Juergen Janek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6807920/publications.pdf

Version: 2024-02-01

468 papers 36,802 citations

94 h-index 173 g-index

505 all docs 505
docs citations

505 times ranked 21096 citing authors

#	Article	IF	CITATIONS
1	A solid future for battery development. Nature Energy, 2016, 1, .	19.8	2,319
2	New horizons for inorganic solid state ion conductors. Energy and Environmental Science, 2018, 11, 1945-1976.	15.6	894
3	A rechargeable room-temperature sodium superoxide (NaO2) battery. Nature Materials, 2013, 12, 228-232.	13.3	706
4	Benchmarking the performance of all-solid-state lithium batteries. Nature Energy, 2020, 5, 259-270.	19.8	662
5	Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes. Chemistry of Materials, 2017, 29, 5574-5582.	3.2	655
6	Tuning Transition Metal Oxide–Sulfur Interactions for Long Life Lithium Sulfur Batteries: The "Goldilocks―Principle. Advanced Energy Materials, 2016, 6, 1501636.	10.2	623
7	Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li ₁₀ GeP ₂ S ₁₂ at the Lithium Metal Anode. Chemistry of Materials, 2016, 28, 2400-2407.	3.2	619
8	Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12― Physical Chemistry Chemical Physics, 2011, 13, 19378.	1.3	559
9	Chemo-mechanical expansion of lithium electrode materials – on the route to mechanically optimized all-solid-state batteries. Energy and Environmental Science, 2018, 11, 2142-2158.	15.6	512
10	Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy and Environmental Science, 2011, 4, 3342.	15.6	491
11	Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 3286-3294.	1.5	472
12	Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. Chemical Reviews, 2020, 120, 7745-7794.	23.0	468
13	TEMPO: A Mobile Catalyst for Rechargeable Li-O ₂ Batteries. Journal of the American Chemical Society, 2014, 136, 15054-15064.	6.6	466
14	Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries—An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li _{6.25} Al _{0.25} La ₃ Zr ₂ O ₁₂ . ACS Applied Materials & Interfaces, 2019, 11, 14463-14477.	4.0	461
15	Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li ₆ PS ₅ X (X = Cl, Br, I). Journal of the American Chemical Society, 2017, 139, 10909-10918.	6.6	446
16	Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ionics, 2015, 278, 98-105.	1.3	428
17	Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes. Journal of Physical Chemistry C, 2013, 117, 21064-21074.	1.5	411
18	Fast Charging of Lithiumâ€lon Batteries: A Review of Materials Aspects. Advanced Energy Materials, 2021, 11, 2101126.	10.2	407

#	Article	IF	CITATIONS
19	There and Back Again—The Journey of LiNiO ₂ as a Cathode Active Material. Angewandte Chemie - International Edition, 2019, 58, 10434-10458.	7.2	400
20	Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics, 2016, 286, 24-33.	1.3	379
21	Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics, 2018, 318, 102-112.	1.3	374
22	From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein Journal of Nanotechnology, 2015, 6, 1016-1055.	1.5	368
23	Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries. ACS Applied Materials & Diterfaces, 2017, 9, 17835-17845.	4.0	353
24	Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nature Chemistry, 2016, 8, 426-434.	6.6	340
25	Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Niâ€Rich NCM and Liâ€Rich HEâ€NCM Cathode Materials in Liâ€lon Batteries. Advanced Materials, 2019, 31, e1900985.	11.1	319
26	Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes. Joule, 2019, 3, 2030-2049.	11.7	292
27	The Detrimental Effects of Carbon Additives in Li ₁₀ GeP ₂ S ₁₂ -Based Solid-State Batteries. ACS Applied Materials & Interfaces, 2017, 9, 35888-35896.	4.0	257
28	Volume Changes of Graphite Anodes Revisited: A Combined <i>Operando</i> X-ray Diffraction and <i>In Situ</i> Pressure Analysis Study. Journal of Physical Chemistry C, 2018, 122, 8829-8835.	1.5	256
29	A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. Physical Chemistry Chemical Physics, 2013, 15, 11661.	1.3	253
30	Degradation Mechanisms at the Li ₁₀ GeP ₂ S ₁₂ /LiCoO ₂ Cathode Interface in an All-Solid-State Lithium-Ion Battery. ACS Applied Materials & Diterfaces, 2018, 10, 22226-22236.	4.0	250
31	High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nature Energy, 2022, 7, 83-93.	19.8	249
32	Visualization of the Interfacial Decomposition of Composite Cathodes in Argyrodite-Based All-Solid-State Batteries Using Time-of-Flight Secondary-Ion Mass Spectrometry. Chemistry of Materials, 2019, 31, 3745-3755.	3.2	246
33	Charge-Transfer-Induced Lattice Collapse in Ni-Rich NCM Cathode Materials during Delithiation. Journal of Physical Chemistry C, 2017, 121, 24381-24388.	1.5	242
34	Diffusion Limitation of Lithium Metal and Li–Mg Alloy Anodes on LLZO Type Solid Electrolytes as a Function of Temperature and Pressure. Advanced Energy Materials, 2019, 9, 1902568.	10.2	240
35	Polycrystalline and Single Crystalline NCM Cathode Materialsâ€"Quantifying Particle Cracking, Active Surface Area, and Lithium Diffusion. Advanced Energy Materials, 2021, 11, 2003400.	10.2	237
36	Between Scylla and Charybdis: Balancing Among Structural Stability and Energy Density of Layered NCM Cathode Materials for Advanced Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 26163-26171.	1.5	233

#	Article	IF	CITATIONS
37	Lithium ion conductivity in Li ₂ Sâ€"P ₂ S ₅ glasses â€" building units and local structure evolution during the crystallization of superionic conductors Li ₃ PS ₄ , Li <sub>P<sub>P<sub>S₁₁ and Li₄P<sub>P<sub>S<sub>S<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub< td=""><td>5.2</td><td>233</td></sub<></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	5.2	233
38	(Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. Journal of Materials Chemistry A, 2017, 5, 9929-9936.	5.2	222
39	On the Functionality of Coatings for Cathode Active Materials in Thiophosphateâ€Based Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2019, 9, 1900626.	10.2	221
40	Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin filmsâ€"theoretical considerations and experimental studies. Physical Chemistry Chemical Physics, 2009, 11, 3043.	1.3	218
41	Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na _{0.7} CoO ₂ . Physical Chemistry Chemical Physics, 2014, 16, 1987-1998.	1.3	217
42	Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors "Li7La3Zr2O12―and Li7â^'La3Zr2â^'Ta O12 with garnet-type structure. Journal of Power Sources, 2012, 206, 236-244.	4.0	214
43	Mesoporous TiO ₂ : Comparison of Classical Solâ^Gel and Nanoparticle Based Photoelectrodes for the Water Splitting Reaction. ACS Nano, 2010, 4, 3147-3154.	7.3	212
44	Systematical electrochemical study on the parasitic shuttle-effect inÂlithium-sulfur-cells at different temperatures and different rates. Journal of Power Sources, 2014, 259, 289-299.	4.0	212
45	lonic conductivity and activation energy for oxygen ion transport in superlatticesâ€"the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3. Physical Chemistry Chemical Physics, 2008, 10, 4623.	1.3	209
46	Redox-active cathode interphases in solid-state batteries. Journal of Materials Chemistry A, 2017, 5, 22750-22760.	5. 2	206
47	The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries. Energy and Environmental Science, 2016, 9, 2603-2608.	15.6	202
48	Impact of Cathode Material Particle Size on the Capacity of Bulk-Type All-Solid-State Batteries. ACS Energy Letters, 2018, 3, 992-996.	8.8	201
49	Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na ₃ PS ₄ and Sodium β-Alumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28216-28224.	4.0	195
50	Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38892-38899.	4.0	193
51	Toward Silicon Anodes for Next-Generation Lithium Ion Batteries: A Comparative Performance Study of Various Polymer Binders and Silicon Nanopowders. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7299-7307.	4.0	192
52	On the Thermodynamics, the Role of the Carbon Cathode, and the Cycle Life of the Sodium Superoxide (NaO ₂) Battery. Advanced Energy Materials, 2014, 4, 1301863.	10.2	184
53	Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li ₁₀ GeP ₂ S ₁₂ . Chemistry of Materials, 2016, 28, 5905-5915.	3.2	176
54	Electrochemical blackening of yttria-stabilized zirconia – morphological instability of the moving reaction front. Solid State Ionics, 1999, 116, 181-195.	1.3	175

#	Article	IF	Citations
55	Stabilizing Effect of a Hybrid Surface Coating on a Ni-Rich NCM Cathode Material in All-Solid-State Batteries. Chemistry of Materials, 2019, 31, 9664-9672.	3.2	174
56	Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in Highâ€Energy Batteries. Advanced Materials, 2020, 32, e1903891.	11.1	173
57	Ordered Large-Pore Mesoporous Li ₄ Ti ₅ O ₁₂ Spinel Thin Film Electrodes with Nanocrystalline Framework for High Rate Rechargeable Lithium Batteries: Relationships among Charge Storage, Electrical Conductivity, and Nanoscale Structure. Chemistry of Materials. 2011. 23. 4384-4393.	3.2	171
58	lonic conductivity and activation energy for oxygen ion transport in superlattices — The multilayer system CSZ (ZrO2+CaO)/Al2O3. Solid State Ionics, 2007, 178, 67-76.	1.3	168
59	Stabilization of cubic lithium-stuffed garnets of the type "Li7La3Zr2O12―by addition of gallium. Journal of Power Sources, 2013, 225, 13-19.	4.0	167
60	A chemically driven insulator–metal transition in non-stoichiometric and amorphous gallium oxide. Nature Materials, 2008, 7, 391-398.	13.3	166
61	Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats. Biomaterials, 2013, 34, 8589-8598.	5.7	161
62	Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte. Journal of Power Sources, 2013, 243, 758-765.	4.0	160
63	How To Improve Capacity and Cycling Stability for Next Generation Li–O ₂ Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations. ACS Applied Materials & Interfaces, 2016, 8, 7756-7765.	4.0	151
64	Suppression of atom motion and metal deposition in mixed ionic electronic conductors. Nature Communications, 2018, 9, 2910.	5.8	148
65	Phase Transformation Behavior and Stability of LiNiO ₂ Cathode Material for Liâ€lon Batteries Obtained from Inâ€Situ Gas Analysis and Operando Xâ€Ray Diffraction. ChemSusChem, 2019, 12, 2240-2250.	3.6	146
66	lonic liquids as green electrolytes for the electrodeposition of nanomaterials. Green Chemistry, 2007, 9, 549-553.	4.6	143
67	Microstructural Modeling of Composite Cathodes for All-Solid-State Batteries. Journal of Physical Chemistry C, 2019, 123, 1626-1634.	1.5	139
68	<i>In Situ</i> Monitoring of Fast Li-Ion Conductor Li ₇ P ₃ S ₁₁ Crystallization Inside a Hot-Press Setup. Chemistry of Materials, 2016, 28, 6152-6165.	3.2	138
69	Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes. Chemistry of Materials, 2019, 31, 8328-8337.	3.2	138
70	Lithiumâ€Metal Anode Instability of the Superionic Halide Solid Electrolytes and the Implications for Solidâ€State Batteries. Angewandte Chemie - International Edition, 2021, 60, 6718-6723.	7.2	137
71	Benchmarking Anode Concepts: The Future of Electrically Rechargeable Zinc–Air Batteries. ACS Energy Letters, 2019, 4, 1287-1300.	8.8	136
72	Influence of NCM Particle Cracking on Kinetics of Lithium-Ion Batteries with Liquid or Solid Electrolyte. Journal of the Electrochemical Society, 2020, 167, 100532.	1.3	134

#	Article	IF	Citations
7 3	Tin-Assisted Synthesis of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>\mml:mi></mml:mi><mml:mtext>\angle a^3</mml:mtext><mml:msub><mml:mrow><mr mathvariant="normal">O</mr></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub><td></td><td></td></mml:mrow></mml:math>		
74	Side by Side Battery Technologies with Lithiumâ€lon Based Batteries. Advanced Energy Materials, 2020, 10, 2000089.	10.2	127
75	Influence of Carbon Additives on the Decomposition Pathways in Cathodes of Lithium Thiophosphate-Based All-Solid-State Batteries. Chemistry of Materials, 2020, 32, 6123-6136.	3.2	126
76	Modeling Effective Ionic Conductivity and Binder Influence in Composite Cathodes for All-Solid-State Batteries. ACS Applied Materials & Earth (2016) and Earth	4.0	126
77	Evolution of Li ₂ O ₂ Growth and Its Effect on Kinetics of Li–O ₂ Batteries. ACS Applied Materials & Samp; Interfaces, 2014, 6, 12083-12092.	4.0	125
78	Employing Plasmas as Gaseous Electrodes at the Free Surface of Ionic Liquids: Deposition of Nanocrystalline Silver Particles. ChemPhysChem, 2007, 8, 50-53.	1.0	123
79	From Liquid- to Solid-State Batteries: Ion Transfer Kinetics of Heteroionic Interfaces. Electrochemical Energy Reviews, 2020, 3, 221-238.	13.1	117
80	The Working Principle of a Li ₂ CO ₃ /LiNbO ₃ Coating on NCM for Thiophosphate-Based All-Solid-State Batteries. Chemistry of Materials, 2021, 33, 2110-2125.	3.2	116
81	Interphase Formation of PEO ₂₀ :LiTFSl–Li ₆ PS ₅ Cl Composite Electrolytes with Lithium Metal. ACS Applied Materials & Interfaces, 2020, 12, 11713-11723.	4.0	114
82	Observation of Chemomechanical Failure and the Influence of Cutoff Potentials in All-Solid-State Liâ€"S Batteries. Chemistry of Materials, 2019, 31, 2930-2940.	3.2	112
83	Understanding the fundamentals of redox mediators in Li–O ₂ batteries: a case study on nitroxides. Physical Chemistry Chemical Physics, 2015, 17, 31769-31779.	1.3	111
84	Local Structural Investigations, Defect Formation, and Ionic Conductivity of the Lithium Ionic Conductor Li ₄ P ₂ S ₆ . Chemistry of Materials, 2016, 28, 8764-8773.	3.2	111
85	The Fast Charge Transfer Kinetics of the Lithium Metal Anode on the Garnetâ€Type Solid Electrolyte Li _{6.25} Al _{0.25} La ₃ Zr ₂ O ₁₂ . Advanced Energy Materials, 2020, 10, 2000945.	10.2	110
86	LiPON thin films with high nitrogen content for application in lithium batteries and electrochromic devices prepared by RF magnetron sputtering. Solid State Ionics, 2015, 282, 63-69.	1.3	108
87	One―or Twoâ€Electron Transfer? The Ambiguous Nature of the Discharge Products in Sodium–Oxygen Batteries. Angewandte Chemie - International Edition, 2016, 55, 4640-4649.	7.2	108
88	Investigation into Mechanical Degradation and Fatigue of High-Ni NCM Cathode Material: A Long-Term Cycling Study of Full Cells. ACS Applied Energy Materials, 2019, 2, 7375-7384.	2.5	106
89	In situ study of electrochemical activation and surface segregation of the SOFC electrode material La _{0.75} Sr _{0.25} Cr _{0.5} Mn _{0.5} O _{3$\hat{A}\pm\hat{I}$} . Physical Chemistry Chemical Physics, 2012, 14, 751-758.	1.3	105
90	Gas Evolution in Operating Lithium-lon Batteries Studied In Situ by Neutron Imaging. Scientific Reports, 2015, 5, 15627.	1.6	104

#	Article	IF	CITATIONS
91	Gas Evolution in All-Solid-State Battery Cells. ACS Energy Letters, 2018, 3, 2539-2543.	8.8	100
92	Pressure Dynamics in Metal–Oxygen (Metal–Air) Batteries: A Case Study on Sodium Superoxide Cells. Journal of Physical Chemistry C, 2014, 118, 1461-1471.	1.5	99
93	Synthesis, Structural Characterization, and Lithium Ion Conductivity of the Lithium Thiophosphate Li ₂ P ₂ S ₆ . Inorganic Chemistry, 2017, 56, 6681-6687.	1.9	98
94	Li ₄ PS ₄ I: A Li ⁺ Superionic Conductor Synthesized by a Solvent-Based Soft Chemistry Approach. Chemistry of Materials, 2017, 29, 1830-1835.	3.2	97
95	The Critical Role of Fluoroethylene Carbonate in the Gassing of Silicon Anodes for Lithium-lon Batteries. ACS Energy Letters, 2017, 2, 2228-2233.	8.8	97
96	Editors' Choice—Quantifying the Impact of Charge Transport Bottlenecks in Composite Cathodes of All-Solid-State Batteries. Journal of the Electrochemical Society, 2021, 168, 040537.	1.3	97
97	Influence of interface structure on mass transport in phase boundaries between different ionic materials. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2009, 140, 1069-1080.	0.9	96
98	Plasma electrochemistry in ionic liquids: deposition of coppernanoparticles. Physical Chemistry Chemical Physics, 2010, 12, 1750-1755.	1.3	95
99	Properties of the Interphase Formed between Argyrodite-Type Li ₆ PS ₅ Cl and Polymer-Based PEO ₁₀ :LiTFSI. ACS Applied Materials & District Subsets (2019) 11, 42186-42196.	4.0	95
100	In situ study of activation and de-activation of LSM fuel cell cathodes – Electrochemistry and surface analysis of thin-film electrodes. Journal of Catalysis, 2012, 294, 79-88.	3.1	92
101	Discharge and Charge Reaction Paths in Sodium–Oxygen Batteries: Does NaO ₂ Form by Direct Electrochemical Growth or by Precipitation from Solution?. Journal of Physical Chemistry C, 2015, 119, 22778-22786.	1.5	91
102	Gas Evolution in LiNi _{0.5} Mn _{1.5} O ₄ /Graphite Cells Studied In Operando by a Combination of Differential Electrochemical Mass Spectrometry, Neutron Imaging, and Pressure Measurements. Analytical Chemistry, 2016, 88, 2877-2883.	3.2	91
103	Effect of Low-Temperature Al2O3 ALD Coating on Ni-Rich Layered Oxide Composite Cathode on the Long-Term Cycling Performance of Lithium-Ion Batteries. Scientific Reports, 2019, 9, 5328.	1.6	91
104	Li ₂ ZrO ₃ -Coated NCM622 for Application in Inorganic Solid-State Batteries: Role of Surface Carbonates in the Cycling Performance. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57146-57154.	4.0	90
105	Online Continuous Flow Differential Electrochemical Mass Spectrometry with a Realistic Battery Setup for High-Precision, Long-Term Cycling Tests. Analytical Chemistry, 2015, 87, 5878-5883.	3.2	89
106	Solid-state batteries enter EV fray. MRS Bulletin, 2014, 39, 1046-1047.	1.7	87
107	Defect Chemistry of Oxide Nanomaterials with High Surface Area: Ordered Mesoporous Thin Films of the Oxygen Storage Catalyst CeO∢sub>2⟨/sub>–ZrO∢sub>2⟨/sub>. ACS Nano, 2013, 7, 2999-3013.	7.3	85
108	In-Depth Characterization of Lithium-Metal Surfaces with XPS and ToF-SIMS: Toward Better Understanding of the Passivation Layer. Chemistry of Materials, 2021, 33, 859-867.	3.2	82

#	Article	IF	Citations
109	The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte. Joule, 2020, 4, 101-108.	11.7	81
110	Nitrogen-doped carbon fibers and membranes by carbonization of electrospun poly(ionic liquid)s. Polymer Chemistry, 2011, 2, 1654.	1.9	79
111	The Role of Intragranular Nanopores in Capacity Fade of Nickel-Rich Layered Li(Ni _{1â€"<i>x</i>àê"<i>y</i>} Co _{<i>x</i>} Mn _{<i>y</i>})O ₂ Cathode Materials. ACS Nano, 2019, 13, 10694-10704.	7.3	79
112	Room temperature, liquid-phase Al ₂ O ₃ surface coating approach for Ni-rich layered oxide cathode material. Chemical Communications, 2019, 55, 2174-2177.	2.2	79
113	Reversible Compositional Control of Oxide Surfaces by Electrochemical Potentials. Journal of Physical Chemistry Letters, 2012, 3, 40-44.	2.1	78
114	Guidelines for All-Solid-State Battery Design and Electrode Buffer Layers Based on Chemical Potential Profile Calculation. ACS Applied Materials & Eamp; Interfaces, 2019, 11, 19968-19976.	4.0	77
115	Na ₃ Zr ₂ Si ₂ PO ₁₂ : A Stable Na ⁺ -lon Solid Electrolyte for Solid-State Batteries. ACS Applied Energy Materials, 2020, 3, 7427-7437.	2.5	77
116	Ionic Liquid-Derived Nitrogen-Enriched Carbon/Sulfur Composite Cathodes with Hierarchical Microstructure—A Step Toward Durable High-Energy and High-Performance Lithium–Sulfur Batteries. Chemistry of Materials, 2015, 27, 1674-1683.	3.2	76
117	On the gassing behavior of lithium-ion batteries with NCM523 cathodes. Journal of Solid State Electrochemistry, 2016, 20, 2961-2967.	1.2	76
118	Molecular Surface Modification of NCM622 Cathode Material Using Organophosphates for Improved Li-Ion Battery Full-Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 20487-20498.	4.0	76
119	Li ⁺ -lon Dynamics in β-Li ₃ PS ₄ Observed by NMR: Local Hopping and Long-Range Transport. Journal of Physical Chemistry C, 2018, 122, 15954-15965.	1.5	76
120	Correlating Transport and Structural Properties in Li _{1+<i>x</i>} Al _{<i>x</i>} Ge _{2â€"<i>x</i>} (PO ₄) ₃ (LAGP) Prepared from Aqueous Solution. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10935-10944.	4.0	75
121	Novel anion conductors – conductivity, thermodynamic stability and hydration of anion-substituted mayenite-type cage compounds C ₁₂ A ₇ :X (X = O, OH, Cl, F, CN, S, N). Physical Chemistry Chemical Physics, 2015, 17, 6844-6857.	1.3	7 3
122	High electrical conductivity and high porosity in a Guest@MOF material: evidence of TCNQ ordering within Cu ₃ BTC ₂ micropores. Chemical Science, 2018, 9, 7405-7412.	3.7	73
123	Interfacial Stability of Phosphate-NASICON Solid Electrolytes in Ni-Rich NCM Cathode-Based Solid-State Batteries. ACS Applied Materials & Solid-State Batteries.	4.0	73
124	Analysis of Interfacial Effects in All-Solid-State Batteries with Thiophosphate Solid Electrolytes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9277-9291.	4.0	73
125	An <i>in situ</i> structural study on the synthesis and decomposition of LiNiO ₂ . Journal of Materials Chemistry A, 2020, 8, 1808-1820.	5.2	72
126	A mechanistic investigation of the Li10GeP2S12 LiNi1-x-yCoxMnyO2 interface stability in all-solid-state lithium batteries. Nature Communications, 2021, 12, 6669.	5.8	72

#	Article	IF	Citations
127	Linking Solid Electrolyte Degradation to Charge Carrier Transport in the Thiophosphateâ€Based Composite Cathode toward Solidâ€State Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2021, 31, 2010620.	7.8	71
128	Charging sustainable batteries. Nature Sustainability, 2022, 5, 176-178.	11.5	70
129	Fair performance comparison of different carbon blacks in lithium–sulfur batteries with practical mass loadings – Simple design competes with complex cathode architecture. Journal of Power Sources, 2015, 296, 454-461.	4.0	69
130	Insights into the Chemical Nature and Formation Mechanisms of Discharge Products in Na–O ₂ Batteries by Means of ⟨i⟩Operando⟨/i⟩ X-ray Diffraction. Journal of Physical Chemistry C, 2016, 120, 8472-8481.	1.5	68
131	Kinetic versus Thermodynamic Stability of LLZO in Contact with Lithium Metal. Chemistry of Materials, 2020, 32, 10207-10215.	3.2	68
132	Oxide nitrides: From oxides to solids with mobile nitrogen ions. Progress in Solid State Chemistry, 2009, 37, 81-131.	3.9	66
133	On the influence of strain on ion transport: microstructure and ionic conductivity of nanoscale YSZ Sc2O3 multilayers. Physical Chemistry Chemical Physics, 2010, 12, 14596.	1.3	66
134	Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. Physical Chemistry Chemical Physics, 2015, 17, 15903-15911.	1.3	66
135	Rational Design of Quasi-Zero-Strain NCM Cathode Materials for Minimizing Volume Change Effects in All-Solid-State Batteries., 2020, 2, 84-88.		66
136	Towards zinc-oxygen batteries with enhanced cycling stability: The benefit of anion-exchange ionomer for zinc sponge anodes. Journal of Power Sources, 2018, 395, 195-204.	4.0	65
137	Spectroscopic characterization of lithium thiophosphates by XPS and XAS – a model to help monitor interfacial reactions in all-solid-state batteries. Physical Chemistry Chemical Physics, 2018, 20, 20088-20095.	1.3	65
138	Coherency strain and its effect on ionic conductivity and diffusion in solid electrolytes – an improved model for nanocrystalline thin films and a review of experimental data. Physical Chemistry Chemical Physics, 2014, 16, 24575-24591.	1.3	64
139	In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries. Nanoscale, 2016, 8, 14048-14056.	2.8	64
140	Influence of Crystallinity of Lithium Thiophosphate Solid Electrolytes on the Performance of Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2100654.	10.2	64
141	New Insights into the Instability of Discharge Products in Na–O ₂ Batteries. ACS Applied Materials & Discharge Products in Na–O ₂	4.0	63
142	Manipulation of matter by electric and magnetic fields: Toward novel synthesis and processing routes of inorganic materials. Materials Today, 2018, 21, 527-536.	8.3	63
143	Investigation of Fluorine and Nitrogen as Anionic Dopants in Nickel-Rich Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44452-44462.	4.0	63
144	Exsolved Nickel Nanoparticles Acting as Oxygen Storage Reservoirs and Active Sites for Redox CH ₄ Conversion. ACS Applied Energy Materials, 2019, 2, 7288-7298.	2.5	63

#	Article	IF	CITATIONS
145	Amorphous versus Crystalline Li ₃ PS ₄ : Local Structural Changes during Synthesis and Li Ion Mobility. Journal of Physical Chemistry C, 2019, 123, 10280-10290.	1.5	62
146	Gas Evolution in Lithium-Ion Batteries: Solid versus Liquid Electrolyte. ACS Applied Materials & Emp; Interfaces, 2020, 12, 20462-20468.	4.0	62
147	Operando analysis of the molten Li LLZO interface: Understanding how the physical properties of Li affect the critical current density. Matter, 2021, 4, 1947-1961.	5.0	62
148	Mesoporous tin-doped indium oxide thin films: effect of mesostructure on electrical conductivity. Science and Technology of Advanced Materials, 2011, 12, 025005.	2.8	61
149	Homogeneous Coating with an Anion-Exchange Ionomer Improves the Cycling Stability of Secondary Batteries with Zinc Anodes. ACS Applied Materials & Interfaces, 2018, 10, 8640-8648.	4.0	61
150	Reaction Mechanism and Surface Film Formation of Conversion Materials for Lithium- and Sodium-Ion Batteries: An XPS Case Study on Sputtered Copper Oxide (CuO) Thin Film Model Electrodes. Journal of Physical Chemistry C, 2016, 120, 1400-1414.	1.5	60
151	Electrochemical Cross-Talk Leading to Gas Evolution and Capacity Fade in LiNi _{0.5} Mn _{1.5} O ₄ /Graphite Full-Cells. Journal of Physical Chemistry C, 2017, 121, 211-216.	1.5	57
152	Simultaneous acquisition of differential electrochemical mass spectrometry and infrared spectroscopy data for in situ characterization of gas evolution reactions in lithium-ion batteries. Electrochemistry Communications, 2015, 60, 64-69.	2.3	56
153	Origins of Dendrite Formation in Sodium–Oxygen Batteries and Possible Countermeasures. Energy Technology, 2017, 5, 2265-2274.	1.8	56
154	Lithium Argyrodite as Solid Electrolyte and Cathode Precursor for Solidâ€State Batteries with Long Cycle Life. Advanced Energy Materials, 2021, 11, 2101370.	10.2	56
155	In Situ Imaging of Electrochemically Induced Oxygen Spillover on Pt/YSZ Catalysts. Angewandte Chemie - International Edition, 2006, 45, 1473-1476.	7.2	55
156	Defect chemistry of the cage compound, Ca12Al14O33â~Îâ€"understanding the route from a solid electrolyte to a semiconductor and electride. Physical Chemistry Chemical Physics, 2009, 11, 3105.	1.3	55
157	Simple cathode design for Li–S batteries: cell performance and mechanistic insights by in operando X-ray diffraction. Physical Chemistry Chemical Physics, 2014, 16, 18765-18771.	1.3	55
158	Epitaxial Pt(111) thin film electrodes on YSZ(111) and YSZ(100) $\hat{a}\in$ " Preparation and characterisation. Solid State Ionics, 2007, 178, 327-337.	1.3	54
159	Amorphous and highly nonstoichiometric titania (TiOx) thin films close to metal-like conductivity. Journal of Materials Chemistry A, 2014, 2, 6631.	5.2	54
160	Graphene mediated improved sodium storage in nanocrystalline anatase TiO ₂ for sodium ion batteries with ether electrolyte. Chemical Communications, 2016, 52, 1428-1431.	2.2	53
161	Analysis of Charge Carrier Transport Toward Optimized Cathode Composites for Allâ€Solidâ€State Liâ^'S Batteries. Batteries and Supercaps, 2021, 4, 183-194.	2.4	53
162	Oxygen tracer diffusion along interfaces of strained Y ₂ O ₃ /YSZ multilayers. Physical Chemistry Chemical Physics, 2013, 15, 1944-1955.	1.3	52

#	Article	lF	Citations
163	Photoelectron spectromicroscopy of electrochemically induced oxygen spillover at the Pt/YSZ interface. Chemical Physics Letters, 2000, 316, 331-335.	1.2	51
164	XPS and SIMS Analysis of Solid Electrolyte Interphases on Lithium Formed by Ether-Based Electrolytes. Journal of the Electrochemical Society, 2017, 164, A3742-A3749.	1.3	51
165	High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. Journal of Materiomics, 2020, 6, 70-76.	2.8	51
166	Microspectroscopy at a moving reduction front in zirconia solid electrolyte. Physical Chemistry Chemical Physics, 2002, 4, 2673-2679.	1.3	50
167	Preparation and electrical properties of garnet-type Li6BaLa2Ta2O12 lithium solid electrolyte thin films prepared by pulsed laser deposition. Solid State Ionics, 2014, 258, 1-7.	1.3	50
168	Chemical kinetics of phase boundaries in solids. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 127-143.	0.9	49
169	An electrolyte partially-wetted cathode improving oxygen diffusion in cathodes of non-aqueous Li–air batteries. Electrochemistry Communications, 2013, 26, 93-96.	2.3	49
170	Nitrogen-Doped Carbon Electrodes: Influence of Microstructure and Nitrogen Configuration on the Electrical Conductivity of Carbonized Polyacrylonitrile and Poly(ionic liquid) Blends. Macromolecular Chemistry and Physics, 2015, 216, 1930-1944.	1.1	49
171	Sodiated carbon: a reversible anode for sodium–oxygen batteries and route for the chemical synthesis of sodium superoxide (NaO ₂). Journal of Materials Chemistry A, 2015, 3, 20633-20641.	5.2	49
172	Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10274-10282.	4.0	49
173	Charge Transport in Single NCM Cathode Active Material Particles for Lithium-Ion Batteries Studied under Well-Defined Contact Conditions. ACS Energy Letters, 2019, 4, 2117-2123.	8.8	48
174	Between Liquid and All Solid: A Prospect on Electrolyte Future in Lithiumâ€lon Batteries for Electric Vehicles. Energy Technology, 2020, 8, 2000580.	1.8	48
175	High Performance All-Solid-State Batteries with a Ni-Rich NCM Cathode Coated by Atomic Layer Deposition and Lithium Thiophosphate Solid Electrolyte. ACS Applied Energy Materials, 2021, 4, 7338-7345.	2.5	48
176	Singlet Oxygen in Electrochemical Cells: A Critical Review of Literature and Theory. Chemical Reviews, 2021, 121, 12445-12464.	23.0	48
177	Free-standing and binder-free highly N-doped carbon/sulfur cathodes with tailorable loading for high-areal-capacity lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 20482-20486.	5.2	46
178	A gamma fluorinated ether as an additive for enhanced oxygen activity in Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 19061-19067.	5. 2	46
179	Electrochemical promotion of catalytic CO oxidation on Pt/YSZ catalysts under low pressure conditions. Physical Chemistry Chemical Physics, 1999, 1, 5241-5249.	1.3	45
180	In situ imaging of electrode processes on solid electrolytes by photoelectron microscopy and microspectroscopy $\hat{a}\in$ " the role of the three-phase boundary. Topics in Catalysis, 2007, 44, 399-407.	1.3	45

#	Article	IF	Citations
181	Applicability of ToF-SIMS for monitoring compositional changes in bone in a long-term animal model. Journal of the Royal Society Interface, 2013, 10, 20130332.	1.5	45
182	Advanced Nanoparticle Coatings for Stabilizing Layered Niâ€Rich Oxide Cathodes in Solidâ€State Batteries. Advanced Functional Materials, 2022, 32, .	7.8	45
183	Effect of indium (In) on corrosion and passivity of a beta-type Ti–Nb alloy in Ringer's solution. Applied Surface Science, 2015, 335, 213-222.	3.1	44
184	Quest for Organic Active Materials for Redox Flow Batteries: 2,3-Diaza-anthraquinones and Their Electrochemical Properties. Chemistry of Materials, 2018, 30, 762-774.	3.2	44
185	Visualization of Light Elements using 4D STEM: The Layeredâ€toâ€Rock Salt Phase Transition in LiNiO ₂ Cathode Material. Advanced Energy Materials, 2020, 10, 2001026.	10.2	43
186	Storage of Lithium Metal: The Role of the Native Passivation Layer for the Anode Interface Resistance in Solid State Batteries. ACS Applied Energy Materials, 2021, 4, 12798-12807.	2.5	43
187	Electrode activation and degradation: Morphology changes of platinum electrodes on YSZ during electrochemical polarisation. Solid State Ionics, 2008, 179, 1835-1848.	1.3	42
188	The model case of an oxygen storage catalyst – non-stoichiometry, point defects and electrical conductivity of single crystalline CeO ₂ 8€"ZrO ₂ 8€"ZrO ₂ 6€"CeO ₃ 80lutions. Physical Chemistry Chemical Physics, 2014, 16, 25583-25600.	1.3	42
189	High-Throughput in Situ Pressure Analysis of Lithium-Ion Batteries. Analytical Chemistry, 2017, 89, 8122-8128.	3.2	42
190	Magnetoresistance in Ag[sub 2+Î]Se with high silver excess. Applied Physics Letters, 2005, 86, 072102.	1.5	41
191	The electrode model system Pt(O2) YSZ: Influence of impurities and electrode morphology on cyclic voltammograms. Solid State Ionics, 2009, 180, 1019-1033.	1.3	41
192	Influence of Partial Substitution of Te by Se and Ge by Sn on the Properties of the Blu-ray Phase-Change Material Ge ₈ Sb ₂ Te ₁₁ . Chemistry of Materials, 2012, 24, 3582-3590.	3.2	41
193	Conceptual Framework for Dislocation-Modified Conductivity in Oxide Ceramics Deconvoluting Mesoscopic Structure, Core, and Space Charge Exemplified for SrTiO ₃ . ACS Nano, 2021, 15, 9355-9367.	7.3	41
194	Experimental evidence of the interference between ionic and electronic flows in an oxide with prevailing electronic conduction. Solid State Ionics, 1994, 67, 317-322.	1.3	40
195	Correlation between Chemical and Morphological Heterogeneities in LiNi _{0.5} Mn _{1.5} O ₄ Spinel Composite Electrodes for Lithium-Ion Batteries Determined by Micro-X-ray Fluorescence Analysis. Chemistry of Materials, 2015, 27, 2525-2531.	3.2	40
196	The interplay between (electro)chemical and (chemo)mechanical effects in the cycling performance of thiophosphate-based solid-state batteries. Materials Futures, 2022, 1, 015102.	3.1	40
197	Sol–gel synthesis and room-temperature properties of α-LiZr ₂ (PO ₄) ₃ . RSC Advances, 2015, 5, 17054-17059.	1.7	39
198	Cycling Performance and Limitations of LiNiO ₂ in Solid-State Batteries. ACS Energy Letters, 2021, 6, 3020-3028.	8.8	39

#	Article	IF	CITATIONS
199	In Situ Investigation of Lithium Metal–Solid Electrolyte Anode Interfaces with ToFâ€SIMS. Advanced Materials Interfaces, 2022, 9, .	1.9	39
200	Copper oxide based H2S dosimeters – Modeling of percolation and diffusion processes. Sensors and Actuators B: Chemical, 2015, 217, 41-50.	4.0	38
201	Template-Free Electrochemical Synthesis of High Aspect Ratio Sn Nanowires in Ionic Liquids: A General Route to Large-Area Metal and Semimetal Nanowire Arrays?. Chemistry of Materials, 2015, 27, 3830-3837.	3.2	38
202	Visualizing Current-Dependent Morphology and Distribution of Discharge Products in Sodium-Oxygen Battery Cathodes. Scientific Reports, 2016, 6, 24288.	1.6	38
203	On the impedance and phase transition of thin film all-solid-state batteries based on the Li4Ti5O12 system. Journal of Power Sources, 2017, 360, 593-604.	4.0	38
204	On the Additive Microstructure in Composite Cathodes and Alumina-Coated Carbon Microwires for Improved All-Solid-State Batteries. Chemistry of Materials, 2021, 33, 1380-1393.	3.2	38
205	Synthesis and Postprocessing of Single-Crystalline LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ for Solid-State Lithium-Ion Batteries with High Capacity and Long Cycling Stability. Chemistry of Materials, 2021, 33, 2624-2634.	3.2	38
206	Operando Characterization Techniques for Allâ€Solidâ€State Lithiumâ€Ion Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100004.	2.8	38
207	Kinetics and Degradation Processes of CuO as Conversion Electrode for Sodium-Ion Batteries: An Electrochemical Study Combined with Pressure Monitoring and DEMS. Journal of Physical Chemistry C, 2017, 121, 8679-8691.	1.5	37
208	Electrochemical performance of CuNCN for sodium ion batteries and comparison with ZnNCN and lithium ion batteries. Journal of Power Sources, 2017, 367, 130-137.	4.0	37
209	Macroscopic Displacement Reaction of Copper Sulfide in Lithium Solidâ€6tate Batteries. Advanced Energy Materials, 2020, 10, 2002394.	10.2	37
210	Drug eluting stents based on Poly(ethylene carbonate): Optimization of the stent coating process. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 562-570.	2.0	36
211	Plasma Electrochemistry in 1â€Butylâ€3â€methylimidazolium dicyanamide: Copper Nanoparticles from CuCl and CuCl ₂ . Plasma Processes and Polymers, 2011, 8, 32-37.	1.6	35
212	Pitfalls in the characterization of sulfur/carbon nanocomposite materials for lithium–sulfur batteries. Carbon, 2014, 79, 245-255.	5.4	35
213	<i>In operando</i> x-ray tomography for next-generation batteries: a systematic approach to monitor reaction product distribution and transport processes. Journal Physics D: Applied Physics, 2016, 49, 404001.	1.3	35
214	Imaging of Lipids in Native Human Bone Sections Using TOF–Secondary Ion Mass Spectrometry, Atmospheric Pressure Scanning Microprobe Matrix-Assisted Laser Desorption/Ionization Orbitrap Mass Spectrometry, and Orbitrap–Secondary Ion Mass Spectrometry. Analytical Chemistry, 2018, 90, 8856-8864.	3.2	35
215	Cross Effect Between Electronic and Ionic Flows in Semiconducting Transition Metal Oxides. Zeitschrift Fur Physikalische Chemie, 1990, 168, 129-142.	1.4	34
216	The LiNiO ₂ Cathode Active Material: A Comprehensive Study of Calcination Conditions and their Correlation with Physicochemical Properties. Part I. Structural Chemistry. Journal of the Electrochemical Society, 2021, 168, 110518.	1.3	34

#	Article	IF	CITATIONS
217	lonic and electronic conductivity of nitrogen-doped YSZ single crystals. Solid State Ionics, 2009, 180, 1463-1470.	1.3	33
218	Thermodynamics, structure and kinetics in the system Ga–O–N. Progress in Solid State Chemistry, 2009, 37, 132-152.	3.9	33
219	Physical chemistry of solidsâ€"the science behind materials engineering. Physical Chemistry Chemical Physics, 2009, 11, 3010.	1.3	33
220	Chlorine ion mobility in Cl-mayenite (Ca12Al14O32Cl2): An investigation combining high-temperature neutron powder diffraction, impedance spectroscopy and quantum-chemical calculations. Solid State lonics, 2014, 254, 48-58.	1.3	33
221	Substituent Pattern Effects on the Redox Potentials of Quinoneâ€Based Active Materials for Aqueous Redox Flow Batteries. ChemSusChem, 2020, 13, 5480-5488.	3.6	33
222	Impedance Analysis of NCM Cathode Materials: Electronic and Ionic Partial Conductivities and the Influence of Microstructure. ACS Applied Energy Materials, 2021, 4, 1335-1345.	2.5	33
223	Influence of substrate microcrystallinity on the orientation of laser-induced periodic surface structures. Journal of Applied Physics, 2015, 118, .	1.1	32
224	Electrocatalysis on Pt/YSZ electrodes. Solid State Ionics, 2001, 141-142, 701-707.	1.3	31
225	Porous model type electrodes by induced dewetting of thin Pt films on YSZ substrates. Solid State Ionics, 2010, 181, 7-15.	1.3	31
226	Toward Better Sodium–Oxygen batteries: A Study on the Performance of Engineered Oxygen Electrodes based on Carbon Nanotubes. Energy Technology, 2015, 3, 242-248.	1.8	31
227	Donor and acceptor-like self-doping by mechanically induced dislocations in bulk TiO2. Nano Energy, 2021, 85, 105944.	8.2	31
228	Investigation of Charge Transport Across the Ag Aglâ€interface: (I) Occurrence of Periodic Phenomena During Anodic Dissolution of Silver. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1995, 99, 14-20.	0.9	30
229	Electrochemically induced surface changes on microstructured Pt films on a Solid YSZ electrolyte. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 1019-1022.	0.9	30
230	Thermal diffusion and Soret effect in (U,Me)O2+Î: the heat of transport of oxygen. Journal of Nuclear Materials, 1998, 255, 116-127.	1.3	30
231	The magnetoresistance of metal-rich AgSe – A prototype nanoscale metal/semiconductor dispersion?. Progress in Solid State Chemistry, 2004, 32, 179-205.	3.9	30
232	Control of the surface morphology of solid electrolyte films during field-driven growth in a reactive plasma. Physical Chemistry Chemical Physics, 2005, 7, 666.	1.3	30
233	Electrochemical deposition of silver from 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. Electrochimica Acta, 2011, 56, 10332-10339.	2.6	30
234	Oxidation treatments of beta-type Ti-40Nb for biomedical use. Surface and Coatings Technology, 2016, 302, 88-99.	2.2	30

#	Article	IF	Citations
235	Incorporating Diamondoids as Electrolyte Additive in the Sodium Metal Anode to Mitigate Dendrite Growth. ChemSusChem, 2020, 13, 2661-2670.	3.6	30
236	Oscillatory kinetics at solid/solid phase boundaries in ionic crystals. Solid State Ionics, 2000, 131, 129-142.	1.3	29
237	Large Zeolite Hâ€ZSMâ€5 Crystals as Models for the Methanolâ€toâ€Hydrocarbons Process: Bridging the Gap between Singleâ€Particle Examination and Bulk Catalyst Analysis. Chemistry - A European Journal, 2013, 19, 8533-8542.	1.7	29
238	High Pressure Carbon Monoxide Oxidation over Platinum (111). Journal of Physical Chemistry C, 2013, 117, 9932-9942.	1.5	29
239	Ionic Conductivity of Mesostructured Yttria-Stabilized Zirconia Thin Films with Cubic Pore Symmetryâ€"On the Influence of Water on the Surface Oxygen Ion Transport. ACS Applied Materials & Samp; Interfaces, 2015, 7, 11792-11801.	4.0	29
240	Assessment of different sample preparation routes for mass spectrometric monitoring and imaging of lipids in bone cells via ToF-SIMS. Biointerphases, 2015, 10, 019016.	0.6	29
241	Challenges for Developing Rechargeable Roomâ€Temperature Sodium Oxygen Batteries. Advanced Materials Technologies, 2018, 3, 1800110.	3.0	29
242	Unraveling the Formation Mechanism of Solid–Liquid Electrolyte Interphases on LiPON Thin Films. ACS Applied Materials & Diterfaces, 2019, 11, 9539-9547.	4.0	29
243	Nonisothermal transport properties of \hat{l} ±-Ag2 + \hat{l} 'S: Partial thermopowers of electrons and ions, the soret effect and heats of transport. Journal of Physics and Chemistry of Solids, 1997, 58, 623-637.	1.9	28
244	Plasma electrochemical growth of ion-conducting AgBr and AgCl. Solid State Ionics, 2001, 141-142, 71-80.	1.3	28
245	Silica Nanoparticles as Structural Promoters for Oxygen Cathodes of Lithium–Oxygen Batteries. Journal of Physical Chemistry C, 2013, 117, 19897-19904.	1.5	28
246	ToF-SIMS analysis of osteoblast-like cells and their mineralized extracellular matrix on strontium enriched bone cements. Biointerphases, 2013, 8, 17.	0.6	28
247	Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance. Beilstein Journal of Nanotechnology, 2016, 7, 1229-1240.	1.5	28
248	Multistep Reaction Mechanisms in Nonaqueous Lithium–Oxygen Batteries with Redox Mediator: A Model-Based Study. Journal of Physical Chemistry C, 2016, 120, 24623-24636.	1.5	28
249	Thermal Stability of Magnesium Silicide/Nickel Contacts. Journal of Electronic Materials, 2016, 45, 5313-5320.	1.0	28
250	Potassium Salts as Electrolyte Additives in Lithium–Oxygen Batteries. Journal of Physical Chemistry C, 2017, 121, 3822-3829.	1.5	28
251	From LiNiO ₂ to Li ₂ NiO ₃ : Synthesis, Structures and Electrochemical Mechanisms in Li-Rich Nickel Oxides. Chemistry of Materials, 2020, 32, 9211-9227.	3.2	28
252	The LiNiO ₂ Cathode Active Material: A Comprehensive Study of Calcination Conditions and their Correlation with Physicochemical Properties Part II. Morphology. Journal of the Electrochemical Society, 2022, 169, 020529.	1.3	28

#	Article	IF	CITATIONS
253	Surface oxygen exchange between yttria-stabilised zirconia and a low-temperature oxygen rf-plasma. Solid State Ionics, 2004, 166, 89-102.	1.3	27
254	Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 85, 62-70.	1.5	27
255	Single Crystals of C12A7 (Ca12Al14O33) Substituted with 1 mol % Iron. Crystal Growth and Design, 2014, 14, 2240-2245.	1.4	27
256	Electrochemical properties and optical transmission of high Li ⁺ conducting LiSiPON electrolyte films. Physica Status Solidi (B): Basic Research, 2017, 254, 1600088.	0.7	27
257	Silicon Nanoparticles with a Polymer-Derived Carbon Shell for Improved Lithium-Ion Batteries: Investigation into Volume Expansion, Gas Evolution, and Particle Fracture. ACS Omega, 2018, 3, 16706-16713.	1.6	27
258	Improved Cycling Performance of Highâ€Nickel NMC by Dry Powder Coating with Nanostructured Fumed Al ₂ O ₃ , TiO ₂ , and ZrO ₂ : A Comparison. Batteries and Supercaps, 2021, 4, 1003-1017.	2.4	27
259	Facile Dry Coating Method of Highâ€Nickel Cathode Material by Nanostructured Fumed Alumina (Al ₂ O ₃) Improving the Performance of Lithiumâ€ion Batteries. Energy Technology, 2021, 9, 2100028.	1.8	27
260	Positive and negative magnetoresistance in the system silver–selenium. Physica B: Condensed Matter, 2001, 308-310, 1086-1089.	1.3	26
261	Thermoelectric Measurements on Sputtered ZnO/ZnS Multilayers. Journal of Electronic Materials, 2010, 39, 1504-1509.	1.0	26
262	A Biomimetic Principle for the Chemical Modification of Metal Surfaces: Synthesis of Tripodal Catecholates as Analogues of Siderophores and Mussel Adhesion Proteins. Chemistry - A European Journal, 2011, 17, 8596-8603.	1.7	26
263	Observing Local Oxygen Interstitial Diffusion in Donor-Doped Ceria by ¹⁷ O NMR Relaxometry. Journal of Physical Chemistry C, 2016, 120, 8568-8577.	1.5	26
264	Li ₁₈ P ₆ N ₁₆ â€"A Lithium Nitridophosphate with Unprecedented Tricyclic [P ₆ N ₁₆] ^{18â^'} Ions. Chemistry - A European Journal, 2017, 23, 2185-2191.	1.7	26
265	Promotion of catalytic reactions by electrochemical polarization. Physical Chemistry Chemical Physics, 2000, 2, 1935-1941.	1.3	25
266	The magnetoresistance of homogeneous and heterogeneous silver-rich silver selenide. Journal of Applied Physics, 2004, 96, 5619-5624.	1.1	25
267	Linear magnetoresistance in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Ag</mml:mtext></mml:mrow><mml:mrow><films. .<="" 2009,="" 79,="" b,="" physical="" review="" td=""><td>∙ 1miml:mn</td><td>'Æx/mml:m</td></films.></mml:mrow></mml:msub></mml:mrow></mml:math>	∙ 1 miml:mn	'Æx/mml:m
268	Indirect state-of-charge determination of all-solid-state battery cells by X-ray diffraction. Chemical Communications, 2019, 55, 11223-11226.	2.2	25
269	Hin und zur $\tilde{A}^{1}\!\!/\!4$ ck â \in " die Entwicklung von LiNiO ₂ als Kathodenaktivmaterial. Angewandte Chemie, 2019, 131, 10542-10569.	1.6	25
270	Kinetic Limitations in Cycled Nickel-Rich NCM Cathodes and Their Effect on the Phase Transformation Behavior. ACS Applied Energy Materials, 2020, 3, 2821-2827.	2.5	25

#	Article	IF	Citations
271	Lithiumâ€Metal Anode Instability of the Superionic Halide Solid Electrolytes and the Implications for Solidâ€State Batteries. Angewandte Chemie, 2021, 133, 6792-6797.	1.6	25
272	On the Soret effect in binary nonstoichiometric oxidesâ€"kinetic demixing of cuprite in a temperature gradient. Solid State Ionics, 2005, 176, 1131-1143.	1.3	24
273	Structural, morphological and kinetic properties of model type thin film platinum electrodes on YSZ. Solid State Ionics, 2008, 179, 1214-1218.	1.3	24
274	Field-driven migration of bipolar metal particles on solid electrolytes. Applied Physics Letters, 2008, 93, .	1.5	24
275	Electrochemical promotion of Pt(111)/YSZ(111) and Ptâ€"FeOx/YSZ(111) thin catalyst films: Electrocatalytic, catalytic and morphological studies. Applied Catalysis B: Environmental, 2010, 100, 328-337.	10.8	24
276	Controlled surface modification of Ti–40Nb implant alloy by electrochemically assisted inductively coupled RF plasma oxidation. Acta Biomaterialia, 2013, 9, 9201-9210.	4.1	24
277	Improving the capacity of lithium–sulfur batteries by tailoring the polysulfide adsorption efficiency of hierarchical oxygen/nitrogen-functionalized carbon host materials. Physical Chemistry Chemical Physics, 2017, 19, 8349-8355.	1.3	24
278	Diffusivity and Solubility of Oxygen in Solvents for Metal/Oxygen Batteries: A Combined Theoretical and Experimental Study. Journal of the Electrochemical Society, 2018, 165, A3095-A3099.	1.3	24
279	The role of platinum oxide in the electrode system Pt(O2)/yttria-stabilized zirconia. Electrochimica Acta, 2011, 56, 10668-10675.	2.6	23
280	Oxygen reduction and oxidation at epitaxial model-type Pt(O2)/YSZ electrodes – On the role of PtOx formation on activation, passivation, and charge transfer. Catalysis Today, 2013, 202, 12-19.	2.2	23
281	Diffusion mechanism in the superionic conductor Li4PS4I studied by first-principlesÂcalculations. Solid State Ionics, 2018, 319, 83-91.	1.3	23
282	Li ⁺ Ion Conductors with Adamantaneâ€Type Nitridophosphate Anions βâ€Li ₁₀ P ₄ N ₁₀ and Li ₁₃ P ₄ N ₁₀ <i>X</i> ₃ with <i>X</i> =Cl, Br. Chemistry - A European Journal, 2018, 24, 196-205.	1.7	23
283	Metal release and cell biological compatibility of betaâ€type Tiâ€40Nb containing indium. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1686-1697.	1.6	23
284	Development of a Wire Reference Electrode for Lithium All-Solid-State Batteries with Polymer Electrolyte: FEM Simulation and Experiment. Journal of the Electrochemical Society, 2018, 165, A1363-A1371.	1.3	23
285	The Formation of the Solid/Liquid Electrolyte Interphase (SLEI) on NASICONâ€Type Glass Ceramics and LiPON. Advanced Materials Interfaces, 2020, 7, 2000380.	1.9	23
286	The effect of gallium substitution on the structure and electrochemical performance of LiNiO ₂ in lithium-ion batteries. Materials Advances, 2020, 1, 639-647.	2.6	23
287	Working Principle of an Ionic Liquid Interlayer During Pressureless Lithium Stripping on Li _{6.25} Al _{0.25} La ₃ Zr ₂ O ₁₂ (LLZO) Garnet‶ype Solid Electrolyte. Batteries and Supercaps, 2021, 4, 1145-1155.	2.4	23
288	Design-of-experiments-guided optimization of slurry-cast cathodes for solid-state batteries. Cell Reports Physical Science, 2021, 2, 100465.	2.8	23

#	Article	IF	Citations
289	Preparation and magnetoresistance of Ag2+xSe thin films deposited via pulsed laser deposition Journal of Applied Physics, 2007, 101, 043510.	1.1	22
290	Investigation of Various Ionic Liquids and Catalyst Materials for Lithium-Oxygen Batteries. Zeitschrift Fur Physikalische Chemie, 2012, 226, 107-119.	1.4	22
291	Electrochemical Pressure Impedance Spectroscopy (EPIS) as Diagnostic Method for Electrochemical Cells with Gaseous Reactants: A Model-Based Analysis. Journal of the Electrochemical Society, 2016, 163, A599-A610.	1.3	22
292	Tailoring Dihydroxyphthalazines to Enable Their Stable and Efficient Use in the Catholyte of Aqueous Redox Flow Batteries. Chemistry of Materials, 2020, 32, 3427-3438.	3.2	22
293	Editors' Choiceâ€"Quantification of the Impact of Chemo-Mechanical Degradation on the Performance and Cycling Stability of NCM-Based Cathodes in Solid-State Li-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 070546.	1.3	22
294	Electrodeposition of Metals for Micro- and Nanostructuring at Interfaces between Solid, Liquid and Gaseous Conductors: Dendrites, Whiskers and Nanoparticles. Zeitschrift Fur Physikalische Chemie, 2006, 220, 1507-1527.	1.4	21
295	¹⁸ O-tracer diffusion along nanoscaled Sc ₂ O ₃ /yttria stabilized zirconia (YSZ) multilayers: on the influence of strain. Science and Technology of Advanced Materials, 2013, 14, 035007.	2.8	21
296	YSZ thin films with minimized grain boundary resistivity. Physical Chemistry Chemical Physics, 2016, 18, 10486-10491.	1.3	21
297	Effect of surface carbonates on the cyclability of LiNbO3-coated NCM622 in all-solid-state batteries with lithium thiophosphate electrolytes. Scientific Reports, 2021, 11, 5367.	1.6	21
298	Stabilizing the Cathode/Electrolyte Interface Using a Dry-Processed Lithium Titanate Coating for All-Solid-State Batteries. Chemistry of Materials, 2021, 33, 6713-6723.	3.2	21
299	Influence of Lithium Ion Kinetics, Particle Morphology and Voids on the Electrochemical Performance of Composite Cathodes for All-Solid-State Batteries. Journal of the Electrochemical Society, 2022, 169, 020539.	1.3	21
300	In situ analysis of gas evolution in liquid- and solid-electrolyte-based batteries with current and next-generation cathode materials. Journal of Materials Research, 2022, 37, 3146-3168.	1.2	21
301	Increasing the Pressureâ€Free Stripping Capacity of the Lithium Metal Anode in Solidâ€6tateâ€Batteries by Carbon Nanotubes. Advanced Energy Materials, 2022, 12, .	10.2	21
302	Electrotransport in ionic crystals: I. Application of liquid electrolyte theory. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 655-664.	0.9	20
303	Study of the Soret effect in mixed conductors by the measurement of ionic and electronic thermopower. Solid State Ionics, 1996, 92, 193-204.	1.3	20
304	Thick-film solid electrolyte oxygen sensors using the direct ionic thermoelectric effect. Sensors and Actuators B: Chemical, 2009, 136, 530-535.	4.0	20
305	The potential of in situ-scanning electron microscopy — Morphology changes of electrically polarized thin film Pt(O2)/YSZ model electrodes. Solid State Ionics, 2011, 189, 56-62.	1.3	20
306	CN-mayenite Ca12Al14O32(CN)2: Replacing mobile oxygen ions by cyanide ions. Solid State Sciences, 2014, 38, 69-78.	1.5	20

#	Article	IF	Citations
307	Facile synthesis of micrometer-long antimony nanowires by template-free electrodeposition for next generation Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 12726-12729.	5.2	20
308	Combining two redox active rare earth elements for oxygen storage – electrical properties and defect chemistry of ceria–praseodymia single crystals. Physical Chemistry Chemical Physics, 2017, 19, 17661-17669.	1.3	20
309	A Rapid and Facile Approach for the Recycling of Highâ€Performance LiNi _{1â^'<i>x</i>à^'<i>y</i>} Co _{<i>x</i>} Mn _{<i>y</i>} O ₂ Active Materials. ChemSusChem, 2021, 14, 441-448.	3.6	20
310	Understanding the formation of antiphase boundaries in layered oxide cathode materials and their evolution upon electrochemical cycling. Matter, 2021, 4, 3953-3966.	5.0	20
311	Reaction of Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ and LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ in Co-Sintered Composite Cathodes for Solid-State Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 47488-47498.	4.0	20
312	Preparation of nitrogen-doped YSZ thin films by pulsed laser deposition and their characterization. Journal of Materials Science, 2007, 42, 1931-1941.	1.7	19
313	A simple synthesis of nanostructured Cu-incorporated SnO2 phases with improved cycle performance for lithium ion batteries. Electrochemistry Communications, 2013, 36, 33-37.	2.3	19
314	FeO _{<i>x</i>} -Coated SnO ₂ as an Anode Material for Lithium Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 8818-8823.	1.5	19
315	LATP and LiCoPO4 thin film preparation – Illustrating interfacial issues on the way to all-phosphate SSBs. Solid State Ionics, 2019, 342, 115054.	1.3	19
316	Plasma Electrochemistry in Radio Frequency Discharges. Journal of the Electrochemical Society, 2003, 150, C723.	1.3	18
317	Controlled electrochemical growth of silver microwires. Journal of Solid State Electrochemistry, 2005, 9, 239-243.	1.2	18
318	Electrochemical activation of molecular nitrogen at the Ir/YSZ interface. Physical Chemistry Chemical Physics, 2011, 13, 3394.	1.3	18
319	Electrochemically induced oxygen spillover and diffusion on $Pt(111)$: PEEM imaging and kinetic modelling. Physical Chemistry Chemical Physics, 2011, 13, 12798.	1.3	18
320	Microstructure of platinum films on YSZ prepared by pulsed laser deposition. Journal of Crystal Growth, 2011, 322, 95-102.	0.7	18
321	Quantification of calcium content in bone by using ToF-SIMS–a first approach. Biointerphases, 2013, 8, 31.	0.6	18
322	Detection of organic nanoparticles in human bone marrow-derived stromal cells using ToF–SIMS and PCA. Analytical and Bioanalytical Chemistry, 2015, 407, 4555-4565.	1.9	18
323	Time of flight secondary ion mass spectrometry of boneâ€"Impact of sample preparation and measurement conditions. Biointerphases, 2016, 11, 02A302.	0.6	18
324	How to Control the Discharge Product in Sodium–Oxygen Batteries: Proposing New Pathways for Sodium Peroxide Formation. Energy Technology, 2017, 5, 1242-1249.	1.8	18

#	Article	IF	Citations
325	Investigations into the superionic glass phase of Li ₄ PS ₄ I for improving the stability of high-loading all-solid-state batteries. Inorganic Chemistry Frontiers, 2020, 7, 3953-3960.	3.0	18
326	Single step synthesis of W-modified LiNiO ₂ using an ammonium tungstate flux. Journal of Materials Chemistry A, 2022, 10, 7841-7855.	5.2	17
327	Determination of local potentials in mixed conductors â€" two examples. Solid State Ionics, 1995, 82, 95-106.	1.3	16
328	Realization of High Luminous Efficacy at Low Voltages in the Plasma Display Panel With SrO–MgO Double Layer. IEEE Electron Device Letters, 2010, 31, 686-688.	2.2	16
329	Perovskite-type proton conductor for novel direct ionic thermoelectric hydrogen sensor. Solid State lonics, 2011, 192, 101-104.	1.3	16
330	Oxidation of Platinum in the Epitaxial Model System $Pt(111)/YSZ(111)$: Quantitative Analysis of an Electrochemically Driven $PtOxFormation. Journal of Physical Chemistry C, 2012, 116, 1912-1920.$	1.5	16
331	Synthesis and Physicochemical Characterization of Ce _{1\hat{a}'<i>×</i>×} Gd _{<i>×</i>} O _{2\hat{a}'<i>i</i>} : A Case Study on the Impact of the Oxygen Storage Capacity on the HCl Oxidation Reaction. ChemCatChem, 2015, 7, 3738-3747.	1.8	16
332	Low-temperature synthesis of macroporous LiTi ₂ (PO ₄) ₃ /C with superior lithium storage properties. RSC Advances, 2015, 5, 14887-14891.	1.7	16
333	Ein- oder Zwei-Elektronen-Transfer? - Zur Bestimmung des Entladeprodukts in Natrium-Sauerstoff-Batterien. Angewandte Chemie, 2016, 128, 4716-4726.	1.6	16
334	ToF-SIMS study of differentiation of human bone-derived stromal cells: new insights into osteoporosis. Analytical and Bioanalytical Chemistry, 2017, 409, 4425-4435.	1.9	16
335	Li ₄₇ B ₃ P ₁₄ N ₄₂ â€"A Lithium Nitridoborophosphate with [P ₃ N ₉] ^{12â^'} , [P ₄ N ₁₀] ^{10â^'} , and the Unprecedented [B ₃ P _{9_{N_{N₁₃]^{15â^'} Ion. Angewandte Chemie - International Edition, 2017, 56, 4806-4809.}}}	7.2	16
336	<i>In Situ</i> Monitoring of Thermally Induced Effects in Nickel-Rich Layered Oxide Cathode Materials at the Atomic Level. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57047-57054.	4.0	16
337	Comparing the Ion-Conducting Polymers with Sulfonate and Ether Moieties as Cathode Binders for High-Power Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9846-9855.	4.0	16
338	Increased Performance Improvement of Lithium-Ion Batteries by Dry Powder Coating of High-Nickel NMC with Nanostructured Fumed Ternary Lithium Metal Oxides. ACS Applied Energy Materials, 2021, 4, 8832-8848.	2.5	16
339	Single versus poly-crystalline layered oxide cathode materials for solid-state battery applications - a short review article. Current Opinion in Electrochemistry, 2021, 31, 100877.	2.5	16
340	Coulometric titration at low temperaturesâ€"nonstoichiometric silver selenide. Solid State Ionics, 2004, 170, 129-133.	1.3	15
341	The bridge to redox switches. Nature Materials, 2009, 8, 88-89.	13.3	15
342	Janus-Faced SiO ₂ : Activation and Passivation in the Electrode System Platinum/Yttria-Stabilized Zirconia. Journal of Physical Chemistry Letters, 2010, 1, 2322-2326.	2.1	15

#	Article	IF	CITATIONS
343	Nanostructured and nanoporous LiFePO4 and LiNi0.5Mn1.5O4 \hat{l} as cathode materials for lithium-ion batteries. Progress in Solid State Chemistry, 2014, 42, 218-241.	3.9	15
344	Highâ€Performance Lithium–Sulfur Batteries using Yolk–Shell Type Sulfur–Silica Nanocomposite Particles with Raspberryâ€Like Morphology. Energy Technology, 2015, 3, 830-833.	1.8	15
345	Tracing Low Amounts of Mg in the Doped Cathode Active Material LiNiO ₂ . Journal of the Electrochemical Society, 2022, 169, 030540.	1.3	15
346	Plasma-Electrochemical Growth of AgBr Layers on AgCl Substrates. Journal of Physical Chemistry B, 1997, 101, 5909-5912.	1.2	14
347	Template assisted solid state electrochemical growth of silver micro- and nanowires. Electrochimica Acta, 2007, 53, 319-323.	2.6	14
348	Mass spectrometric monitoring of Sr-enriched bone cementsâ€"from in vitro to in vivo. Analytical and Bioanalytical Chemistry, 2013, 405, 8769-8780.	1.9	14
349	Combining high temperature electrochemistry and time of flight secondary ion mass spectrometry: Quasi in situ study of lanthanum strontium chromate manganate electrodes. Journal of Power Sources, 2013, 221, 97-107.	4.0	14
350	Microstructure evolution and cation interdiffusion in thin Gd2O3 films on CeO2 substrates. Journal of the European Ceramic Society, 2014, 34, 1235-1242.	2.8	14
351	A Metallic Roomâ€Temperature Oxide Ion Conductor. Angewandte Chemie - International Edition, 2014, 53, 7344-7348.	7.2	14
352	Anodization of titanium in radio frequency oxygen discharge — Microstructure, kinetics & transport mechanism. Solid State Ionics, 2016, 290, 130-139.	1.3	14
353	Role of the Three-Phase Boundary of the Platinum–Support Interface in Catalysis: A Model Catalyst Kinetic Study. ACS Catalysis, 2016, 6, 5865-5872.	5. 5	14
354	Li ₄₇ B ₃ P ₁₄ N ₄₂ â€"A Lithium Nitridoborophosphate with [P ₃ N ₉] ^{12â^'} , [P ₄ N ₁₀] ^{10â^'} , and the Unprecedented [B ₃ P ₃ N ₁₃] ^{15â^'} Ion. Angewandte Chemie, 2017, 129, 4884-4887.	1.6	14
355	Defect Chemistry of the Mixed Conducting Cage Compound Ca ₁₂ Al ₁₄ O ₃₃ . Journal of the Korean Ceramic Society, 2010, 47, 99-105.	1.1	14
356	The influence of non-equilibrium defects on the anodic dissolution of a metal into a solid electrolyte. Solid State Ionics, 2006, 177, 447-456.	1.3	13
357	Electrochemical Incorporation of Nitrogen into a Zirconia Solid Electrolyte. Electrochemical and Solid-State Letters, 2006, 9, F23.	2.2	13
358	A Simple Ansatz to Predict the Structure of Li ₄ Ti ₅ O ₁₂ . Journal of the Electrochemical Society, 2017, 164, A221-A225.	1.3	13
359	Verwey-type charge ordering transition in an open-shell $\langle i \rangle p \langle i \rangle$ -electron compound. Science Advances, 2018, 4, eaap7581.	4.7	13
360	Pathways to Triplet or Singlet Oxygen during the Dissociation of Alkali Metal Superoxides: Insights by Multireference Calculations of Molecular Model Systems. Chemistry - A European Journal, 2020, 26, 2395-2404.	1.7	13

#	Article	IF	CITATIONS
361	Understanding the Impact of Microstructure on Charge Transport in Polycrystalline Materials Through Impedance Modelling. Journal of the Electrochemical Society, 2021, 168, 090516.	1.3	13
362	Investigation of charge transport across the Ag Aglâ€interface: (II) Dilatometric study of the anodic dissolution of silver. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 756-762.	0.9	12
363	On the Reactivity of Silver Electrodes in a Chlorine Radiofrequency Plasmaâ€" Plasma Oxidation vs. Thermal Oxidation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2003, 629, 1851-1862.	0.6	12
364	Kinetic studies of the electrochemical nitrogen reduction and incorporation into yttria stabilized zirconia. Solid State Ionics, 2006, 177, 1619-1624.	1.3	12
365	Negative and linear positive magnetoresistance effect in silver-rich silver selenide. Solid State Sciences, 2008, 10, 776-789.	1.5	12
366	An approach for transparent and electrically conducting coatings: A transparent plastic varnish with nanoparticulate magnetic additives. Thin Solid Films, 2015, 595, 96-107.	0.8	12
367	Embroidered Copper Microwire Current Collector for Improved Cycling Performance of Silicon Anodes in Lithium-Ion Batteries. Scientific Reports, 2017, 7, 13010.	1.6	12
368	The Sound of Batteries: An Operando Acoustic Emission Study of the LiNiO ₂ Cathode in Li–Ion Cells. Batteries and Supercaps, 2020, 3, 1021-1027.	2.4	12
369	Instability of the Li ₇ SiPS ₈ Solid Electrolyte at the Lithium Metal Anode and Interphase Formation. Chemistry of Materials, 2022, 34, 3659-3669.	3.2	12
370	Cross Effect between Heat and Matter Fluxes in Mixed Conducting Solids — Definition of the Heats of Transport. Zeitschrift Fur Physikalische Chemie, 1996, 196, 187-208.	1.4	11
371	Nitrogen Tracer Diffusion in Yttria Doped Zirconium Oxonitride. Defect and Diffusion Forum, 2005, 237-240, 479-484.	0.4	11
372	Adjustable metal-semiconductor transition of FeS thin films by thermal annealing. Applied Physics Letters, 2006, 89, 262113.	1.5	11
373	In situ ToF-SIMS monitoring of SOFC cathodes – A case study of La0.74Sr0.17Mn1.01O2.9 model electrodes. Applied Surface Science, 2017, 422, 817-827.	3.1	11
374	Gyroidal Porous Carbon Activated with NH ₃ or CO ₂ as Lithiumâ^'Sulfur Battery Cathodes. Batteries and Supercaps, 2018, 1, 83-94.	2.4	11
375	Analyzing Nanometer-Thin Cathode Particle Coatings for Lithium-Ion Batteries—The Example of TiO ₂ on NCM622. ACS Applied Energy Materials, 2021, 4, 7168-7181.	2.5	11
376	lonic Conductivity, Partial Thermopowers, Heats of Transport and the Soret Effect of <i>î±</i> -Ag _{2+<i>î´</i>} Se — an Experimental Study. Zeitschrift Fur Physikalische Chemie, 1998, 206, 129-163.	1.4	10
377	Cathodic deposition of silver on silver bromide at microelectrodes. Solid State Ionics, 2006, 177, 1643-1648.	1.3	10
378	Characterization of chemical composition and electronic structure of Pt/YSZ interfaces by analytical transmission electron microscopy. Solid State Ionics, 2010, 181, 1616-1622.	1.3	10

#	Article	IF	CITATIONS
379	Synthesis–Real Structure–Property: The Showcase of Silver-Rich Ag ₂ Se. Crystal Growth and Design, 2011, 11, 2412-2421.	1.4	10
380	Oxidation kinetics of nitrogen doped TiO2â^Î thin films. Physical Chemistry Chemical Physics, 2012, 14, 12930.	1.3	10
381	Analysis of microscopic bone properties in an osteoporotic sheep model: a combined biomechanics, FE and ToF-SIMS study. Journal of the Royal Society Interface, 2019, 16, 20180793.	1.5	10
382	A Sodium Polysulfide Battery with Liquid/Solid Electrolyte: Improving Sulfur Utilization Using P ₂ S ₅ as Additive and Tetramethylurea as Catholyte Solvent. Energy Technology, 2020, 8, 1901200.	1.8	10
383	Thermodiffusion in Ionic Solids —Model Experiments and Theory. Lecture Notes in Physics, 2002, , 146-183.	0.3	10
384	Multiâ€Element Surface Coating of Layered Niâ€Rich Oxide Cathode Materials and Their Longâ€Term Cycling Performance in Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2022, 9, 2101100.	1.9	10
385	Advanced Analytical Characterization of Interface Degradation in Ni-Rich NCM Cathode Co-Sintered with LATP Solid Electrolyte. ACS Applied Energy Materials, 2022, 5, 4651-4663.	2.5	10
386	Electrotransport in ionic crystals: II. A dynamical model. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 665-673.	0.9	9
387	Spatially resolved measurements of electrochemically induced spillover on porous and microstructured Pt/YSZ catalysts. Solid State Ionics, 2000, 136-137, 699-705.	1.3	9
388	Twins within platinum and palladium films on YSZ â€" Location for hole formation during de-wetting and oxygen exchange. Solid State Ionics, 2012, 227, 57-65.	1.3	9
389	Synthesis and characterization of polyphosphazene electrolytes including cyclic ether side groups. Journal of Power Sources, 2018, 384, 165-171.	4.0	9
390	Investigations of the Solid Electrolyte Interphase Using Xâ€Ray Photoelectron Spectroscopy In situ Experiment on the Lithiumâ€Based Solid Electrolyte LiPSON. Physica Status Solidi (B): Basic Research, 2020, 257, 1900336.	0.7	9
391	Importance of the Spin–Orbit Interaction for a Consistent Theoretical Description of Small Polarons in Pr-Doped CeO ₂ . Journal of Physical Chemistry C, 2020, 124, 15831-15838.	1.5	9
392	Degradation of Functional Materials in Temperature Gradients - Thermodiffusion and the Soret Effect. Journal of the Korean Ceramic Society, 2012, 49, 56-65.	1.1	9
393	A Quasiâ€Multinary Composite Coating on a Nickelâ€Rich NCM Cathode Material for Allâ€Solidâ€State Batteries. Batteries and Supercaps, 2022, 5, .	2.4	9
394	An EMF cell with a nitrogen solid electrolyteâ€"on the transference of nitrogen ions in yttria-stabilized zirconia. Physical Chemistry Chemical Physics, 2011, 13, 1239-1242.	1.3	8
395	Quantification of impurity concentration in Cu ₂ O and CuO via secondary ion mass spectrometry. Physica Status Solidi (B): Basic Research, 2012, 249, 801-811.	0.7	8
396	Thermomigration and Soret effect in Na _{<i>x</i>} CoO ₂ as thermoelectric material: Preparation and characterization of sodium cobaltate thin films. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1284-1295.	0.8	8

#	Article	IF	CITATIONS
397	Storage of cell samples for ToF-SIMS experiments—How to maintain sample integrity. Biointerphases, 2016, 11, 02A313.	0.6	8
398	Artificial Composite Anode Comprising Highâ€Capacity Silicon and Carbonaceous Nanostructures for Long Cycle Life Lithiumâ€Ion Batteries. Batteries and Supercaps, 2018, 1, 27-32.	2.4	8
399	Electrochemical and Optical Properties of Lithium Ion Conducting LiPSON Solid Electrolyte Films. Physica Status Solidi (B): Basic Research, 2019, 256, 1900047.	0.7	8
400	Influence of synthesis parameters on crystallization behavior and ionic conductivity of the Li4PS4I solid electrolyte. Scientific Reports, 2021, 11, 14073.	1.6	8
401	Coupling between ionic and electronic fluxes in mixed ionic/electronic conductors: Experiments on Co _{1â€Î} O. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 1213-1223.	0.9	7
402	Thermal Diffusion in Crystalline Binary Compounds with Narrow Ranges of Homogeneity: (III) Experimental Study of the Soret Effect in βâ€Ag ₂ + <i>δ</i> S. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 425-432.	0.9	7
403	Influence of Mechanical Pressure on Ionic Charge Transport Across the Ag Agl-Interface - Periodic Oscillations of Interfacial Properties. Defect and Diffusion Forum, 1996, 129-130, 243-252.	0.4	7
404	lonâ€Conducting Probes for Low Temperature Plasmas. Contributions To Plasma Physics, 2008, 48, 473-479.	0.5	7
405	A New Heterogeneous Photocathode Based on Ruthenium(II)quaterpyridinium Complexes at TiO ₂ Particles. Journal of Physical Chemistry C, 2010, 114, 22763-22772.	1.5	7
406	Thermoâ€elektrische Verbindungen. Strom aus AbwÃrme. Chemie in Unserer Zeit, 2011, 45, 188-200.	0.1	7
407	Conductivity of liquid lithium electrolytes with dispersed mesoporous silica particles. Electrochimica Acta, 2012, 60, 1-6.	2.6	7
408	Ionic conductivity of low yttria-doped cubic zirconium oxide nitride single crystals. Solid State Ionics, 2016, 296, 42-46.	1.3	7
409	Chemical diffusion of copper in lead telluride. Solid State Ionics, 2017, 303, 119-125.	1.3	7
410	Platinum microelectrodes on gadolinia doped ceria single crystals – bulk properties and electrode kinetics. Physical Chemistry Chemical Physics, 2018, 20, 8294-8301.	1.3	7
411	Influence of texture and grain misorientation on the ionic conduction in multilayered solid electrolytes $\hat{a} \in ``interface strain effects in competition with blocking grain boundaries. Physical Chemistry Chemical Physics, 2018, 20, 9269-9280.$	1.3	7
412	Reversible Capacity Loss of LiCoO ₂ Thin Film Electrodes. ACS Applied Energy Materials, 2020, 3, 6065-6071.	2.5	7
413	Thermal Diffusion in Crystalline Binary Compounds with Narrow Range of Homogeneity – II. Stationary Thermal Diffusion in βâ€Ag _{2+Î′} S. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1995, 99, 932-939.	0.9	6
414	Oscillating reactions at metal electrodes in solid electrolytes. Solid State Ionics, 1997, 101-103, 721-727.	1.3	6

#	Article	IF	CITATIONS
415	Li3Ti4NiMnO12 and Li3Ti4NiCrO12: New substituted lithium titanium oxides. Solid State Sciences, 2013, 22, 65-70.	1.5	6
416	Discrimination between biologically relevant calcium phosphate phases by surface-analytical techniques. Applied Surface Science, 2014, 309, 27-32.	3.1	6
417	Template-Free Electrodeposition of Uniform and Highly Crystalline Tin Nanowires from Organic Solvents Using Unconventional Additives. Electrochimica Acta, 2017, 246, 1016-1022.	2.6	6
418	Understanding the Transport of Atmospheric Gases in Liquid Electrolytes for Lithium–Air Batteries. Journal of the Electrochemical Society, 2021, 168, 070504.	1.3	6
419	Thermal Diffusion in Crystalline Binary Compounds with Narrow Range of Homogeneity – I. A New Experiment for the Determination of the Heat of Transport. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1995, 99, 920-931.	0.9	5
420	Non-destructive analysis of silver selenide films obtained by Pulsed Laser Deposition (PLD) with Micro-XRF. Journal of Materials Science, 2007, 42, 7375-7380.	1.7	5
421	Microstructure and magnetoresistance of heterogeneous gold-rich Ag3Au1.1Te2. Solid State Sciences, 2010, 12, 1770-1778.	1.5	5
422	In-situ structural investigation of non-stoichiometric HfO2-x films using quick-scanning extended X-ray absorption fine structure. Thin Solid Films, 2013, 539, 60-64.	0.8	5
423	Lithiumâ€Sulfur Batteries: Tuning Transition Metal Oxide–Sulfur Interactions for Long Life Lithium Sulfur Batteries: The "Goldilocks―Principle (Adv. Energy Mater. 6/2016). Advanced Energy Materials, 2016, 6, .	10.2	5
424	Zukunftstechnologien., 2013,, 199-217.		5
425	Hybridization of carbon nanotube tissue and MnO2 as a generic advanced air cathode in metal–air batteries. Journal of Power Sources, 2021, 514, 230597.	4.0	5
426	Deeper Understanding of the Lithiation Reaction during the Synthesis of LiNiO < sub>2 < /sub> Towards an Increased Production Throughput. Journal of the Electrochemical Society, 0 , , .	1.3	5
427	Reactive sputter deposition and metal–semiconductor transition of FeS films. Applied Physics A: Materials Science and Processing, 2006, 84, 309-312.	1.1	4
428	In–CuInS2 nanocomposite film prepared by pulsed laser deposition using a singleÂsource precursor. Solid State Sciences, 2010, 12, 1953-1959.	1.5	4
429	Self-assembly of ordered wurtzite/rock salt heterostructures—A new view on phase separation in MgxZn1ⰒxO. Journal of Applied Physics, 2015, 118, .	1.1	4
430	Phase formation and stability in TiO _{<i>x</i>} and ZrO _{<i>xx</i>} thin films: Extremely sub-stoichiometric functional oxides for electrical and TCO applications. Zeitschrift Fur Kristallographie - Crystalline Materials, 2017, 232, 161-183.	0.4	4
431	Structural analysis and electrical characterization of cation-substituted lithium ion conductors Li1ⰒTi1ⰒMOPO4 (M = Nb, Ta, Sb). Solid State Ionics, 2018, 319, 170-179.	1.3	4
432	Differential Electrochemical Mass Spectrometry in Lithium Battery Research. , 2018, , 44-53.		4

#	Article	IF	CITATIONS
433	Synthesis and lithium storage properties of porous Li4/3Ti5/3O4-M/MOx (M=Ni,Co) composites. Electrochimica Acta, 2014, 120, 264-272.	2.6	3
434	Spin-dimer ground state driven by consecutive charge and orbital ordering transitions in the anionic mixed-valence compound <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Rb</mml:mi><mml mathvariant="normal">O<mml:mn>6</mml:mn></mml></mml:msub></mml:mrow></mml:math> . Physical Review B, 2020, 101, .	:mn 14 <td>ml:ran></td>	ml:r a n>
435	The role of a diffusion barrier in plasma display panel with the high gamma cathode layer. Applied Physics Letters, 2011, 99, 171501.	1.5	2
436	Low pressure oxygen direct current discharges with ion conducting yttria stabilized zirconia electrodes. Solid State Ionics, 2013, 245-246, 24-32.	1.3	2
437	Dynamic Modeling of the Reaction Mechanism in a Li/O ₂ Cell: Influence of a Redox Mediator. ECS Transactions, 2015, 69, 11-21.	0.3	2
438	Comment on "How to interpret Onsager cross terms in mixed ionic electronic conductors―by I. Riess, Phys. Chem. Chem. Phys., 2014,16, 22513. Physical Chemistry Chemical Physics, 2015, 17, 11103-11106.	1.3	2
439	Functionalization of Ti-40Nb implant material with strontium by reactive sputtering. Biomaterials Research, 2017, 21, 18.	3.2	2
440	Next-Generation Rechargeable Batteries: Challenges for Developing Rechargeable Room-Temperature Sodium Oxygen Batteries (Adv. Mater. Technol. 9/2018). Advanced Materials Technologies, 2018, 3, 1870035.	3.0	2
441	Structural Investigation of NCM-Cathode-LLZO-Electrolyte Composites as Promising Candidates for All-Solid-State Batteries Using (Cryo) STEM and PED. Microscopy and Microanalysis, 2021, 27, 1978-1979.	0.2	2
442	Influence of the PO _{<i>u</i>} N _{4â^'<i>u</i>} structural units on the formation energies and transport properties of lithium phosphorus oxynitride: a DFT study. Physical Chemistry Chemical Physics, 2021, 23, 22567-22588.	1.3	2
443	Zukunftsfeld Festkörperelektrochemie. Nachrichten Aus Der Chemie, 2007, 55, 27-32.	0.0	1
444	Real Structures and Structural Modifications of Ag2+xSe Thin Films. Microscopy and Microanalysis, 2007, 13 , $402-403$.	0.2	1
445	GrenzflÃchen fester Ionenleiter. OberflÃchenâ€Elektrochemie. Chemie in Unserer Zeit, 2008, 42, 80-90.	0.1	1
446	Nanocarving of Titania as a Diffusionâ€Driven Morphological Instability. Advanced Functional Materials, 2008, 18, 422-431.	7.8	1
447	Physical Chemistry of Solids – The Science behind Materials Engineering: Concepts, Models, Methods. Zeitschrift Fur Physikalische Chemie, 2009, 223, 1239-1258.	1.4	1
448	Influence of size variation on the strain distribution in YSZ membranes on Si substrates. Materials Research Society Symposia Proceedings, 2013, 1495, 1.	0.1	1
449	The Sound of Batteries: An Operando Acoustic Emission Study of the LiNiO 2 Cathode in Li–Ion Cells. Batteries and Supercaps, 2020, 3, 965-965.	2.4	1
450	Understanding dispersion interactions in molecular chemistry. Physical Chemistry Chemical Physics, 2021, 23, 8960-8961.	1.3	1

#	Article	IF	Citations
451	Next generation technologies. , 2018, , 187-208.		1
452	Defect Chemistry of Individual Grains with and without Grain Boundaries of Al-Doped Ceria Determined Using Well-Defined Microelectrodes. Journal of Physical Chemistry C, 2022, 126, 2737-2746.	1.5	1
453	Von der Verbrennung zum Herzschlag: Chemische TriebkrÄfte. Chemie in Unserer Zeit, 2004, 38, 10-23.	0.1	0
454	Editorial: Forschung macht Mut!. Chemie in Unserer Zeit, 2004, 38, 83-83.	0.1	0
455	GrenzflÃchenstruktur und ionischer Transport in mikroâ€∤nanoskalierten Multischichten. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 2013-2013.	0.6	0
456	Dünnfilmâ€Multischichten als Modellsysteme zur Untersuchung des Einflusses von GrenzflÃchen auf die ionische LeitfÃhigkeit. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 2075-2075.	0.6	0
457	Mehr Aufmerksamkeit. Nachrichten Aus Der Chemie, 2009, 57, 213-213.	0.0	0
458	Synthesis, Crystal Growth and Structure of Substituted Mayenite. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 2102-2102.	0.6	0
459	Li-Ion Conducting Garnet-Type Materials - Structure and Electrochemical Characterization. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1623-1623.	0.6	0
460	Gellified ionic liquid based composite electrolytesâ€"Influence of different silica as filler materials on electrical and mechanical properties of the electrolyte. Electrochemistry Communications, 2014, 39, 34-36.	2.3	0
461	In Situ Studies for Understanding Intragranular Nanopore Evolution in Ni-rich Layered Oxide Cathode Material. Microscopy and Microanalysis, 2019, 25, 2032-2033.	0.2	0
462	A robust technique to image all elements in LiNiO2 cathode active material by 4D-STEM. Microscopy and Microanalysis, 2021, 27, 1446-1449.	0.2	0
463	Lithium Metal Growth Kinetics on LLZO Garnet Type Solid Electrolytes – <i>Operando</i> Study of Lithium Deposition and Dendrite Growth. SSRN Electronic Journal, 0, , .	0.4	0
464	Temperature-dependent Li vacancy diffusion in Li ₄ Ti ₅ O ₁₂ by means of first principles molecular dynamic simulations. Physical Chemistry Chemical Physics, 2022, 24, 5301-5316.	1.3	0
465	Sodium All-Solid-State Batteries and the Electrolyte Question. ECS Meeting Abstracts, 2022, MA2022-01, 99-99.	0.0	0
466	(Digital Presentation) Modifying LiNiO ₂ with W Via a Single Step Synthesis Route. ECS Meeting Abstracts, 2022, MA2022-01, 218-218.	0.0	0
467	Magnesium- and Tin-Based Ionic Liquid Electrolytes for Advanced Multivalent Metal Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 132-132.	0.0	0
468	Analysis of the Interphase Formation of Thiophosphate Solid Electrolytes and the Lithium Metal Anode in Solid-State Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 208-208.	0.0	0