Juraj Culman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6807600/publications.pdf

Version: 2024-02-01

394421 477307 1,585 29 19 29 citations g-index h-index papers 30 30 30 1857 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Angiotensin AT2 receptor protects against cerebral ischemiaâ€induced neuronal injury. FASEB Journal, 2005, 19, 1-25.	0.5	234
2	Activation of cerebral peroxisome proliferatorâ€activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenaseâ€2 overexpression after focal cerebral ischemia in rats. FASEB Journal, 2006, 20, 1162-1175.	0.5	175
3	Blockade of Central Angiotensin AT ₁ Receptors Improves Neurological Outcome and Reduces Expression of AP-1 Transcription Factors After Focal Brain Ischemia in Rats. Stroke, 1999, 30, 2391-2399.	2.0	169
4	Chronic Treatment With a Low Dose of Lithium Protects the Brain Against Ischemic Injury by Reducing Apoptotic Death. Stroke, 2003, 34, 1287-1292.	2.0	153
5	PPAR-Î ³ : therapeutic target for ischemic stroke. Trends in Pharmacological Sciences, 2007, 28, 244-249.	8.7	144
6	The intracerebral application of the PPARÎ ³ -ligand pioglitazone confers neuroprotection against focal ischaemia in the rat brain. European Journal of Neuroscience, 2005, 22, 278-282.	2.6	102
7	Sustained Blockade of Brain AT1 Receptors before and after Focal Cerebral Ischemia Alleviates Neurologic Deficits and Reduces Neuronal Injury, Apoptosis, and Inflammatory Responses in the Rat. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 536-547.	4.3	81
8	Angiotensin Receptors in the Brain. Basic and Clinical Pharmacology and Toxicology, 1995, 77, 306-315.	0.0	52
9	Effect of repetitive icv injections of ANG II on c-Fos and AT1-receptor expression in the rat brain. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R1095-R1104.	1.8	46
10	Peroxisome-proliferator-activated receptors \hat{I}^3 and peroxisome-proliferator-activated receptors \hat{I}^2/\hat{I}^2 and the regulation of interleukin 1 receptor antagonist expression by pioglitazone in ischaemic brain. Journal of Hypertension, 2010, 28, 1488-1497.	0.5	46
11	Angiotensin II induces peroxisome proliferator-activated receptor gamma in PC12W cells via angiotensin type 2 receptor activation. Journal of Neurochemistry, 2005, 94, 1395-1401.	3.9	42
12	The JNK inhibitor D-JNKI-1 blocks apoptotic JNK signaling in brain mitochondria. Molecular and Cellular Neurosciences, 2012, 49, 300-310.	2.2	42
13	Comparison between early and delayed systemic treatment with candesartan of rats after ischaemic stroke. Journal of Hypertension, 2007, 25, 187-196.	0.5	41
14	Peroxisome proliferatorâ€activated receptorsγ (PPARγ) differently modulate the interleukinâ€6 expression in the periâ€infarct cortical tissue in the acute and delayed phases of cerebral ischaemia. European Journal of Neuroscience, 2008, 28, 1786-1794.	2.6	41
15	Use of selective antagonists to dissociate the central cardiovascular and behavioural effects of tachykinins on NK $<$ sub $>1sub> and NK<sub>2sub> receptors in the rat. British Journal of Pharmacology, 1992, 107, 750-755.$	5.4	38
16	Treatment of rats with pioglitazone in the reperfusion phase of focal cerebral ischemia: A preclinical stroke trial. Experimental Neurology, 2012, 238, 243-253.	4.1	38
17	Effects of the tachykinin NK ₁ receptor antagonist, RP 67580, on central cardiovascular and behavioural effects of substance P, neurokinin A and neurokinin B. British Journal of Pharmacology, 1995, 114, 1310-1316.	5.4	29
18	Oxytocin Pathways Mediate the Cardiovascular and Behavioral Responses to Substance P in the Rat Brain. Hypertension, 1998, 31, 480-486.	2.7	26

#	Article	IF	CITATIONS
19	Substance P and neurokinin A induced desentization to cardiovascular and behavioral effects: evidence for the involvement of different tachykinin receptors. Brain Research, 1993, 625, 75-83.	2.2	23
20	Neuroprotective and antioxidative effects of pioglitazone in brain tissue adjacent to the ischemic core are mediated by PI3K/Akt and Nrf2/ARE pathways. Journal of Molecular Medicine, 2021, 99, 1073-1083.	3.9	16
21	Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells. Clinical Science, 2015, 128, 567-578.	4.3	12
22	Neuroprotective effects of AT1 receptor antagonists after experimental ischemic stroke: what is important?. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 949-959.	3.0	9
23	Pioglitazone induces cell growth arrest and activates mitochondrial apoptosis in human uterine leiomyosarcoma cells by a peroxisome proliferator-activated receptor l³-independent mechanism. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 37-48.	3.0	8
24	Antisense Oligonucleotides in the Study of Central Mechanisms of the Cardiovascular Regulation. Experimental Physiology, 2000, 85, 757-767.	2.0	6
25	Are biological actions of neurokinin A in the adult brain mediated by a cross-talk between the NK1 and NK2 receptors?. Neuropharmacology, 2012, 63, 958-965.	4.1	6
26	In vivo SPECT imaging of [1231]-labeled pentamidine pro-drugs for the treatment of human African trypanosomiasis, pharmacokinetics, and bioavailability studies in rats. International Journal of Pharmaceutics, 2014, 477, 167-175.	5.2	2
27	Omapatrilat: penetration across the blood–brain barrier and effects on ischaemic stroke in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 939-951.	3.0	2
28	The Hypothalamic–Pituitary–Adrenal Axis and Serotonin Metabolism in Individual Brain Nuclei of Mice with Genetic Disruption of the NK1 Receptor Exposed to Acute Stress. Cellular and Molecular Neurobiology, 2018, 38, 1271-1281.	3.3	1
29	Antisense oligonucleotides in the study of central mechanisms of the cardiovascular regulation. Experimental Physiology, 2000, 85, 757-767.	2.0	1