Guo-Yong Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6807886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	C–C, C–O and C–N bond formation via rhodium(iii)-catalyzed oxidative C–H activation. Chemical Society Reviews, 2012, 41, 3651.	18.7	2,151
2	Substrate Activation Strategies in Rhodium(III)-Catalyzed Selective Functionalization of Arenes. Accounts of Chemical Research, 2015, 48, 1007-1020.	7.6	915
3	Rh-Catalyzed Oxidative Coupling between Primary and Secondary Benzamides and Alkynes: Synthesis of Polycyclic Amides. Journal of Organic Chemistry, 2010, 75, 7487-7490.	1.7	303
4	Rh(III)-Catalyzed Tandem Oxidative Olefinationâ^'Michael Reactions between Aryl Carboxamides and Alkenes. Organic Letters, 2010, 12, 5430-5433.	2.4	266
5	Enantioselective C–H Bond Addition of Pyridines to Alkenes Catalyzed by Chiral Half-Sandwich Rare-Earth Complexes. Journal of the American Chemical Society, 2014, 136, 12209-12212.	6.6	249
6	Rh(III)-Catalyzed Oxidative Coupling of <i>N</i> -Aryl-2-aminopyridine with Alkynes and Alkenes. Organic Letters, 2010, 12, 5426-5429.	2.4	228
7	Catalytic Hydrogenolysis of Lignins into Phenolic Compounds over Carbon Nanotube Supported Molybdenum Oxide. ACS Catalysis, 2017, 7, 7535-7542.	5.5	198
8	Palladium-Catalyzed Oxidative Cross-Coupling between Pyridine <i>N</i> -Oxides and Indoles. Organic Letters, 2011, 13, 1766-1769.	2.4	193
9	Synthesis of 2-Pyridones and Iminoesters via Rh(III)-Catalyzed Oxidative Coupling between Acrylamides and Alkynes. Organic Letters, 2010, 12, 5462-5465.	2.4	176
10	Synthesis of Quinolines via Rh(III)-Catalyzed Oxidative Annulation of Pyridines. Journal of Organic Chemistry, 2011, 76, 7583-7589.	1.7	156
11	From lignin subunits to aggregates: insights into lignin solubilization. Green Chemistry, 2017, 19, 3272-3281.	4.6	149
12	Rhodium and Iridium Complexes of Abnormal N-Heterocyclic Carbenes Derived from Imidazo[1,2- <i>a</i>]pyridine. Organometallics, 2008, 27, 1936-1943.	1.1	138
13	Heteroatom-assisted olefin polymerization by rare-earth metal catalysts. Science Advances, 2017, 3, e1701011.	4.7	122
14	Oxidative Coupling of NH Isoquinolones with Olefins Catalyzed by Rh(III). Journal of Organic Chemistry, 2011, 76, 2926-2932.	1.7	117
15	Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world. Green Chemistry, 2021, 23, 3790-3817.	4.6	114
16	Fe3+-montmorillonite as a cost-effective and recyclable solid acidic catalyst for the synthesis of xanthenediones. Catalysis Communications, 2007, 8, 673-676.	1.6	113
17	Ru-Catalyzed Hydrogenolysis of Lignin: Base-Dependent Tunability of Monomeric Phenols and Mechanistic Study. ACS Catalysis, 2019, 9, 4054-4064.	5.5	106
18	Rh(III)-Catalyzed Oxidative Olefination of <i>N</i> (1-Naphthyl)sulfonamides Using Activated and Unactivated Alkenes. Organic Letters, 2011, 13, 5808-5811.	2.4	102

Guo-Yong Song

#	Article	IF	CITATIONS
19	Pd(0)-Catalyzed Diarylation of sp ³ Câ^'H Bond in (2-Azaaryl)methanes. Organic Letters, 2011, 13, 1968-1971.	2.4	98
20	Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst. Nature Communications, 2021, 12, 416.	5.8	97
21	Diverse Reactivity in a Rhodium(III)â€Catalyzed Oxidative Coupling of <i>N</i> â€Allyl Arenesulfonamides with Alkynes. Angewandte Chemie - International Edition, 2012, 51, 12348-12352.	7.2	95
22	Enantioselective C–H Annulation of Indoles with Diazo Compounds through a Chiral Rh(III) Catalyst. ACS Catalysis, 2017, 7, 2392-2396.	5.5	93
23	ortho-Selective C–H addition of N,N-dimethyl anilines to alkenes by a yttrium catalyst. Chemical Science, 2016, 7, 5265-5270.	3.7	87
24	Rhodium-Catalyzed Site-Selective Coupling of Indoles with Diazo Esters: C4-Alkylation versus C2-Annulation. Organic Letters, 2017, 19, 6184-6187.	2.4	77
25	Sequential utilization of bamboo biomass through reductive catalytic fractionation of lignin. Bioresource Technology, 2019, 285, 121335.	4.8	74
26	Catalytic CH Bond Addition of Pyridines to Allenes by a Rareâ€Earth Catalyst. Chemistry - A European Journal, 2015, 21, 8394-8398.	1.7	73
27	Selective Fragmentation of Biorefinery Corncob Lignin into <i>p</i> â€Hydroxycinnamic Esters with a Supported Zinc Molybdate Catalyst. ChemSusChem, 2018, 11, 2114-2123.	3.6	73
28	Catechyl Lignin Extracted from Castor Seed Coats Using Deep Eutectic Solvents: Characterization and Depolymerization. ACS Sustainable Chemistry and Engineering, 2020, 8, 7031-7038.	3.2	70
29	Palladium-Catalyzed Cascade Cyclization–Oxidative Olefination of <i>tert</i> -Butyl 2-Alkynylbenozates. Journal of Organic Chemistry, 2012, 77, 1579-1584.	1.7	67
30	Chemodivergent hydrogenolysis of eucalyptus lignin with Ni@ZIF-8 catalyst. Green Chemistry, 2019, 21, 1498-1504.	4.6	65
31	Acceptorless dehydrogenation and dehydrogenative coupling of alcohols catalysed by protic NHC ruthenium complexes. Organic and Biomolecular Chemistry, 2017, 15, 3466-3471.	1.5	62
32	Downstream Processing Strategies for Ligninâ€First Biorefinery. ChemSusChem, 2020, 13, 5199-5212.	3.6	62
33	Montmorillonite K10 Clay: An Effective Solid Catalyst for Oneâ€Pot Synthesis of Polyhydroquinoline Derivatives. Synthetic Communications, 2005, 35, 2875-2880.	1.1	59
34	Gold- and Iodine-Mediated Internal Oxygen Transfer of Nitrone- and Sulfoxide-Functionalized Alkynes. Journal of Organic Chemistry, 2011, 76, 8488-8494.	1.7	59
35	Isolation of Azomethine Ylides and Their Complexes: Iridium(III)â€Mediated Cyclization of Nitrone Substrates Containing Alkynes. Angewandte Chemie - International Edition, 2011, 50, 7791-7796.	7.2	59
36	Tunable, UV-shielding and biodegradable composites based on well-characterized lignins and poly(butylene adipate- <i>co</i> -terephthalate). Green Chemistry, 2020, 22, 8623-8632.	4.6	59

Guo-Yong Song

#	Article	IF	CITATIONS
37	A review of hydrodeoxygenation of bio-oil: model compounds, catalysts, and equipment. Green Chemistry, 2021, 23, 9348-9376.	4.6	59
38	Fragmentation of Woody Lignocellulose into Primary Monolignols and Their Derivatives. ACS Sustainable Chemistry and Engineering, 2019, 7, 4666-4674.	3.2	56
39	Synthesis, Structures, and Solution Dynamics of Palladium Complexes of Quinoline-Functionalized N-Heterocyclic Carbenes. Inorganic Chemistry, 2008, 47, 8031-8043.	1.9	51
40	1,3-Dinitrone Pincer Complexes of Palladium and Nickel: Synthesis, Structural Characterizations, and Catalysis. Organometallics, 2009, 28, 3233-3238.	1.1	49
41	Anionâ€Exchangeâ€Triggered 1,3â€Shift of an NH Proton to Iridium in Protic Nâ€Heterocyclic Carbenes: Hydrogenâ€Bonding and Ionâ€Pairing Effects. Angewandte Chemie - International Edition, 2010, 49, 912-917.	7.2	48
42	Rhodium(iii)-catalyzed oxidative mono- and di-olefination of isonicotinamides. Organic and Biomolecular Chemistry, 2012, 10, 5521.	1.5	48
43	Fe ³⁺ â€Montmorillonite as Effective, Recyclable Catalyst for Paal–Knorr Pyrrole Synthesis Under Mild Conditions. Synthetic Communications, 2005, 35, 1051-1057.	1.1	46
44	Iridium Abnormal N-Heterocyclic Carbene Hydrides via Highly Selective Câ^'H Activation. Organometallics, 2008, 27, 1187-1192.	1.1	46
45	Hydrogenolysis of biorefinery corncob lignin into aromatic phenols over activated carbon-supported nickel. Sustainable Energy and Fuels, 2019, 3, 401-408.	2.5	45
46	Total utilization of lignin and carbohydrates in Eucalyptus grandis: an integrated biorefinery strategy towards phenolics, levulinic acid, and furfural. Biotechnology for Biofuels, 2020, 13, 2.	6.2	45
47	Paving the Way for the Lignin Hydrogenolysis Mechanism by Deuterium-Incorporated β-O-4 Mimics. ACS Catalysis, 2020, 10, 12229-12238.	5.5	38
48	Pyridine-Based N-Heterocyclic Carbene Hydride Complexes of Iridium via Câ^'H Activation. Organometallics, 2008, 27, 6193-6201.	1.1	37
49	Methyleneimidazoline Complexes of Iridium, Rhodium, and Palladium from Selective C(sp ³)H Bond Activation. Chemistry - A European Journal, 2009, 15, 5535-5544.	1.7	36
50	Highly Efficient Hydrogenation of Levulinic Acid into γâ€Valerolactone using an Iron Pincer Complex. ChemSusChem, 2018, 11, 1474-1478.	3.6	36
51	Hydrogen bonding-assisted tautomerization of pyridine moieties in the coordination sphere of an Ir(i) complex. Chemical Communications, 2008, , 3558.	2.2	34
52	Unraveling the Structural Transformation of Wood Lignin During Deep Eutectic Solvent Treatment. Frontiers in Energy Research, 2020, 8, .	1.2	34
53	Rhodium(III) atalyzed Synthesis of Cinnolinium Salts from Azobenzenes and Diazo Compounds. Advanced Synthesis and Catalysis, 2018, 360, 2836-2842.	2.1	29
54	Catalytic Conversion of Carbohydrates into 5â€Ethoxymethylfurfural by a Magnetic Solid Acid Using γâ€Valerolactone as a Coâ€Solvent. Energy Technology, 2018, 6, 1951-1958.	1.8	25

GUO-YONG SONG

#	Article	IF	CITATIONS
55	Disassembling catechyl and guaiacyl/syringyl lignins coexisting in Euphorbiaceae seed coats. Green Chemistry, 2021, 23, 7235-7242.	4.6	25
56	Serpentine Ni ₃ Ge ₂ O ₅ (OH) ₄ Nanosheets with Tailored Layers and Size for Efficient Oxygen Evolution Reactions. Small, 2018, 14, e1803015.	5.2	24
57	Catalytic hydrogenolysis of castor seeds C-lignin in deep eutectic solvents. Industrial Crops and Products, 2021, 169, 113666.	2.5	22
58	Chemosynthesis, characterization and application of lignin-based ï¬,occulants with tunable performance prepared by short-wavelength ultraviolet initiation. Industrial Crops and Products, 2020, 157, 112897.	2.5	20
59	Silver-Catalyzed Remote C5–H Selenylation of Indoles. Journal of Organic Chemistry, 2020, 85, 11104-11115.	1.7	20
60	Integration of Enzymatic and Heterogeneous Catalysis for Oneâ€₽ot Production of Fructose from Glucose. ChemSusChem, 2018, 11, 1157-1162.	3.6	12
61	Theoretical studies of iridium-mediated tautomerization of substituted pyridines. Journal of Organometallic Chemistry, 2011, 696, 1640-1646.	0.8	11
62	Sustainable Production of Bioactive Molecules from Câ€Ligninâ€Derived Propenylcatechol. ChemSusChem, 2022, 15, .	3.6	11
63	Integration of Ru/C and base for reductive catalytic fractionation of triploid poplar. Chinese Journal of Catalysis, 2022, 43, 802-810.	6.9	9
64	Ethylene dimethacrylate used as an NH3 adsorbent with high adsorption capacity and selectivity. Chemosphere, 2022, 293, 133539.	4.2	5
65	Recent Advances in Lignin Modification and Its Application in Wastewater Treatment. ACS Symposium Series, 2021. 143-173.	0.5	3