optimise multi-cathode flow through electrolysers: direct cathodic reduction of C.I. Sulphur Black 1. Journal of Applied Electrochemistry, 2009, 39, 1963-1973.	1.5	5
128	CI Reactive Black 5 dye as a visible crosslinker to improve physical properties of lyocell fabrics. Cellulose, 2009, 16, 27-35.	2.4	12
129	Influence of ligand type and solution pH on heavy metal ion complexation in cellulosic fibre: model calculations and experimental results. Cellulose, 2009, 16, 53-63.	2.4	14
130	Changes in the intra- and inter-fibrillar structure of lyocell (TENCEL®) fibers caused by NaOH treatment. Cellulose, 2009, 16, 37-52.	2.4	62
131	Effect of alkali pre-treatment on hydrolysis of regenerated cellulose fibers (part 1: viscose) by cellulases. Cellulose, 2009, 16, 1057-1068.	2.4	13
132	The development of indigo reduction methods and preâ€reduced indigo products. Coloration Technology, 2009, 125, 193-207.	0.7	92
133	Natural dyeing of wool and hair with indigo carmine (C.I. Natural Blue 2), a renewable resource based blue dye. Journal of Cleaner Production, 2009, 17, 1487-1493.	4.6	77
134	Electrochemical reduction in vat dyeing: greener chemistry replaces traditional processes. Journal of Cleaner Production, 2009, 17, 1669-1679.	4.6	48
135	Sorption of alkaline earth metal ions Ca2+ and Mg2+ on lyocell fibres. Carbohydrate Polymers, 2009, 76, 123-128.	5.1	16
136	Splitting tendency of cellulosic fibers. Part 3: splitting tendency of viscose and modal fibers. Cellulose, 2008, 15, 101-109.	2.4	15
137	Advantages of a two-step enzymatic process for cotton–polyester blends. Biotechnology Letters, 2008, 30, 455-459.	1.1	11
138	Pilling in cellulosic fabrics, Part 2: A study on kinetics of pilling in alkaliâ€ŧreated lyocell fabrics. Journal of Applied Polymer Science, 2008, 109, 3696-3703.	1.3	13
139	Pilling in manâ€made cellulosic fabrics, part 1: Assessment of pilling formation methods. Journal of Applied Polymer Science, 2008, 110, 531-538.	1.3	5
140	Pilot-scale electrolyser for the cathodic reduction of oxidised C.I. Sulphur Black 1. Dyes and Pigments, 2008, 77, 502-509.	2.0	4
141	Characterization of cellulosic fibers and fabrics by sorption/desorption. Carbohydrate Research, 2008, 343, 2194-2199.	1.1	55
142	Dyeing behaviour of hydrogenated indigo in electrochemically reduced dyebaths. Coloration Technology, 2008, 124, 324-330.	0.7	12
143	Treatment in Swelling Solutions Modifying Cellulose Fiber Reactivity – Part 2: Accessibility and Reactivity. Macromolecular Symposia, 2008, 262, 50-64.	0.4	19
144	Development of a Fast and Reliable Method for the Assessment of Microbial Colonization and Growth on Textiles by DNA Quantification. Journal of Molecular Microbiology and Biotechnology, 2008, 14, 193-200.	1.0	16

#	Article	IF	CITATIONS
145	Efficient processing of raw material defines the ecological position of natural dyes in textile production. International Journal of Environment and Waste Management, 2008, 2, 215.	0.2	17
146	Treatment in Swelling Solutions Modifying Cellulose Fiber Reactivity – Part 1: Accessibility and Sorption. Macromolecular Symposia, 2008, 262, 39-49.	0.4	20
147	A new method to visualize and characterize the pore structure of TENCEL® (Lyocell) and other manâ€made cellulosic fibres using a fluorescent dye molecular probe. Journal of Applied Polymer Science, 2007, 106, 2083-2091.	1.3	37
148	Anthocyanin dyes extracted from grape pomace for the purpose of textile dyeing. Journal of the Science of Food and Agriculture, 2007, 87, 2589-2595.	1.7	57
149	Reuse of ashâ€tree (<i>Fraxinus excelsior</i> L.) bark as natural dyes for textile dyeing: process conditions and process stability. Coloration Technology, 2007, 123, 271-279.	0.7	50
150	Electrochemical reduction of CI sulphur black 1—correlation between electrochemical parameters and colour depth in exhaust dyeing. Journal of Applied Electrochemistry, 2007, 38, 25-30.	1.5	10
151	Spun-dyed lyocell. Dyes and Pigments, 2007, 74, 519-524.	2.0	20
152	Electrochemical decolourisation of dispersed indigo on boron-doped diamond anodes. Diamond and Related Materials, 2006, 15, 1513-1519.	1.8	33
153	Iron-complexes of bis(2-hydroxyethyl)-amino-compounds as mediators for the indirect reduction of dispersed vat dyes – Cyclic voltammetry and spectroelectrochemical experiments. Journal of Electroanalytical Chemistry, 2006, 591, 118-126.	1.9	24
154	Splitting tendency of cellulosic fibers – Part 1. The effect of shear force on mechanical stability of swollen lyocell fibers. Cellulose, 2006, 13, 393-402.	2.4	23
155	Splitting tendency of cellulosic fibers. Part 2: Effects of fiber swelling in alkali solutions. Cellulose, 2006, 13, 403-409.	2.4	17
156	Sorption studies on regenerated cellulosic fibers in salt–alkali mixtures. Cellulose, 2006, 13, 647-654.	2.4	17
157	On-site formation of hypochlorite for indigo oxidation – Scale-up and full scale operation of an electrolyser for denim bleach processes. Journal of Applied Electrochemistry, 2006, 36, 287-293.	1.5	17
158	Alkaline treatment of cotton in different reagent mixtures with reduced water content. I. Influence of alkali type and additives. Journal of Applied Polymer Science, 2006, 99, 2848-2855.	1.3	5
159	The influence of alkali pretreatments in lyocell resin finishing—Resin distribution and mechanical properties. Journal of Applied Polymer Science, 2006, 100, 3596-3601.	1.3	15
160	Fibrillation tendency of cellulosic fibers. VII. Combined effects of treatments with an alkali, crosslinking agent, and reactive dye. Journal of Applied Polymer Science, 2006, 100, 1176-1183.	1.3	9
161	Fibrillation tendency of cellulosic fibers, part 6: Effects of treatments with additive polymers. Journal of Applied Polymer Science, 2006, 101, 4140-4147.	1.3	8
162	Alkaline treatment of cotton in different reagent mixtures with reduced water content. II. Influence of finishing procedure. Journal of Applied Polymer Science, 2006, 101, 1194-1201.	1.3	3

#	Article	IF	CITATIONS
163	Extraction of natural dyes for textile dyeing from coloured plant wastes released from the food and beverage industry. Journal of the Science of Food and Agriculture, 2006, 86, 233-242.	1.7	122
164	Nachwachsend = nachhaltig? Eine Analyse am Beispiel pflanzlicher TextilfÄ r bung Nachwachsend = nachhaltig? Eine Analyse am Beispiel pflanzlicher TextilfÄ r bung. Gaia, 2006, 15, 44-53.	0.3	3
165	Determination of reaction rate between cathodically formed Fell-triethanolamine-complex and FellI-hepta-d-gluconate complex by cyclic voltammetry. Journal of Electroanalytical Chemistry, 2005, 580, 173-178.	1.9	10
166	Fibrillation tendency of cellulosic fibers—Part 4. Effects of alkali pretreatment of various cellulosic fibers. Carbohydrate Polymers, 2005, 61, 427-433.	5.1	30
167	Unprecedented conformational modulation of the efficiency of luminescence in Ru(II) bipyridyl complexes containing a bis(bidentate) phosphine. Inorganic Chemistry Communication, 2005, 8, 319-322.	1.8	13
168	Bleaching of indigo-dyed denim fabric by electrochemical formation of hypohalogenites in situ. Coloration Technology, 2005, 121, 64-68.	0.7	11
169	Modification of cellulose fiber with silk sericin. Journal of Applied Polymer Science, 2005, 96, 1421-1428.	1.3	44
170	Moisture sorption/desorption behavior of various manmade cellulosic fibers. Journal of Applied Polymer Science, 2005, 97, 1621-1625.	1.3	46
171	Fibrillation Tendency of Cellulosic Fibers. Part 1: Effects of Swelling. Cellulose, 2005, 12, 267-273.	2.4	56
172	Fibrillation Tendency of Cellulosic Fibers. Part 2: Effects of Temperature. Cellulose, 2005, 12, 275-279.	2.4	19
173	Water Accessibilities of Man-made Cellulosic Fibers – Effects of Fiber Characteristics. Cellulose, 2005, 12, 403-410.	2.4	25
174	Alkali Uptake and Swelling Behavior of Lyocell Fiber and their Effects on Crosslinking Reaction. Cellulose, 2005, 12, 459-467.	2.4	14
175	Drying Rates in Resin Treatment of Lyocell Fabrics. Textile Reseach Journal, 2005, 75, 258-264.	1.1	7
176	Treatment of Textile Wastes. , 2005, , 363-398.		0
177	Fe3+gluconate and Ca2+-Fe3+gluconate complexes as mediators for indirect cathodic reduction of vat dyes ? Cyclic voltammetry and batch electrolysis experiments. Journal of Applied Electrochemistry, 2004, 34, 1221-1227.	1.5	21
178	In-fibre formation of Fe(OH)3—a new approach to pigment coloration of cellulose fibres. Dyes and Pigments, 2004, 60, 137-142.	2.0	15
179	The complexation of Fe(III)-ions in cellulose fibres: a fundamental property. Carbohydrate Polymers, 2004, 56, 47-53.	5.1	37
180	A kinetic study of moisture sorption and desorption on lyocell fibers. Carbohydrate Polymers, 2004, 58, 293-299.	5.1	133

#	Article	IF	CITATIONS
181	Influence of steam and dry heat pretreatment on fibre properties and cellulase degradation of cellulosic fibres. Biocatalysis and Biotransformation, 2004, 22, 383-389.	1.1	12
182	Treatment of Textile Wastes. , 2004, , 379-380.		3
183	Natural dyes in modern textile dyehouses — how to combine experiences of two centuries to meet the demands of the future?. Journal of Cleaner Production, 2003, 11, 499-509.	4.6	228
184	Fiber Friction in Yarn—A Fundamental Property of Fibers. Textile Reseach Journal, 2003, 73, 721-726.	1.1	39
185	Ca2+–Fe3+–D-gluconate-complexes in alkaline solution. Complex stabilities and electrochemical properties. Dalton Transactions RSC, 2002, , 2683-2688.	2.3	46
186	Process balance and product quality in the production of natural indigo from Polygonum tinctorium Ait. applying low-technology methods. Bioresource Technology, 2002, 81, 171-177.	4.8	59
187	Cathodic decolourization of textile dyebaths: Tests with full scale plant. Journal of Applied Electrochemistry, 2002, 32, 943-950.	1.5	24
188	Cathodic decolourisation of textile waste water containing reactive dyes using a multi-cathode electrolyser. Journal of Chemical Technology and Biotechnology, 2001, 76, 303-311.	1.6	71
189	Anthraquinones as mediators for the indirect cathodic reduction of dispersed organic dyestuffs. Journal of Electroanalytical Chemistry, 1999, 465, 80-87.	1.9	50
190	Optimization of Multi-Cathode Membrane Electrolysers for the Indirect Electrochemical Reduction of Indigo. Chemical Engineering and Technology, 1998, 21, 877-880.	0.9	17
191	Indirect Electrochemical Reduction of Dispersed Indigo Dyestuff. Journal of the Electrochemical Society, 1996, 143, 2411-2416.	1.3	43
192	Alkali-stable iron complexes as mediators for the electrochemical reduction of dispersed organic dyestuffs. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 2451.	1.7	44
193	Reduction of Dispersed Indigo Dye by Indirect Electrolysis. Angewandte Chemie International Edition in English, 1992, 31, 1068-1069.	4.4	18
194	Reduktion von dispergiertem Indigo durch indirekte Elektrolyse. Angewandte Chemie, 1992, 104, 1046-1047.	1.6	16
195	Flotation of Particles Suspended in Lye by the Decomposition of Hydrogen Peroxide. Separation Science and Technology, 1989, 24, 441-451.	1.3	5
196	Natural Colorants in Hair Dyeing. , 0, , 339-350.		6
197	Tannins and Tannin Agents. , 0, , 201-219.		7
198	Environmental Aspects and Sustainability. , 0, , 351-366.		2

#	Article	IF	CITATIONS
199	Economic Aspects of Natural Dyes. , 0, , 367-384.		2