Ali Tfayli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6808302/publications.pdf Version: 2024-02-01

Διι Τελνιι

#	Article	IF	CITATIONS
1	Comprehensive characterization of the structure and properties of human stratum corneum relating to barrier function and skin hydration: modulation by a moisturizer formulation. Experimental Dermatology, 2021, 30, 1352-1357.	1.4	8
2	Raman confocal microscopy and biophysics multiparametric characterization of the skin barrier evolution with age. Journal of Biophotonics, 2021, 14, e202100107.	1.1	10
3	Skin lightening effect of natural extracts coming from Senegal botanical biodiversity. International Journal of Dermatology, 2020, 59, 178-183.	0.5	10
4	Skin surface lipid composition in women: increased 2,3-oxidosqualene correlates with older age. European Journal of Dermatology, 2020, 30, 103-110.	0.3	2
5	Qualitative and quantitative analysis of therapeutic solutions using Raman and infrared spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 218, 97-108.	2.0	31
6	Origanum essential oils reduce the level of melanin in B16-F1 melanocytes. European Journal of Dermatology, 2019, 29, 596-602.	0.3	10
7	Phytochemical screening and antityrosinase activity of carvacrol, thymoquinone, and four essential oils of Lebanese plants. Journal of Cosmetic Dermatology, 2019, 18, 944-952.	0.8	13
8	Confocal Raman spectroscopic imaging for in vitro monitoring of active ingredient penetration and distribution in reconstructed human epidermis model. Journal of Biophotonics, 2018, 11, e201700221.	1.1	18
9	Rapid discrimination and quantification analysis of five antineoplastic drugs in aqueous solutions using Raman spectroscopy. European Journal of Pharmaceutical Sciences, 2018, 111, 158-166.	1.9	22
10	Discriminative and Quantitative Analysis of Antineoplastic Taxane Drugs Using a Handheld Raman Spectrometer. BioMed Research International, 2018, 2018, 1-7.	0.9	12
11	Measurement of the biomechanical function and structure of ex vivo drying skin using raman spectral analysis and its modulation with emollient mixtures. Experimental Dermatology, 2018, 27, 901-908.	1.4	11
12	Retinoblastoma membrane models and their interactions with porphyrin photosensitisers: An infrared microspectroscopy study. Chemistry and Physics of Lipids, 2018, 215, 34-45.	1.5	3
13	In vivo Raman Microspectroscopy: Intra- and Intersubject Variability of Stratum Corneum Spectral Markers. Skin Pharmacology and Physiology, 2016, 29, 102-109.	1.1	18
14	The relationship between water loss, mechanical stress, and molecular structure of human <i>stratum corneum ex vivo</i> . Journal of Biophotonics, 2015, 8, 217-225.	1.1	34
15	Raman spectroscopy: <i>in vivo</i> quick response code of skin physiological status. Journal of Biomedical Optics, 2014, 19, 111603.	1.4	22
16	Comparison of structure and organization of cutaneous lipids in a reconstructed skin model and human skin: spectroscopic imaging and chromatographic profiling. Experimental Dermatology, 2014, 23, 441-443.	1.4	29
17	Raman spectroscopy: a tool for biomechanical characterization of Stratum Corneum. Journal of Raman Spectroscopy, 2013, 44, 1077-1083.	1.2	27
18	Effects of atmospheric relative humidity on Stratum Corneum structure at the molecular level: ex vivo Raman spectroscopy analysis. Analyst, The, 2013, 138, 4103.	1.7	107

Ali Tfayli

#	Article	IF	CITATIONS
19	Hydration effects on the barrier function of stratum corneum lipids: Raman analysis of ceramides 2, III and 5. Analyst, The, 2013, 138, 6582.	1.7	30
20	Raman spectroscopy: feasibility of in vivo survey of stratum corneum lipids, effect of natural aging. European Journal of Dermatology, 2012, 22, 36-41.	0.3	46
21	Molecular interactions of penetration enhancers within ceramides organization: a Raman spectroscopy approach. Analyst, The, 2012, 137, 5002.	1.7	20
22	Thermal dependence of Raman descriptors of ceramides. Part II: effect of chains lengths and head group structures. Analytical and Bioanalytical Chemistry, 2011, 399, 1201-1213.	1.9	37
23	Thermal dependence of Raman descriptors of ceramides. Part I: effect of double bonds in hydrocarbon chains. Analytical and Bioanalytical Chemistry, 2010, 397, 1281-1296.	1.9	58
24	Digital Dewaxing of Raman Signals: Discrimination between Nevi and Melanoma Spectra Obtained from Paraffin-Embedded Skin Biopsies. Applied Spectroscopy, 2009, 63, 564-570.	1.2	43
25	Molecular characterization of reconstructed skin model by Raman microspectroscopy: Comparison with excised human skin. Biopolymers, 2007, 87, 261-274.	1.2	60
26	Follow-up of drug permeation through excised human skin with confocal Raman microspectroscopy. European Biophysics Journal, 2007, 36, 1049-1058.	1.2	86
27	Discriminating nevus and melanoma on paraffin-embedded skin biopsies using FTIR microspectroscopy. Biochimica Et Biophysica Acta - General Subjects, 2005, 1724, 262-269.	1.1	103