Bo Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6807799/publications.pdf

Version: 2024-02-01

		394421	414414
39	1,063	19	32
papers	citations	h-index	g-index
39	39	39	1347
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Surface molecular engineering of CsPbBr3 perovskite nanosheets for high-performance photodetector. Composites Communications, 2022, 29, 101032.	6.3	7
2	Artificial Nacre with High Toughness Amplification Factor: Residual Stressâ€Engineering Sparks Enhanced Extrinsic Toughening Mechanisms. Advanced Materials, 2022, 34, e2108267.	21.0	34
3	Nickel-Catalyzed Cross-Coupling of Aryl 2-Pyridyl Ethers with Organozinc Reagents: Removal of the Directing Group via Cleavage of the Carbon–Oxygen Bonds. Journal of Organic Chemistry, 2021, 86, 2235-2243.	3.2	4
4	Composition-dependent micro-structure and photocatalytic performance of g-C3N4 quantum dots@SnS2 heterojunction. Nano Research, 2021, 14, 4188-4196.	10.4	26
5	Preparation and properties of photochromic regenerated silk fibroin/Tungsten trioxide nanoparticles hybrid fibers. Composites Communications, 2021, 27, 100810.	6.3	10
6	Photothermal Regenerated Fibers with Enhanced Toughness: Silk Fibroin/MoS2 Nanoparticles. Polymers, 2021, 13, 3937.	4.5	7
7	Streamlined Construction of Silicon-Stereogenic Silanes by Tandem Enantioselective C–H Silylation/Alkene Hydrosilylation. Journal of the American Chemical Society, 2020, 142, 13459-13468.	13.7	104
8	Enantioselective Silylation of Aliphatic Câ^'H Bonds for the Synthesis of Siliconâ€Stereogenic Dihydrobenzosiloles. Angewandte Chemie - International Edition, 2020, 59, 22217-22222.	13.8	65
9	Enantioselective Silylation of Aliphatic Câ^'H Bonds for the Synthesis of Siliconâ€Stereogenic Dihydrobenzosiloles. Angewandte Chemie, 2020, 132, 22401-22406.	2.0	20
10	^{<i>t</i>} BuOK-Promoted Cyclization of Imines with Aryl Halides. Organic Letters, 2020, 22, 4553-4556.	4.6	10
11	Nickel-Catalyzed Alkylation or Reduction of Allylic Alcohols with Alkyl Grignard Reagents. Journal of Organic Chemistry, 2020, 85, 4772-4784.	3.2	15
12	CuSO ₄ -Catalyzed dual annulation to synthesize O, S or N-containing tetracyclic heteroacenes. Chemical Communications, 2020, 56, 4063-4066.	4.1	18
13	Chemical transformations of quaternary ammonium salts <i>via</i> C–N bond cleavage. Organic and Biomolecular Chemistry, 2020, 18, 1057-1072.	2.8	54
14	Synthesis of Allylsilanes via Nickel-Catalyzed Cross-Coupling of Silicon Nucleophiles with Allyl Alcohols. Organic Letters, 2019, 21, 7965-7969.	4. 6	17
15	Copper-catalyzed oxidative benzylic C-H cyclization via iminyl radical from intermolecular anion-radical redox relay. Nature Communications, 2019, 10, 908.	12.8	37
16	Ni-Catalyzed C–P Coupling of Aryl, Benzyl, or Allyl Ammonium Salts with P(O)H Compounds. Journal of Organic Chemistry, 2019, 84, 1500-1509.	3.2	35
17	Moisture-triggered actuator and detector with high-performance: interface engineering of graphene oxide/ethyl cellulose. Science China Materials, 2018, 61, 1291-1296.	6.3	14
18	Phenanthroline- <i>>^t</i> BuOK Promoted Intramolecular Câ€"H Arylation of Indoles with Arl under Transition-Metal-Free Conditions. Organic Letters, 2018, 20, 7898-7901.	4.6	27

#	Article	IF	CITATIONS
19	Surface etching induced ultrathin sandwich structure realizing enhanced photocatalytic activity. Science China Chemistry, 2018, 61, 1572-1580.	8.2	19
20	Transition-Metal-Free Cross-Coupling of Aryl and Heteroaryl Thiols with Arylzinc Reagents. Organic Letters, 2017, 19, 6220-6223.	4.6	10
21	Nickel-Catalyzed Cross-Coupling of Allyl Alcohols with Aryl- or Alkenylzinc Reagents. Journal of Organic Chemistry, 2017, 82, 4542-4549.	3.2	40
22	Self-assembled mesoporous Ni _{0.85} Se spheres as high performance counter cells of dye-sensitized solar cells. RSC Advances, 2016, 6, 58925-58932.	3.6	21
23	Hollow spherical NiS/NiS2 composite as effective counter electrode catalyst for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 7974-7978.	2.2	7
24	Facile Synthesis of Hierarchical Cu ₂ MoS ₄ Hollow Sphere/Reduced Graphene Oxide Composites with Enhanced Photocatalytic Performance. Journal of Physical Chemistry C, 2016, 120, 13120-13125.	3.1	43
25	The stabilization of NiCo2O4 nanobelts used for catalyzing triiodides in dye-sensitized solar cells by the presence of RGO sheets. Solar Energy Materials and Solar Cells, 2016, 149, 9-14.	6.2	59
26	A novel counter electrode material of La _{0.5} Sr _{0.5} CoO ₃ for dye-sensitized solar cells. Functional Materials Letters, 2016, 09, 1650007.	1.2	2
27	Graphene-wrapped CulnS ₂ composites for efficient dye-sensitized solar cells. Functional Materials Letters, 2015, 08, 1550011.	1.2	4
28	Structural Phase Transition from Tin (IV) Sulfide to Tin (II) Sulfide and the enhanced Performance by Introducing Graphene in Dye-sensitized Solar Cells. Electrochimica Acta, 2015, 176, 797-803.	5.2	10
29	NiS nanoparticles anchored on reduced graphene oxide to enhance the performance of dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2015, 26, 8176-8181.	2.2	22
30	Dye-sensitized solar cells based on low-cost nanoscale SnO2@RGO composite counter electrode. Materials Letters, 2015, 158, 424-427.	2.6	27
31	Graphene assistance enhanced dye-sensitized solar cell performance of tin sulfide microspheres. Applied Surface Science, 2015, 353, 300-306.	6.1	6
32	Pincer-Nickel-Catalyzed Allyl-Aryl Coupling between Allyl Methyl Ethers and Arylzinc Chlorides. Journal of Organic Chemistry, 2015, 80, 12627-12634.	3.2	25
33	Nanocomposite of Tin Sulfide Nanoparticles with Reduced Graphene Oxide in High-Efficiency Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 137-143.	8.0	129
34	Effects of pH values on crystal growth and photoluminescence properties of ZnO hexagonal rods with cones. Materials Letters, 2014, 130, 123-126.	2.6	4
35	Facile synthesis of Bi ₂ S ₃ –C composite microspheres as low-cost counter electrodes for dye-sensitized solar cells. RSC Advances, 2014, 4, 57412-57418.	3.6	19
36	Controlled depositing of silver nanoparticles on flexible film and its application in ultrasensitive detection. RSC Advances, 2014, 4, 42358-42363.	3.6	34

#	Article	IF	CITATIONS
37	Controlled synthesis of CulnS2/reduced graphene oxide nanocomposites for efficient dye-sensitized solar cells. Journal of Power Sources, 2014, 272, 639-646.	7.8	38
38	SnS 2 as low-cost counter-electrode materials for dye-sensitized solar cells. Materials Letters, 2014, 133, 197-199.	2.6	40
39	Inverse method and consistency examination for Lagrangian analysis. AIP Conference Proceedings, 1994, , .	0.4	0