Kenneth A Barbee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6807592/publications.pdf

Version: 2024-02-01

27 972 13 h-index 687363 610901

27 27 27 1317 all docs docs citations times ranked citing authors

24

g-index

#	Article	IF	CITATIONS
1	Learning Environments and Evidence-Based Practices in Bioengineering and Biomedical Engineering. Biomedical Engineering Education, 2022, 2, 1-16.	0.7	6
2	TRPC channel-derived calcium fluxes differentially regulate ATP and flow-induced activation of eNOS. Nitric Oxide - Biology and Chemistry, 2021, 111-112, 1-13.	2.7	6
3	Coordinated regulation of endothelial calcium signaling and shear stress-induced nitric oxide production by PKCβ and PKCη. Cellular Signalling, 2021, 87, 110125.	3.6	4
4	A dynamic computational network model for the role of nitric oxide and the myogenic response in microvascular flow regulation. Microcirculation, 2018, 25, e12465.	1.8	5
5	Effect of Spatial Heterogeneity and Colocalization of eNOS and Capacitative Calcium Entry Channels on Shear Stress-Induced NO Production by Endothelial Cells: A Modeling Approach. Cellular and Molecular Bioengineering, 2018, 11, 143-155.	2.1	4
6	Cholesterol Enrichment Impairs Capacitative Calcium Entry, eNOS Phosphorylation & Stress-Induced NO Production. Cellular and Molecular Bioengineering, 2017, 10, 30-40.	2.1	11
7	Nitric oxide release by deoxymyoglobin nitrite reduction during cardiac ischemia: A mathematical model. Microvascular Research, 2017, 112, 79-86.	2.5	5
8	Nitrite-Mediated Hypoxic Vasodilation Predicted from Mathematical Modeling and Quantified from in Vivo Studies in Rat Mesentery. Frontiers in Physiology, 2017, 8, 1053.	2.8	4
9	A mathematical model for the role of N 2 O 3 in enhancing nitric oxide bioavailability following nitrite infusion. Nitric Oxide - Biology and Chemistry, 2016, 60, 1-9.	2.7	10
10	Mathematical model for shear stress dependent NO and adenine nucleotide production from endothelial cells. Nitric Oxide - Biology and Chemistry, 2016, 52, 1-15.	2.7	7
11	Effects of radical oxygen species and antioxidants on macrophage polarization. , 2015, , .		2
12	Shear Stress-Induced NO Production is Dependent on ATP Autocrine Signaling and Capacitative Calcium Entry. Cellular and Molecular Bioengineering, 2014, 7, 510-520.	2.1	18
13	Antimicrobial efficacy and wound-healing property of a topical ointment containing nitric-oxide-loaded zeolites. Journal of Medical Microbiology, 2014, 63, 203-209.	1.8	73
14	Response to Dr. Annemiek J.M. Cornelissen editorial. Medical and Biological Engineering and Computing, 2011, 49, 631-632.	2.8	0
15	Glycated collagen alters endothelial cell actin alignment and nitric oxide release in response to fluid shear stress. Journal of Biomechanics, 2011, 44, 1927-1935.	2.1	48
16	Direct, real-time measurement of shear stress-induced nitric oxide produced from endothelial cells in vitro. Nitric Oxide - Biology and Chemistry, 2010, 23, 335-342.	2.7	73
17	Mechanical membrane injury induces axonal beading through localized activation of calpain. Experimental Neurology, 2009, 219, 553-561.	4.1	93
18	Interactive image analysis programs for quantifying injury-induced axonal beading and microtubule disruption. Computer Methods and Programs in Biomedicine, 2009, 95, 62-71.	4.7	12

#	ARTICLE	IF	CITATIONS
19	Mechanically-induced membrane poration causes axonal beading and localized cytoskeletal damage. Experimental Neurology, 2008, 212, 422-430.	4.1	126
20	Transport-dependent calcium signaling in spatially segregated cellular caveolar domains. American Journal of Physiology - Cell Physiology, 2008, 294, C856-C866.	4.6	29
21	Mechanisms of cell death and neuroprotection by poloxamer 188 after mechanical trauma. FASEB Journal, 2006, 20, 308-310.	0.5	95
22	Mechanical Cell Injury. Annals of the New York Academy of Sciences, 2005, 1066, 67-84.	3.8	52
23	The Effect of Poloxamer-188 on Neuronal Cell Recovery from Mechanical Injury. Journal of Neurotrauma, 2005, 22, 119-132.	3.4	76
24	Role of Subcellular Shear–Stress Distributions in Endothelial Cell Mechanotransduction. Annals of Biomedical Engineering, 2002, 30, 472-482.	2.5	52
25	In Vitro Cell Shearing Device to Investigate the Dynamic Response of Cells in a Controlled Hydrodynamic Environment. Annals of Biomedical Engineering, 2000, 28, 363-372.	2.5	87
26	Loading-Rate Dependent Cell Injury: A Design Criterion for Engineered Tissue Constructs. Microscopy and Microanalysis, 2000, 6, 984-985.	0.4	0
27	Strain measurements in cultured vascular smooth muscle cells subjected to mechanical deformation. Annals of Biomedical Engineering, 1994, 22, 14-22.	2.5	74