Eva Hemmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6808213/publications.pdf

Version: 2024-02-01

331642 223791 2,237 51 21 46 citations h-index g-index papers 52 52 52 3152 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above $1000\mathrm{nm}$. Nanoscale Horizons, $2016,1,168\text{-}184$.	8.0	527
2	Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale, 2013, 5, 11339.	5.6	290
3	Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 4365-4392.	5.8	181
4	Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing. Nanoscale, 2017, 9, 3079-3085.	5.6	145
5	A Luminescent Thermometer Exhibiting Slow Relaxation of the Magnetization: Toward Self-Monitored Building Blocks for Next-Generation Optomagnetic Devices. ACS Central Science, 2019, 5, 1187-1198.	11.3	113
6	Temperature-Induced Energy Transfer in Dye-Conjugated Upconverting Nanoparticles: A New Candidate for Nanothermometry. Chemistry of Materials, 2015, 27, 235-244.	6.7	86
7	Exploring the dual functionality of an ytterbium complex for luminescence thermometry and slow magnetic relaxation. Chemical Science, 2019, 10, 6799-6808.	7.4	83
8	Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging. Acta Biomaterialia, 2013, 9, 4734-4743.	8.3	69
9	Chemical Vapor Deposition of MgAl2O4Thin Films Using Different Mgâ^'Al Alkoxides:Â Role of Precursor Chemistry. Chemistry of Materials, 2004, 16, 1304-1312.	6.7	61
10	Multifunctional Liposome Nanocarriers Combining Upconverting Nanoparticles and Anticancer Drugs. Journal of Physical Chemistry B, 2016, 120, 4992-5001.	2.6	58
11	<scp><scp>Er</scp></scp> ³⁺ â€Doped <scp><scp>Y</scp></scp> ₃ Nanophosphors for Nearâ€Infrared Fluorescence Bioimaging Applications. Journal of the American Ceramic Society, 2013, 96, 2759-2765.	3.8	43
12	Core or Shell? Er ³⁺ FRET Donors in Upconversion Nanoparticles. European Journal of Inorganic Chemistry, 2017, 2017, 5186-5195.	2.0	42
13	In vitro and in vivo investigations of upconversion and NIR emitting Gd2O3:Er3+,Yb3+ nanostructures for biomedical applications. Journal of Materials Science: Materials in Medicine, 2012, 23, 2399-2412.	3.6	34
14	Covering the optical spectrum through collective rare-earth doping of NaGdF ₄ nanoparticles: 806 and 980 nm excitation routes. Physical Chemistry Chemical Physics, 2017, 19, 11825-11834.	2.8	33
15	Tripletâ€State Position and Crystalâ€Field Tuning in Optoâ€Magnetic Lanthanide Complexes: Two Sides of the Same Coin. Chemistry - A European Journal, 2019, 25, 14625-14637.	3.3	32
16	Magic-sized CdSe nanoclusters: a review on synthesis, properties and white light potential. Materials Advances, 2021, 2, 1204-1228.	5.4	32
17	Cubic <i>versus</i> hexagonal – effect of host crystallinity on the <i>T</i> ₁ shortening behaviour of NaGdF ₄ nanoparticles. Nanoscale, 2019, 11, 6794-6801.	5.6	28
18	Europium-doped ZnO nanosponges – controlling optical properties and photocatalytic activity. Journal of Materials Chemistry C, 2019, 7, 3909-3919.	5.5	27

#	Article	IF	Citations
19	Pick your precursor! Tailoring the size and crystal phase of microwave-synthesized sub-10 nm upconverting nanoparticles. Journal of Materials Chemistry C, 2019, 7, 15364-15374.	5.5	27
20	Microwave-Assisted Solvothermal Synthesis of Upconverting and Downshifting Rare-Earth-Doped LiYF ₄ Microparticles. Inorganic Chemistry, 2018, 57, 14920-14929.	4.0	25
21	Probing Cytotoxicity of Gadolinium Hydroxide Nanostructures. Journal of Physical Chemistry B, 2010, 114, 4358-4365.	2.6	22
22	Cubic <i>versus</i> hexagonal – phase, size and morphology effects on the photoluminescence quantum yield of NaGdF ₄ :Er ³⁺ /Yb ³⁺ upconverting nanoparticles. Nanoscale, 2022, 14, 1492-1504.	5.6	21
23	Hyperspectral Imaging and Optical Trapping: Complementary Tools for Assessing Directionâ€Dependent Polarized Emission from Single Upconverting LiYF ₄ :Yb ³⁺ /Er ³⁺ Microparticles. Advanced Optical Materials, 2021, 9, 2100101.	7.3	19
24	Synthesis and toxicity assay of ceramic nanophosphors for bioimaging with near-infrared excitation. Progress in Crystal Growth and Characterization of Materials, 2012, 58, 121-134.	4.0	18
25	Lanthanide-based nanostructures for optical bioimaging: Small particles with large promise. MRS Bulletin, 2014, 39, 960-964.	3.5	18
26	Influence of the Host Phase on the Vibrational Spectra of Europiumâ€Doped Zirconia Prepared by Hydrothermal Processing. Journal of the American Ceramic Society, 2010, 93, 3873-3879.	3.8	16
27	Homo- and Heterometallic Terbium Alkoxides - Synthesis, Characterization and Conversion to Luminescent Oxide Nanostructures. European Journal of Inorganic Chemistry, 2011, 2011, 2148-2157.	2.0	15
28	Fast, Low-Cost Synthesis of ZnO:Eu Nanosponges and the Nature of Ln Doping in ZnO. Inorganic Chemistry, 2020, 59, 7584-7602.	4.0	15
29	Application of Ceramic/Polymer Conjugate Materials for Near Infrared Biophotonics. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 57-62.	0.3	14
30	Templating Influence of Molecular Precursors on Pr(OH) ₃ Nanostructures. Inorganic Chemistry, 2015, 54, 6267-6280.	4.0	14
31	Harnessing the Synergy between Upconverting Nanoparticles and Lanthanide Complexes in a Multiwavelength-Responsive Hybrid System. ACS Photonics, 2019, 6, 436-445.	6.6	14
32	Water dispersible ligand-free rare earth fluoride nanoparticles: water transfer <i>versus</i> NaREF ₄ -to-REF ₃ phase transformation. Dalton Transactions, 2020, 49, 16204-16216.	3.3	13
33	Effect of light scattering on upconversion photoluminescence quantum yield in microscale-to-nanoscale materials. Optics Express, 2020, 28, 22803.	3.4	13
34	Trends in hyperspectral imaging: from environmental and health sensing to structure-property and nano-bio interaction studies. Analytical and Bioanalytical Chemistry, 2022, 414, 4269-4279.	3.7	12
35	Probing Optical Anisotropy and Polymorphâ€Dependent Photoluminescence in [Ln ₂] Complexes by Hyperspectral Imaging on Single Crystals. Chemistry - A European Journal, 2018, 24, 10146-10155.	3.3	11
36	Phytoglycogen Encapsulation of Lanthanideâ€Based Nanoparticles as an Optical Imaging Platform with Therapeutic Potential. Small, 2022, 18, e2107130.	10.0	11

3

#	Article	IF	CITATIONS
37	The Role of pH in PEG- <i>b</i> -PAAc Modification of Gadolinium Oxide Nanostructures for Biomedical Applications. Advances in Materials Science and Engineering, 2012, 2012, 1-15.	1.8	10
38	Self-assembled photoadditives in polyester films allow stop and go chemical release. Acta Biomaterialia, 2017, 54, 186-200.	8.3	10
39	Luminescence thermometry using sprayed films of metal complexes. Journal of Materials Chemistry C, 2022, 10, 1767-1775.	5.5	10
40	Nanostructured ZrO2 membranes prepared by liquid-injection chemical vapor deposition. Microporous and Mesoporous Materials, 2012, 163, 229-236.	4.4	9
41	Metabolic Consequences of Developmental Exposure to Polystyrene Nanoplastics, the Flame Retardant BDE-47 and Their Combination in Zebrafish. Frontiers in Pharmacology, 2022, 13, 822111.	3.5	5
42	Gadolinium-containing inorganic nanostructures for biomedical applications: Cytotoxic aspects. , 2010, , .		3
43	Hyperspectral Imaging as a Tool to Study Optical Anisotropy in Lanthanide-Based Molecular Single Crystals. Journal of Visualized Experiments, 2020, , .	0.3	3
44	Editorial: Women in Lanthanide-Based Luminescence Research: From Basic Research to Applications. Frontiers in Chemistry, 2021, 9, 667672.	3.6	2
45	Influence of Precursor Design on the Growth of Nanomaterials. Materials Research Society Symposia Proceedings, 2004, 848, 85.	0.1	1
46	Microwave-assisted synthesis of NaMnF3 particles with tuneable morphologies. Chemical Communications, 2021, 57, 11799-11802.	4.1	1
47	$11~\mathrm{Nanothermometry}$ Using Upconverting Nanoparticles. Nanomaterials and Their Applications, 2016, , 319-358.	0.0	O
48	Cover Feature: Core or Shell? Er3+ FRET Donors in Upconversion Nanoparticles (Eur. J. Inorg. Chem.) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf :
49	Career progression through professional engagement: The impact of MRS student-led activities. MRS Bulletin, 2020, 45, 306-307.	3.5	0
50	Characterising upconversion thermometers through direct absolute photoluminescence quantum yield measurements., 2021,,.		0
51	Microporous ZrO2 Membrane Preparation by Liquid-Injection MOCVD., 0,, 165-173.		O