James K Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6807640/publications.pdf

Version: 2024-02-01

66343 51608 12,158 87 42 86 citations h-index g-index papers 98 98 98 13340 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Targeting colorectal cancer with small-molecule inhibitors of ALDH1B1. Nature Chemical Biology, 2022, 18, 1065-1075.	8.0	17
2	Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nature Sustainability, 2021, 4, 233-241.	23.7	350
3	Structure-activity mapping of ARHGAP36 reveals regulatory roles for its GAP homology and C-terminal domains. PLoS ONE, 2021, 16, e0251684.	2.5	2
4	Small Molecule Control of Morpholino Antisense Oligonucleotide Function through Staudinger Reduction. Journal of the American Chemical Society, 2021, 143, 18665-18671.	13.7	23
5	Lanthanide-Based Optical Probes of Biological Systems. Cell Chemical Biology, 2020, 27, 921-936.	5.2	43
6	Targeted cell ablation in zebrafish using optogenetic transcriptional control. Development (Cambridge), 2020, 147 , .	2.5	17
7	Bicyclic Imidazolium Inhibitors of Gli Transcription Factor Activity. ChemMedChem, 2020, 15, 1044-1049.	3.2	10
8	trLRET microscopy: Ultrasensitive imaging of lanthanide luminophores. Methods in Enzymology, 2020, 640, 225-248.	1.0	1
9	HIPK4 is essential for murine spermiogenesis. ELife, 2020, 9, .	6.0	40
10	Combinatorial control of gene function with wavelength-selective caged morpholinos. Methods in Enzymology, 2019, 624, 69-88.	1.0	7
11	A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nature Genetics, 2018, 50, 460-471.	21.4	140
12	Ultrasensitive optical imaging with lanthanide lumiphores. Nature Chemical Biology, 2018, 14, 15-21.	8.0	61
13	Basal constriction during midbrain-hindbrain boundary morphogenesis is mediated by Wnt5b and focal adhesion kinase. Biology Open, 2018, 7, .	1.2	16
14	Correcting glucose-6-phosphate dehydrogenase deficiency with a small-molecule activator. Nature Communications, 2018, 9, 4045.	12.8	70
15	Illuminating developmental biology through photochemistry. Nature Chemical Biology, 2017, 13, 587-598.	8.0	75
16	A novel missense variant in the GLI3 zinc finger domain in a family with digital anomalies. American Journal of Medical Genetics, Part A, 2017, 173, 3221-3225.	1.2	7
17	Hyaluronic acid synthesis is required for zebrafish tail fin regeneration. PLoS ONE, 2017, 12, e0171898.	2.5	34
18	Discovery of novel determinants of endothelial lineage using chimeric heterokaryons. ELife, 2017, 6, .	6.0	7

#	Article	IF	CITATIONS
19	Chemical structure-guided design of dynapyrazoles, cell-permeable dynein inhibitors with a unique mode of action. ELife, 2017, 6, .	6.0	31
20	Tbx16 regulates hox gene activation in mesodermal progenitor cells. Nature Chemical Biology, 2016, 12, 694-701.	8.0	11
21	An inducible long noncoding RNA amplifies DNA damage signaling. Nature Genetics, 2016, 48, 1370-1376.	21.4	195
22	Control of inflammation by stromal Hedgehog pathway activation restrains colitis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7545-E7553.	7.1	73
23	I only have eye for ewe: the discovery of cyclopamine and development of Hedgehog pathway-targeting drugs. Natural Product Reports, 2016, 33, 595-601.	10.3	53
24	Cytoplasmic Dynein Antagonists with Improved Potency and Isoform Selectivity. ACS Chemical Biology, 2016, 11, 53-60.	3.4	19
25	Optochemical Dissection of T-box Gene-Dependent Medial Floor Plate Development. ACS Chemical Biology, 2015, 10, 1466-1475.	3.4	14
26	Thinking big with small molecules. Journal of Cell Biology, 2015, 209, 7-9.	5.2	5
27	Sequential Gene Silencing Using Wavelengthâ€Selective Caged Morpholino Oligonucleotides. Angewandte Chemie, 2014, 126, 10278-10282.	2.0	26
28	Arhgap36-dependent activation of Gli transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11061-11066.	7.1	35
29	Sequential Gene Silencing Using Wavelengthâ€Selective Caged Morpholino Oligonucleotides. Angewandte Chemie - International Edition, 2014, 53, 10114-10118.	13.8	97
30	Nitroreductase-Activatable Morpholino Oligonucleotides for <i>in Vivo</i> Gene Silencing. ACS Chemical Biology, 2014, 9, 1985-1990.	3.4	20
31	General Method for Regulating Protein Stability with Light. ACS Chemical Biology, 2014, 9, 111-115.	3.4	127
32	Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3091-100.	7.1	421
33	Direct kinetochore–spindle pole connections are not required for chromosome segregation. Journal of Cell Biology, 2014, 206, 231-243.	5.2	109
34	In Vivo Imaging of Hedgehog Pathway Activation with a Nuclear Fluorescent Reporter. PLoS ONE, 2014, 9, e103661.	2.5	16
35	Emerging technologies in molecular imaging: new windows into biology. Current Opinion in Chemical Biology, 2013, 17, 635-636.	6.1	0
36	Post-transcriptional mechanisms contribute to Etv2 repression during vascular development. Developmental Biology, 2013, 384, 128-140.	2.0	31

#	Article	IF	CITATIONS
37	Functional inhibition of UQCRB suppresses angiogenesis in zebrafish. Biochemical and Biophysical Research Communications, 2013, 433, 396-400.	2.1	25
38	Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage. Journal of Cell Biology, 2013, 202, 779-792.	5.2	145
39	Diacylglycerol promotes centrosome polarization in T cells via reciprocal localization of dynein and myosin II. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11976-11981.	7.1	86
40	Spatiotemporal resolution of the Ntla transcriptome in axial mesoderm development. Nature Chemical Biology, 2012, 8, 270-276.	8.0	39
41	Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature, 2012, 484, 125-129.	27.8	342
42	The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier–Gorlin syndrome. Nature, 2012, 484, 115-119.	27.8	314
43	Cyclic Caged Morpholinos: Conformationally Gated Probes of Embryonic Gene Function. Angewandte Chemie - International Edition, 2012, 51, 6908-6911.	13.8	55
44	Lineage Labeling of Zebrafish Cells with Laser Uncagable Fluorescein Dextran. Journal of Visualized Experiments, $2011, \ldots$	0.3	6
45	A Small-Molecule Smoothened Agonist Prevents Glucocorticoid-Induced Neonatal Cerebellar Injury. Science Translational Medicine, 2011, 3, 105ra104.	12.4	67
46	Chemical â€Jekyll and Hyde's: small-molecule inhibitors of developmental signaling pathways. Chemical Society Reviews, 2011, 40, 4318.	38.1	30
47	Spatiotemporal Control of Embryonic Gene Expression Using Caged Morpholinos. Methods in Cell Biology, 2011, 104, 151-172.	1.1	12
48	Neuropilins are positive regulators of Hedgehog signal transduction. Genes and Development, 2011, 25, 2333-2346.	5.9	73
49	Hedgehog and retinoic acid signaling cooperate to promote motoneurogenesis in zebrafish. Development (Cambridge), 2011, 138, 5113-5119.	2.5	12
50	Roles of Hedgehog pathway components and retinoic acid signalling in specifying zebrafish ventral spinal cord neurons. Development (Cambridge), 2011, 138, 5121-5134.	2.5	36
51	A crucial requirement for Hedgehog signaling in small cell lung cancer. Nature Medicine, 2011, 17, 1504-1508.	30.7	224
52	Small-Molecule Inhibitors of the Hedgehog Pathway. , 2011, , 163-186.		3
53	Synthetic Strategies for Studying Embryonic Development. Chemistry and Biology, 2010, 17, 590-606.	6.0	11
54	Controlling Destiny through Chemistry: Small-Molecule Regulators of Cell Fate. ACS Chemical Biology, 2010, 5, 15-34.	3.4	65

#	Article	IF	CITATIONS
55	Oligonucleotide-Based Tools for Studying Zebrafish Development. Zebrafish, 2010, 7, 31-40.	1.1	28
56	Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14132-14137.	7.1	274
57	Converse Conformational Control of Smoothened Activity by Structurally Related Small Molecules. Journal of Biological Chemistry, 2009, 284, 20876-20884.	3.4	51
58	The Imidazopyridine Derivativeâ€JK184 Reveals Dual Roles for Microtubules in Hedgehog Signaling. Angewandte Chemie - International Edition, 2009, 48, 2321-2324.	13.8	37
59	A small molecule that binds Hedgehog and blocks its signaling in human cells. Nature Chemical Biology, 2009, 5, 154-156.	8.0	273
60	Germ cell migration in zebrafish is cyclopamine-sensitive but Smoothened-independent. Developmental Biology, 2009, 328, 342-354.	2.0	19
61	Versatile Synthesis and Rational Design of Caged Morpholinos. Journal of the American Chemical Society, 2009, 131, 13255-13269.	13.7	101
62	Fish 'n clicks. Nature Chemical Biology, 2008, 4, 391-392.	8.0	5
63	Chemical technologies for probing embryonic development. Chemical Society Reviews, 2008, 37, 1294.	38.1	24
64	The decoupling of Smoothened from \widehat{Gl} ti proteins has little effect on Gli3 protein processing and Hedgehog-regulated chick neural tube patterning. Developmental Biology, 2008, 321, 188-196.	2.0	60
65	Gene regulation technologies in zebrafish. Molecular BioSystems, 2008, 4, 300.	2.9	14
66	Targeted and Conditional Gene Expression Workshop, 8th International Conference on Zebrafish Development and Genetics. Zebrafish, 2008, 5, 193-195.	1.1	1
67	Light-controlled gene silencing in zebrafish embryos. Nature Chemical Biology, 2007, 3, 650-651.	8.0	209
68	Small-molecule regulation of zebrafish gene expression. Nature Chemical Biology, 2007, 3, 154-155.	8.0	62
69	Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nature Chemical Biology, 2006, 2, 29-30.	8.0	330
70	Smoothened Signal Transduction Is Promoted by G Protein-Coupled Receptor Kinase 2. Molecular and Cellular Biology, 2006, 26, 7550-7560.	2.3	114
71	Activity-Dependent Internalization of Smoothened Mediated by Â-Arrestin 2 and GRK2. Science, 2004, 306, 2257-2260.	12.6	264
72	Small molecule modulation of Smoothened activity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14071-14076.	7.1	907

#	Article	IF	CITATIONS
73	Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes and Development, 2002, 16, 2743-2748.	5.9	1,318
74	Medulloblastoma Growth Inhibition by Hedgehog Pathway Blockade. Science, 2002, 297, 1559-1561.	12.6	760
75	Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature, 2000, 406, 1005-1009.	27.8	1,243
76	The identification of myriocin-binding proteins. Chemistry and Biology, 1999, 6, 221-235.	6.0	88
77	Protein Structure-Based Combinatorial Chemistry:Â Discovery of Non-Peptide Binding Elements to Src SH3 Domain. Journal of the American Chemical Society, 1996, 118, 287-288.	13.7	94
78	Crystal Structure of P13K SH3 Domain at 2.0 Ã Resolution. Journal of Molecular Biology, 1996, 257, 632-643.	4.2	49
79	Kombinatorische Synthese und mehrdimensionale NMRâ€Spektroskopie: ein Beitrag zum Verstädnis von Proteinâ€Ligandâ€Wechselwirkungen. Angewandte Chemie, 1995, 107, 1041-1058.	2.0	9
80	Combinatorial Synthesis and Multidimensional NMR Spectroscopy: An Approach to Understanding Protein–Ligand Interactions. Angewandte Chemie International Edition in English, 1995, 34, 953-969.	4.4	42
81	Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science, 1994, 266, 1241-1247.	12.6	818
82	SH3 domain-mediated dimerization of an n-terminal fragment of the phosphatidylinositol 3-kinase p85 subunit. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 1755-1760.	2.2	11
83	Structural basis for the binding of proline-rich peptides to SH3 domains. Cell, 1994, 76, 933-945.	28.9	1,018
84	Affinity Capillary Electrophoresis: Insights into the Binding of SH3 Domains by Peptides Derived from an SH3-Binding Protein. Journal of Organic Chemistry, 1994, 59, 2885-2886.	3.2	26
85	Biased combinatorial libraries: novel ligands for the SH3 domain of phosphatidylinositol 3-kinase. Journal of the American Chemical Society, 1993, 115, 12591-12592.	13.7	126
86	Affinity electrophoresis in multisectional polyacrylamide slab gels is a useful and convenient technique for measuring binding constants of aryl sulfonamides to bovine carbonic anhydrase B. Analytical Chemistry, 1993, 65, 1314-1322.	6.5	16
87	Molecular Recognition in Gels, Monolayers, and Solids. ACS Symposium Series, 1992, , 227-239.	0.5	2