
Shakina Yesmin Simu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6808191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gold Nanoparticles Green-Synthesized by the Suaeda japonica Leaf Extract and Screening of Anti-Inflammatory Activities on RAW 267.4 Macrophages. Coatings, 2022, 12, 460.	1.2	6
2	Protective Effect and Potential Antioxidant Role of Kakadu Plum Extracts on Alcohol-Induced Oxidative Damage in HepG2 Cells. Applied Sciences (Switzerland), 2022, 12, 236.	1.3	14
3	Antimicrobial, antioxidant, and anticancer potentials of AgCl nanoparticles biosynthesized by Flavobacterium panacis. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	10
4	Synthesis of zinc oxide nanoparticles from Gynostemma pentaphyllum extracts and assessment of photocatalytic properties through malachite green dye decolorization under UV illumination-A Green Approach. Optik, 2021, 239, 166249.	1.4	40
5	Hydroponic Cultured Ginseng Leaves Zinc Oxides Nanocomposite Stabilized with CMC Polymer for Degradation of Hazardous Dyes in Wastewater Treatment. Materials, 2021, 14, 6557.	1.3	3
6	Biosynthesis of zinc oxide nanoparticles by one-pot green synthesis using fruit extract of Amomum longiligulare and its activity as a photocatalyst. Optik, 2020, 218, 165245.	1.4	47
7	Dendropanax Morbifera Extract-Mediated ZnO Nanoparticles Loaded with Indole-3-Carbinol for Enhancement of Anticancer Efficacy in the A549 Human Lung Carcinoma Cell Line. Materials, 2020, 13, 3197.	1.3	19
8	Biosynthesis of gold and silver nanoparticles from Scutellaria baicalensis roots and in vitro applications. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	13
9	Phytosynthesis of silver nanoparticles using rhizome extract of Alpinia officinarum and their photocatalytic removal of dye under UV and visible light irradiation. Optik, 2020, 208, 164521.	1.4	18
10	Synthesis of panos extract mediated ZnO nano-flowers as photocatalyst for industrial dye degradation by UV illumination. Journal of Photochemistry and Photobiology B: Biology, 2019, 199, 111588.	1.7	93
11	Development of <i>Lactobacillus kimchicus</i> DCY51 ^T -mediated gold nanoparticles for delivery of ginsenoside compound K: <i>in vitro</i> photothermal effects and apoptosis detection in cancer cells. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 30-44.	1.9	36
12	The assessment of photocatalytic activity of zinc oxide nanoparticles from the roots of Codonopsis lanceolata synthesized by one-pot green synthesis method. Optik, 2019, 184, 82-89.	1.4	71
13	Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue. Optik, 2019, 184, 324-329.	1.4	107
14	Facile and green synthesis of zinc oxide particles by <i>Stevia Rebaudiana</i> and its <i>in vitro</i> photocatalytic activity. Inorganic and Nano-Metal Chemistry, 2019, 49, 1-6.	0.9	16
15	Photocatalytic degradation of industrial dyes using Ag and Au nanoparticles synthesized from Angelica gigas ribbed stem extracts. Optik, 2019, 185, 1213-1219.	1.4	28
16	Cordyceps militaris fungus mediated Zinc Oxide nanoparticles for the photocatalytic degradation of Methylene blue dye. Optik, 2019, 183, 691-697.	1.4	55
17	Synthesis of a Zinc Oxide Nanoflower Photocatalyst from Sea Buckthorn Fruit for Degradation of Industrial Dyes in Wastewater Treatment. Nanomaterials, 2019, 9, 1692.	1.9	69
18	Preparation of Polyethylene Glycol-Ginsenoside Rh1 and Rh2 Conjugates and Their Efficacy against Lung Cancer and Inflammation. Molecules, 2019, 24, 4367.	1.7	28

#	Article	IF	CITATIONS
19	Gold Nanoparticles Synthesized with Fresh <i>Panax ginseng</i> Leaf Extract Suppress Adipogenesis by Downregulating PPAR <i>γ</i> /CEBP <i>α</i> Signaling in 3T3-L1 Mature Adipocytes. Journal of Nanoscience and Nanotechnology, 2019, 19, 701-708.	0.9	13
20	Cationic and anionic dye degradation activity of Zinc oxide nanoparticles from Hippophae rhamnoides leaves as potential water treatment resource. Optik, 2019, 181, 1091-1098.	1.4	20
21	Photocatalytic degradation of methylene blue using biosynthesized zinc oxide nanoparticles from bark extract of Kalopanax septemlobus. Optik, 2019, 182, 980-985.	1.4	90
22	Zinc oxide nanoparticles synthesized by Suaeda japonica Makino and their photocatalytic degradation of methylene blue. Optik, 2019, 182, 1015-1020.	1.4	42
23	Facile synthesis of Au and Ag nanoparticles using fruit extract of Lycium chinense and their anticancer activity. Journal of Drug Delivery Science and Technology, 2019, 49, 308-315.	1.4	51
24	Room temperature synthesis of germanium dioxide nanorods and their in vitro photocatalytic application. Optik, 2019, 178, 664-668.	1.4	18
25	Biosynthesis of gold and silver chloride nanoparticles mediated by <i>Crataegus pinnatifida</i> fruit extract: <i>in vitro</i> study of anti-inflammatory activities. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-11.	1.9	21
26	<i>In vitro</i> anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of <i>Prunus serrulata</i> : a green synthetic approach. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-11.	1.9	89
27	Caspase-3/MAPK pathways as main regulators of the apoptotic effect of the phyto-mediated synthesized silver nanoparticle from dried stem of Eleutherococcus senticosus in human cancer cells. Biomedicine and Pharmacotherapy, 2018, 99, 128-133.	2.5	49
28	Rhizome of <i>Anemarrhena asphodeloides</i> as mediators of the eco-friendly synthesis of silver and gold spherical, face-centred cubic nanocrystals and its anti-migratory and cytotoxic potential in normal and cancer cell lines. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 285-294.	1.9	12
29	Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 108-117.	1.9	109
30	Biological synthesis of gold and silver chloride nanoparticles by <i>Glycyrrhiza uralensis</i> and <i>in vitro</i> applications. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 303-312.	1.9	76
31	Biosynthesized gold and silver nanoparticles by aqueous fruit extract of <i>Chaenomeles sinensis</i> and screening of their biomedical activities. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 599-606.	1.9	52
32	Gold nanoflowers synthesized using Acanthopanacis cortex extract inhibit inflammatory mediators in LPS-induced RAW264.7 macrophages via NF-κB and AP-1 pathways. Colloids and Surfaces B: Biointerfaces, 2018, 162, 398-404.	2.5	50
33	Synthesis of zinc oxide nanoparticles from immature fruits of Rubus coreanus and its catalytic activity for degradation of industrial dye. Optik, 2018, 172, 1179-1186.	1.4	54
34	Biosynthesis, Characterization, and Bioactivities Evaluation of Silver and Gold Nanoparticles Mediated by the Roots of Chinese Herbal Angelica pubescens Maxim. Nanoscale Research Letters, 2017, 12, 46.	3.1	106
35	Ginsenoside F1 attenuates lipid accumulation and triglycerides content in 3T3-L1 adipocytes with the modulation of reactive oxygen species (ROS) production through PPAR-î³/JAK2 signaling responses. Medicinal Chemistry Research, 2017, 26, 1042-1051.	1.1	4
36	Ginseng nanoparticles: a budding tool for cancer treatment. Nanomedicine, 2017, 12, 1091-1094.	1.7	20

#	Article	IF	CITATIONS
37	Facile reduction and stabilization of ginsenoside-functionalized gold nanoparticles: optimization, characterization, and in vitro cytotoxicity studies. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	8
38	Engineering of mesoporous silica nanoparticles for release of ginsenoside CK and Rh2 to enhance their anticancer and anti-inflammatory efficacy: in vitro studies. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	27
39	Pharmacological importance, characterization and applications of gold and silver nanoparticles synthesized by <i>Panax ginseng</i> fresh leaves. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 1415-1424.	1.9	42
40	Gold nanoparticles synthesized using <i>Panax ginseng</i> leaves suppress inflammatory - mediators production via blockade of NF-κB activation in macrophages. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 270-276.	1.9	50
41	Ginseng-berry-mediated gold and silver nanoparticle synthesis and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines. International Journal of Nanomedicine, 2017, Volume 12, 709-723.	3.3	82
42	Ginsenoside Rg5: Rk1 Exerts an Anti-obesity Effect on 3T3-L1 Cell Line by the Downregulation of PPARÎ ³ and CEBPα. Iranian Journal of Biotechnology, 2017, 15, 252-259.	0.3	18
43	Green synthesis of multifunctional silver and gold nanoparticles from the oriental herbal adaptogen: Siberian ginseng. International Journal of Nanomedicine, 2016, Volume 11, 3131-3143.	3.3	78
44	Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. International Journal of Nanomedicine, 2016, Volume 11, 3691-3701.	3.3	109
45	Suppression of MAPKs/NF-κB Activation Induces Intestinal Anti-Inflammatory Action of Ginsenoside Rf in HT-29 and RAW264.7 Cells. Immunological Investigations, 2016, 45, 439-449.	1.0	46
46	Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51 T isolated from Korean kimchi. Enzyme and Microbial Technology, 2016, 95, 85-93.	1.6	126
47	Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells. Biomedicine and Pharmacotherapy, 2016, 84, 158-165.	2.5	114
48	Silver nanoparticles from Dendropanax morbifera Léveille inhibit cell migration, induce apoptosis, and increase generation of reactive oxygen species in A549 lung cancer cells. In Vitro Cellular and Developmental Biology - Animal, 2016, 52, 1012-1019.	0.7	30
49	Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzyme and Microbial Technology, 2016, 86, 75-83.	1.6	142
50	Ginsenoside Rg5:Rk1 attenuates TNF-α/IFN-Î ³ -induced production of thymus- and activation-regulated chemokine (TARC/CCL17) and LPS-induced NO production via downregulation of NF-κB/p38 MAPK/STAT1 signaling in human keratinocytes and macrophages. In Vitro Cellular and Developmental Biology - Animal, 2016, 52, 287-295.	0.7	64
51	Inhibition of Osteoclast Differentiation by Ginsenoside Rg3 in RAW264.7 Cells via RANKL, JNK and p38 MAPK Pathways Through a Modulation of Cathepsin K: An <i>In Silico</i> and <i>In Vitro</i> Study. Phytotherapy Research, 2015, 29, 1286-1294.	2.8	30
52	Lactobacillus kimchicus sp. nov., a β-glucosidase-producing bacterium isolated from kimchi. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 894-897.	0.8	29