Theodore E Simos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6807568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A finite-difference method for the numerical solution of the Schrödinger equation. Journal of Computational and Applied Mathematics, 1997, 79, 189-205.	2.0	223
2	A four-step phase-fitted method for the numerical integration of second order initial-value problems. BIT Numerical Mathematics, 1991, 31, 160-168.	2.0	188
3	An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Computer Physics Communications, 1998, 115, 1-8.	7.5	181
4	An optimized Runge–Kutta method for the solution of orbital problems. Journal of Computational and Applied Mathematics, 2005, 175, 1-9.	2.0	177
5	On finite difference methods for the solution of the Schrödinger equation. Computers & Chemistry, 1999, 23, 513-554.	1.2	170
6	Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. Journal of Computational and Applied Mathematics, 2005, 175, 173-181.	2.0	157
7	Newton–Cotes formulae for long-time integration. Journal of Computational and Applied Mathematics, 2003, 158, 75-82.	2.0	156
8	New modified Runge–Kutta–Nyström methods for the numerical integration of the Schrödinger equation. Computers and Mathematics With Applications, 2010, 60, 1639-1647.	2.7	152
9	High order closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the SchrĶdinger equation. Applied Mathematics and Computation, 2009, 209, 137-151.	2.2	150
10	Trigonometrically fitted predictor–corrector methods for IVPs with oscillating solutions. Journal of Computational and Applied Mathematics, 2003, 158, 135-144.	2.0	148
11	A fourth algebraic order trigonometrically fitted predictor–corrector scheme for IVPs with oscillating solutions. Journal of Computational and Applied Mathematics, 2005, 175, 137-147.	2.0	147
12	Exponentially and Trigonometrically Fitted Methods forÂtheÂSolution of the Schrödinger Equation. Acta Applicandae Mathematicae, 2010, 110, 1331-1352.	1.0	147
13	Symplectic integrators for the numerical solution of the SchrĶdinger equation. Journal of Computational and Applied Mathematics, 2003, 158, 83-92.	2.0	146
14	Closed Newton–Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. Applied Mathematics Letters, 2009, 22, 1616-1621.	2.7	146
15	Construction of an optimized explicit Runge–Kutta–Nyström method for the numerical solution of oscillatory initial value problems. Computers and Mathematics With Applications, 2011, 61, 3381-3390.	2.7	145
16	Multiderivative methods of eighth algebraic order with minimal phase-lag for the numerical solution of the radial Schr¶dinger equation. Journal of Computational and Applied Mathematics, 2005, 175, 161-172.	2.0	143
17	A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. Journal of Computational and Applied Mathematics, 2012, 236, 3880-3889.	2.0	141
18	An optimized two-step hybrid block method for solving general second order initial-value problems. Numerical Algorithms, 2016, 72, 1089-1102.	1.9	140

#	Article	IF	CITATIONS
19	Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Applied Numerical Mathematics, 2009, 59, 2467-2474.	2.1	139
20	A generator of hybrid symmetric four-step methods for the numerical solution of the SchrĶdinger equation. Journal of Computational and Applied Mathematics, 2003, 158, 93-106.	2.0	138
21	Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Applied Mathematics Letters, 2004, 17, 601-607.	2.7	131
22	A family of trigonometrically fitted partitioned Runge–Kutta symplectic methods. Applied Mathematics and Computation, 2009, 209, 91-96.	2.2	131
23	A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the SchrĶdinger equation. Computers and Mathematics With Applications, 2011, 62, 3756-3774.	2.7	131
24	On modified Runge–Kutta trees and methods. Computers and Mathematics With Applications, 2011, 62, 2101-2111.	2.7	129
25	A Modiï¬ed Runge-Kutta-Nyström Method by using Phase Lag Properties for the Numerical Solution of Orbital Problems. Applied Mathematics and Information Sciences, 2013, 7, 433-437.	0.5	128
26	A new family of symmetric linear four-step methods for the efficient integration of the SchrĶdinger equation and related oscillatory problems. Applied Mathematics and Computation, 2012, 218, 5370-5382.	2.2	126
27	An Optimized Symmetric 8-Step Semi-Embedded Predictor-Corrector Method for IVPs with Oscillating Solutions. Applied Mathematics and Information Sciences, 2013, 7, 73-80.	0.5	124
28	On the Explicit Four-Step Methods with Vanished Phase-Lag and its First Derivative. Applied Mathematics and Information Sciences, 2014, 8, 447-458.	0.5	121
29	Optimizing a Hybrid Two-Step Method for the Numerical Solution of the Schrödinger Equation and Related Problems with Respect to Phase-Lag. Journal of Applied Mathematics, 2012, 2012, 1-17.	0.9	120
30	A New Optimized Symmetric Embedded Predictor- Corrector Method (EPCM) for Initial-Value Problems with Oscillatory Solutions. Applied Mathematics and Information Sciences, 2014, 8, 703-713.	0.5	120
31	Exponentially-fitted Runge-Kutta-Nyström method for the numerical solution of initial-value problems with oscillating solutions. Applied Mathematics Letters, 2002, 15, 217-225.	2.7	115
32	Zero Dissipative, Explicit Numerov-Type Methods for Second Order IVPs with Oscillating Solutions. Numerical Algorithms, 2003, 34, 27-40.	1.9	113
33	New Stable Closed Newton-Cotes Trigonometrically Fitted Formulae for Long-Time Integration. Abstract and Applied Analysis, 2012, 2012, 1-15.	0.7	111
34	A new approach on the construction of trigonometrically fitted two step hybrid methods. Journal of Computational and Applied Mathematics, 2016, 303, 146-155.	2.0	111
35	Exponentially fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation and related problems. Computational Materials Science, 2000, 18, 315-332.	3.0	108
36	An eight-step semi-embedded predictor–corrector method for orbital problems and related IVPs with oscillatory solutions for which the frequency is unknown. Journal of Computational and Applied Mathematics, 2015, 290, 1-15.	2.0	108

#	Article	IF	CITATIONS
37	A new Numerov-type method for the numerical solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2009, 46, 981-1007.	1.5	103
38	Title is missing!. Journal of Mathematical Chemistry, 2001, 30, 121-131.	1.5	101
39	Trigonometrically fitted Runge?Kutta methods for the numerical solution of the Schr�dinger equation. Journal of Mathematical Chemistry, 2005, 37, 281-293.	1.5	100
40	Construction of Exponentially Fitted Symplectic Runge–Kutta–Nyström Methods from Partitioned Runge–Kutta Methods. Mediterranean Journal of Mathematics, 2016, 13, 2271-2285.	0.8	99
41	Title is missing!. Journal of Mathematical Chemistry, 2002, 31, 211-232.	1.5	98
42	The Use of Phase Lag and Amplification Error Derivatives for the Construction of a Modified Runge-Kutta-Nyström Method. Abstract and Applied Analysis, 2013, 2013, 1-11.	0.7	97
43	A Runge–Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. Journal of Mathematical Chemistry, 2015, 53, 1239-1256.	1.5	97
44	An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Computers and Mathematics With Applications, 2003, 45, 547-554.	2.7	94
45	A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial SchrĶdinger equation. Journal of Mathematical Chemistry, 2016, 54, 442-465.	1.5	94
46	Title is missing!. Journal of Mathematical Chemistry, 2002, 32, 257-270.	1.5	93
47	A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. Journal of Mathematical Chemistry, 2015, 53, 2191-2213.	1.5	92
48	Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. Journal of Mathematical Chemistry, 2009, 46, 604-620.	1.5	89
49	A High-Order Two-Step Phase-Fitted Method for the Numerical Solution of the SchrĶdinger Equation. Mediterranean Journal of Mathematics, 2016, 13, 5177-5194.	0.8	89
50	Optimized Runge–Kutta pairs for problems with oscillating solutions. Journal of Computational and Applied Mathematics, 2002, 147, 397-409.	2.0	87
51	Title is missing!. Journal of Mathematical Chemistry, 2002, 31, 135-144.	1.5	87
52	Symplectic Methods for the Numerical Solution of the Radial Shr¶dinger Equation. Journal of Mathematical Chemistry, 2003, 34, 83-94.	1.5	87
53	A family of multiderivative methods for the numerical solution of the Schr�dinger equation. Journal of Mathematical Chemistry, 2005, 37, 317-332.	1.5	86
54	A Family of Exponentially-fitted Runge–Kutta Methods with Exponential Order Up to Three for the Numerical Solution of the SchrĶdinger Equation. Journal of Mathematical Chemistry, 2007, 41, 79-100.	1.5	86

#	Article	IF	CITATIONS
55	Exponentially fitted symplectic integrator. Physical Review E, 2003, 67, 016701.	2.1	85
56	Phase-fitted Runge–Kutta pairs of orders 8(7). Journal of Computational and Applied Mathematics, 2017, 321, 226-231.	2.0	84
57	A Runge–Kutta type four-step method with vanished phase-lag and its first and second derivatives for each level for the numerical integration of the Schrödinger equation. Journal of Mathematical Chemistry, 2014, 52, 917-947.	1.5	83
58	Evolutionary generation of highâ€order, explicit, twoâ€step methods for secondâ€order linear IVPs. Mathematical Methods in the Applied Sciences, 2017, 40, 6276-6284.	2.3	82
59	Review of multistep methods for the numerical solution of the radial SchrĶdinger equation. International Journal of Quantum Chemistry, 2005, 103, 278-290.	2.0	80
60	Title is missing!. Journal of Mathematical Chemistry, 2002, 31, 371-404.	1.5	79
61	Title is missing!. Journal of Mathematical Chemistry, 2003, 34, 39-58.	1.5	79
62	Exponentially - Fitted Multiderivative Methods for the Numerical Solution of the Schrödinger Equation. Journal of Mathematical Chemistry, 2004, 36, 13-27.	1.5	77
63	Exponentially fitted symplectic methods for the numerical integration of the Schr�dinger equation. Journal of Mathematical Chemistry, 2005, 37, 263-270.	1.5	77
64	A low computational cost eight algebraic order hybrid method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the SchrĶdinger equation. Journal of Mathematical Chemistry, 2015, 53, 1295-1312.	1.5	77
65	A four-step method for the numerical solution of the Schrödinger equation. Journal of Computational and Applied Mathematics, 1990, 30, 251-255.	2.0	76
66	Title is missing!. Journal of Mathematical Chemistry, 2001, 29, 281-291.	1.5	76
67	Title is missing!. Journal of Mathematical Chemistry, 2001, 29, 293-305.	1.5	76
68	Modified twoâ€ s tep hybrid methods for the numerical integration of oscillatory problems. Mathematical Methods in the Applied Sciences, 2017, 40, 5286-5294.	2.3	76
69	Bessel and Neumann-fitted methods for the numerical solution of the radial Schrödinger equation. Computers & Chemistry, 1997, 21, 175-179.	1.2	75
70	An economical eighth-order method for the approximation of the solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2017, 55, 717-733.	1.5	75
71	Title is missing!. Journal of Mathematical Chemistry, 2000, 27, 343-356.	1.5	74
72	Sixth algebraic order trigonometrically fitted predictor?corrector methods for the numerical solution of the radial Schr�dinger equation. Journal of Mathematical Chemistry, 2005, 37, 295-316.	1.5	74

#	Article	IF	CITATIONS
73	Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the SchrĶdinger equation. Journal of Mathematical Chemistry, 2006, 40, 257-267.	1.5	73
74	High order closed Newton-Cotes exponentially and trigonometrically fitted formulae as multilayer symplectic integrators and their application to the radial Schrödinger equation. Journal of Mathematical Chemistry, 2012, 50, 1224-1261.	1.5	72
75	Symplectic Methods of Fifth Order for the Numerical Solution of the Radial Shrödinger Equation. Journal of Mathematical Chemistry, 2004, 35, 55-63.	1.5	70
76	Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Physics Reports, 2009, 482-483, 1-240.	25.6	70
77	A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrodinger equation. IMA Journal of Numerical Analysis, 2001, 21, 919-931.	2.9	69
78	An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the SchrĶdinger equation and related problems. Journal of Mathematical Chemistry, 2010, 47, 315-330.	1.5	69
79	New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the SchrĶdinger equation. Part I: Construction and theoretical analysis. Journal of Mathematical Chemistry, 2013, 51, 194-226.	1.5	69
80	A dissipative exponentially-fitted method for the numerical solution of the SchrĶdinger equation and related problems. Computer Physics Communications, 2003, 152, 274-294.	7.5	68
81	The numerical solution of the radial SchrĶdinger equation via a trigonometrically fitted family of seventh algebraic order Predictor–Corrector methods. Journal of Mathematical Chemistry, 2006, 40, 269-293.	1.5	68
82	Embedded methods for the numerical solution of the SchrĶdinger equation. Computers and Mathematics With Applications, 1996, 31, 85-102.	2.7	67
83	A new family of 7 stages, eighthâ€order explicit Numerovâ€type methods. Mathematical Methods in the Applied Sciences, 2017, 40, 7867-7878.	2.3	67
84	A four-step exponentially fitted method for the numerical solution of the SchrĶdinger equation. Journal of Mathematical Chemistry, 2006, 40, 305-318.	1.5	66
85	High-order closed Newton–Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Computer Physics Communications, 2008, 178, 199-207.	7.5	64
86	An explicit four-step method with vanished phase-lag and its first and second derivatives. Journal of Mathematical Chemistry, 2014, 52, 833-855.	1.5	64
87	A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. Journal of Mathematical Chemistry, 2009, 45, 1102-1129.	1.5	63
88	Symplectic Partitioned Runge–Kutta methods with minimal phase-lag. Computer Physics Communications, 2010, 181, 1251-1254.	7.5	63
89	Some New Four-Step Exponential-Fitting Methods for the Numerical Solution of the Radical SchrĶdinger Equation. IMA Journal of Numerical Analysis, 1991, 11, 347-356.	2.9	59
90	Explicit two-step methods with minimal phase-lag for the numerical integration of special second-order initial-value problems and their application to the one-dimensional SchrĶdinger equation. Journal of Computational and Applied Mathematics, 1992, 39, 89-94.	2.0	58

#	Article	IF	CITATIONS
91	Numerov-type methods with minimal phase-lag for the numerical integration of the one-dimensional Schrödinger equation. Computing (Vienna/New York), 1990, 45, 175-181.	4.8	57
92	Trigonometric fitted, eighthâ€order explicit Numerovâ€ŧype methods. Mathematical Methods in the Applied Sciences, 2018, 41, 1845-1854.	2.3	57
93	A new high algebraic order efficient finite difference method for the solution of the Schr¶dinger equation. Filomat, 2017, 31, 4999-5012.	0.5	57
94	Symplectic methods for the numerical integration of the SchrĶdinger equation. Computational Materials Science, 2007, 38, 526-532.	3.0	56
95	A hybrid type four-step method with vanished phase-lag and its first, second and third derivatives for each level for the numerical integration of the SchrĶdinger equation. Journal of Mathematical Chemistry, 2014, 52, 2334-2379.	1.5	55
96	A family of explicit linear six-step methods with vanished phase-lag and its first derivative. Journal of Mathematical Chemistry, 2014, 52, 2087-2118.	1.5	55
97	CLOSED NEWTON–COTES TRIGONOMETRICALLY-FITTED FORMULAE FOR LONG-TIME INTEGRATION. International Journal of Modern Physics C, 2003, 14, 1061-1074.	1.7	54
98	On Ninth Order, Explicit Numerov-Type Methods with Constant Coefficients. Mediterranean Journal of Mathematics, 2018, 15, 1.	0.8	54
99	New Second-order Exponentially and Trigonometrically Fitted Symplectic Integrators for the Numerical Solution of the Time-independent SchrĶdinger Equation. Journal of Mathematical Chemistry, 2007, 42, 535-545.	1.5	53
100	A family of four-step trigonometrically-fitted methods and its application to the schrödinger equation. Journal of Mathematical Chemistry, 2008, 44, 447-466.	1.5	53
101	Closed Newton–Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. Journal of Mathematical Chemistry, 2008, 44, 483-499.	1.5	53
102	Efficient low computational cost hybrid explicit four-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical integration of the Schr¶dinger equation. Journal of Mathematical Chemistry, 2015, 53, 1808-1834.	1.5	53
103	A generator of high-order embedded P-stable methods for the numerical solution of the SchrĶdinger equation. Journal of Computational and Applied Mathematics, 1996, 72, 345-358.	2.0	52
104	A family of hybrid exponentially fitted predictor-corrector methods for the numerical integration of the radial SchrĶdinger equation. Journal of Computational and Applied Mathematics, 1997, 87, 215-226.	2.0	52
105	A new explicit hybrid four-step method with vanished phase-lag and its derivatives. Journal of Mathematical Chemistry, 2014, 52, 1690-1716.	1.5	52
106	New closed Newton–Cotes type formulae as multilayer symplectic integrators. Journal of Chemical Physics, 2010, 133, 104108.	3.0	51
107	A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problem. International Journal of Computer Mathematics, 1991, 39, 135-140.	1.8	50
108	Controlling the error growth in long–term numerical integration of perturbed oscillations in one or several frequencies. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 561-567.	2.1	50

#	Article	IF	CITATIONS
109	A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial-value problems with oscillating solution. Computers and Mathematics With Applications, 1993, 25, 95-101.	2.7	49
110	AN ADAPTED SYMPLECTIC INTEGRATOR FOR HAMILTONIAN PROBLEMS. International Journal of Modern Physics C, 2001, 12, 225-234.	1.7	49
111	Computation of the eigenvalues of the Schrödinger equation by symplectic and trigonometrically fitted symplectic partitioned Runge–Kutta methods. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 569-573.	2.1	49
112	A symmetric eight-step predictor-corrector method for the numerical solution of the radial SchrA¶dinger equation and related IVPs with oscillating solutions. Computer Physics Communications, 2011, 182, 1626-1637.	7.5	49
113	A NEW SYMMETRIC EIGHT-STEP PREDICTOR-CORRECTOR METHOD FOR THE NUMERICAL SOLUTION OF THE RADIAL SCHR×DINGER EQUATION AND RELATED ORBITAL PROBLEMS. International Journal of Modern Physics C, 2011, 22, 133-153.	1.7	49
114	A new four stages symmetric two-step method with vanished phase-lag and its first derivative for the numerical integration of the SchrĶdinger equation. Journal of Mathematical Chemistry, 2016, 54, 1187-1211.	1.5	49
115	Trigonometric-Fitted Explicit Numerov-Type Method with Vanishing Phase-Lag and Its First and Second Derivatives. Mediterranean Journal of Mathematics, 2018, 15, 1.	0.8	49
116	Title is missing!. Journal of Mathematical Chemistry, 1998, 24, 23-37.	1.5	48
117	A Family of P-stable Eighth Algebraic Order Methods with Exponential Fitting Facilities. Journal of Mathematical Chemistry, 2001, 29, 177-189.	1.5	48
118	Closed Newton-Cotes Trigonometrically-Fitted Formulae for Numerical Integration of the SchrĶdinger Equation. Computing Letters, 2007, 3, 45-57.	0.5	48
119	Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems. Computer Physics Communications, 2007, 177, 757-763.	7.5	48
120	A nonlinear explicit two-step fourth algebraic order method of order infinity for linear periodic initial value problems. Computer Physics Communications, 2010, 181, 1362-1368.	7.5	48
121	A NEW METHODOLOGY FOR THE CONSTRUCTION OF OPTIMIZED RUNGE–KUTTA–NYSTRÖM METHODS. International Journal of Modern Physics C, 2011, 22, 623-634.	1.7	48
122	A high algebraic order predictor–corrector explicit method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the Schr¶dinger equation and related problems. Journal of Mathematical Chemistry, 2015, 53, 1495-1522.	1.5	48
123	Fitted modifications of classical Rungeâ€Kutta pairs of orders 5(4). Mathematical Methods in the Applied Sciences, 2018, 41, 4549-4559.	2.3	48
124	Title is missing!. Journal of Mathematical Chemistry, 1997, 21, 359-372.	1.5	47
125	Numerical solution of the two-dimensional time independent Schr�dinger equation with Numerov-type methods. Journal of Mathematical Chemistry, 2005, 37, 271-279.	1.5	47
126	A high algebraic order multistage explicit four-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives for the numerical solution of the SchrA¶dinger equation. Journal of Mathematical Chemistry, 2015, 53, 1915-1942.	1.5	47

#	Article	IF	CITATIONS
127	A predictor–corrector explicit four-step method with vanished phase-lag and its first, second and third derivatives for the numerical integration of the Schrödinger equation. Journal of Mathematical Chemistry, 2015, 53, 685-717.	1.5	47
128	A Runge—Kutta—Nyström method for the numerical integration of special second-order periodic initial-value problems. Journal of Computational and Applied Mathematics, 1994, 51, 317-326.	2.0	46
129	Title is missing!. Journal of Mathematical Chemistry, 1999, 25, 65-84.	1.5	46
130	A P-stable exponentially fitted method for the numerical integration of the Schrödinger equation. Applied Mathematics and Computation, 2000, 112, 99-112.	2.2	45
131	A two-step method with vanished phase-lag and its first two derivatives for the numerical solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2011, 49, 2486-2518.	1.5	45
132	Embedded eighth order methods for the numerical solution of the SchrĶdinger equation. Journal of Mathematical Chemistry, 1999, 26, 327-341.	1.5	44
133	Mulitstep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the SchrA¶dinger equation. Journal of Mathematical Chemistry, 2010, 48, 1092-1143.	1.5	44
134	A modified Runge–Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation and related problems. Computers & Chemistry, 2001, 25, 275-281.	1.2	43
135	High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2010, 48, 925-958.	1.5	43
136	TWO NEW PHASE-FITTED SYMPLECTIC PARTITIONED RUNGE–KUTTA METHODS. International Journal of Modern Physics C, 2011, 22, 1343-1355.	1.7	43
137	A new optimized symmetric 8-step semi-embedded predictor–corrector method for the numerical solution of the radial Schr¶dinger equation and related orbital problems. Journal of Mathematical Chemistry, 2013, 51, 1914-1937.	1.5	43
138	Runge-Kutta interpolants with minimal phase-lag. Computers and Mathematics With Applications, 1993, 26, 43-49.	2.7	42
139	A phase-fitted Runge–Kutta–Nyström method for the numerical solution of initial value problems with oscillating solutions. Computer Physics Communications, 2009, 180, 1839-1846.	7.5	42
140	A three-stages multistep teeming in phase algorithm for computational problems in chemistry. Journal of Mathematical Chemistry, 2019, 57, 1598-1617.	1.5	42
141	Neural network solution of pantograph type differential equations. Mathematical Methods in the Applied Sciences, 2020, 43, 3369-3374.	2.3	42
142	An efficient and computational effective method for second order problems. Journal of Mathematical Chemistry, 2017, 55, 1649-1668.	1.5	41
143	SPECIAL OPTIMIZED RUNGE–KUTTA METHODS FOR IVPs WITH OSCILLATING SOLUTIONS. International Journal of Modern Physics C, 2004, 15, 1-15.	1.7	40
144	An exponentially-fitted high order method for long-term integration of periodic initial-value problems. Computer Physics Communications, 2001, 140, 358-365.	7.5	39

#	Article	IF	CITATIONS
145	A NEW EIGHT-STEP SYMMETRIC EMBEDDED PREDICTOR-CORRECTOR METHOD (EPCM) FOR ORBITAL PROBLEMS AND RELATED IVPs WITH OSCILLATORY SOLUTIONS. Astronomical Journal, 2013, 145, 75.	4.7	39
146	Atomic structure computations. Chemical Modelling, 2007, , 38-142.	0.4	39
147	An explicit almost P-stable two-step method with phase-lag of order infinity for the numerical integration of second-order pacific initial-value problems. Applied Mathematics and Computation, 1992, 49, 261-268.	2.2	38
148	Explicit eighth order methods for the numerical integration of initial-value problems with periodic or oscillating solutions. Computer Physics Communications, 1999, 119, 32-44.	7.5	38
149	Neural Network Solution of Single-Delay Differential Equations. Mediterranean Journal of Mathematics, 2020, 17, 1.	0.8	38
150	An extended numerov-type method for the numerical solution of the SchrĶdinger equation. Computers and Mathematics With Applications, 1997, 33, 67-78.	2.7	37
151	A NEW MODIFIED RUNGE–KUTTA–NYSTRÖM METHOD WITH PHASE-LAG OF ORDER INFINITY FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION AND RELATED PROBLEMS. International Journal of Modern Physics C, 2000, 11, 1195-1208.	1.7	37
152	A SYMMETRIC HIGH ORDER METHOD WITH MINIMAL PHASE-LAG FOR THE NUMERICAL SOLUTION OF THE SCHR×DINGER EQUATION. International Journal of Modern Physics C, 2001, 12, 1035-1042.	1.7	37
153	ON THE CONSTRUCTION OF EFFICIENT METHODS FOR SECOND ORDER IVPS WITH OSCILLATING SOLUTION. International Journal of Modern Physics C, 2001, 12, 1453-1476.	1.7	37
154	New open modified Newton Cotes type formulae as multilayer symplectic integrators. Applied Mathematical Modelling, 2013, 37, 1983-1991.	4.2	36
155	Predictor-corrector phase-fitted methods forY″=F(X,Y) and an application to the Schrödinger equation. International Journal of Quantum Chemistry, 1995, 53, 473-483.	2.0	35
156	A two-step method for the numerical solution of the radial SchrĶdinger equation. Computers and Mathematics With Applications, 1995, 29, 31-37.	2.7	35
157	Explicit high order methods for the numerical integration of periodic initial-value problems. Applied Mathematics and Computation, 1998, 95, 15-26.	2.2	35
158	ACCURATELY CLOSED NEWTON–COTES TRIGONOMETRICALLY-FITTED FORMULAE FOR THE NUMERICAL SOLUTION OF THE SCHRÃ−DINGER EQUATION. International Journal of Modern Physics C, 2013, 24, 1350014.	1.7	35
159	A new high algebraic order four stages symmetric two-step method with vanished phase-lag and its first and second derivatives for the numerical solution of the Schrödinger equation and related problems. Journal of Mathematical Chemistry, 2016, 54, 1417-1439.	1.5	35
160	A finite difference pair with improved phase and stability properties. Journal of Mathematical Chemistry, 2018, 56, 170-192.	1.5	35
161	Explicit, twoâ€stage, sixthâ€order, hybrid fourâ€step methods for solving. Mathematical Methods in the Applied Sciences, 2018, 41, 6997-7006.	2.3	35
162	Trigonometric–fitted hybrid four–step methods of sixth order for solving. Mathematical Methods in the Applied Sciences, 2019, 42, 710-716.	2.3	35

#	Article	IF	CITATIONS
163	A numerov-type method for the numerical solution of the radial Schrödinger equation. Applied Numerical Mathematics, 1991, 7, 201-206.	2.1	34
164	A modified Runge-Kutta method for the numerical solution of ODE's with oscillation solutions. Applied Mathematics Letters, 1996, 9, 61-66.	2.7	34
165	On the Construction of Exponentially-Fitted Methods for the Numerical Solution of the SchrĶdinger Equation. Journal of Computational Methods in Sciences and Engineering, 2001, 1, 143-160.	0.2	34
166	Trigonometrical fitting conditions for two derivative Runge-Kutta methods. Numerical Algorithms, 2018, 79, 787-800.	1.9	34
167	AN EIGHTH-ORDER METHOD WITH MINIMAL PHASE-LAG FOR ACCURATE COMPUTATIONS FOR THE ELASTIC SCATTERING PHASE-SHIFT PROBLEM. International Journal of Modern Physics C, 1996, 07, 825-835.	1.7	33
168	P-stable Four-Step Exponentially-Fitted Method for the Numerical Integration of the Schr¨odinger Equation. Computing Letters, 2004, 1, 37-44.	0.5	33
169	An Efficient Numerical Method for the Solution of the Schrödinger Equation. Advances in Mathematical Physics, 2016, 2016, 1-20.	0.8	33
170	A P-Stable Eighth-Order Method for the Numerical Integration of Periodic Initial-Value Problems. Journal of Computational Physics, 1997, 130, 123-128.	3.8	32
171	AN EMBEDDED RUNGE–KUTTA METHOD WITH PHASE-LAG OF ORDER INFINITY FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION. International Journal of Modern Physics C, 2000, 11, 1115-1133.	1.7	32
172	High algebraic, high phase-lag order embedded Numerov-type methods for oscillatory problems. Applied Mathematics and Computation, 2002, 131, 201-211.	2.2	32
173	A family of Numerov-type exponentially fitted predictor-corrector methods for the numerical integration of the radial Schr¶dinger equation. Journal of Computational and Applied Mathematics, 1996, 67, 255-270.	2.0	31
174	A NEW NUMEROV-TYPE METHOD FOR COMPUTING EIGENVALUES AND RESONANCES OF THE RADIAL SCHR×DINGER EQUATION. International Journal of Modern Physics C, 1996, 07, 33-41.	1.7	31
175	An optimized explicit Runge–Kutta–Nyström method for the numerical solution of orbital and related periodical initial value problems. Computer Physics Communications, 2012, 183, 470-479.	7.5	31
176	An efficient and economical high order method for the numerical approximation of the SchrĶdinger equation. Journal of Mathematical Chemistry, 2017, 55, 1755-1778.	1.5	31
177	A low-order embedded Runge—Kutta method for periodic initial-value problems. Journal of Computational and Applied Mathematics, 1992, 44, 235-244.	2.0	29
178	Dissipative high phase-lag order Numerov-type methods for the numerical solution of the SchrĶdinger equation. Physical Review E, 2000, 62, 1375-1381.	2.1	29
179	Numerical methods for the solution of 1D, 2D and 3D differential equations arising in chemical problems. Chemical Modelling, 0, , 170-270.	0.4	29
180	Trigonometrically and Exponentially fitted Symplectic Methods of third order for the Numerical Integration of the SchrĶdinger Equation. Applied Numerical Analysis and Computational Mathematics, 2005, 2, 238-244.	0.6	28

#	Article	IF	CITATIONS
181	A method for computing phase shifts for scattering. Journal of Computational and Applied Mathematics, 1990, 29, 61-67.	2.0	27
182	Block Runge-Kutta methods for periodic initial-value problems. Computers and Mathematics With Applications, 1996, 31, 69-83.	2.7	27
183	A dispersive-fitted and dissipative-fitted explicit Runge–Kutta method for the numerical solution of orbital problems. New Astronomy, 2004, 10, 31-37.	1.8	27
184	A family of eight-step methods with vanished phase-lag and its derivatives for the numerical integration of the SchrĶdinger equation. Journal of Mathematical Chemistry, 2011, 49, 711-764.	1.5	27
185	A new four-step hybrid type method with vanished phase-lag and its first derivatives for each level for the approximate integration of the SchrĶdinger equation. Journal of Mathematical Chemistry, 2013, 51, 2542-2571.	1.5	27
186	A New Algorithm for the Approximation of the SchrĶdinger Equation. Open Physics, 2016, 14, 628-642.	1.7	27
187	A four stages numerical pair with optimal phase and stability properties. Journal of Mathematical Chemistry, 2018, 56, 81-102.	1.5	27
188	A multistage two-step fraught in phase scheme for problems in mathematical chemistry. Journal of Mathematical Chemistry, 2019, 57, 1710-1731.	1.5	27
189	A fourth-order Bessel fitting method for the numerical solution of the Schrödinger equation. Journal of Computational and Applied Mathematics, 1992, 43, 313-322.	2.0	26
190	New insights in the development of Numerov-type methods with minimal phase-lag for the numerical solution of the SchrĶdinger equation. Computers & Chemistry, 2001, 25, 77-82.	1.2	26
191	Fitted modifications of Rungeâ€Kutta pairs of orders 6(5). Mathematical Methods in the Applied Sciences, 2018, 41, 6184-6194.	2.3	26
192	Randomized timeâ€varying knapsack problems via binary beetle antennae search algorithm: Emphasis on applications in portfolio insurance. Mathematical Methods in the Applied Sciences, 2021, 44, 2002-2012.	2.3	26
193	Symplectic Partitioned Runge-Kutta Methods for the Numerical Integration of Periodic and AOscillatory Problems. , 2011, , 169-208.		26
194	Runge-Kutta-Nyström interpolants for the numerical integration of special second-order periodic initial-value problems. Computers and Mathematics With Applications, 1993, 26, 7-15.	2.7	25
195	Symplectic and trigonometrically fitted symplectic methods of second and third order. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 354, 377-383.	2.1	25
196	A new phase-fitted eight-step symmetric embedded predictor–corrector method (EPCM) for orbital problems and related IVPs with oscillating solutions. Computer Physics Communications, 2014, 185, 512-523.	7.5	25
197	A fourth order modified trigonometrically fitted symplectic Runge–Kutta–Nyström method. Computer Physics Communications, 2014, 185, 3151-3155.	7.5	25
198	A new explicit four-step method with vanished phase-lag and its first and second derivatives. Journal of Mathematical Chemistry, 2015, 53, 402-429.	1.5	25

#	Article	IF	CITATIONS
199	An accomplished phase FD process for DEs in chemistry. Journal of Mathematical Chemistry, 2019, 57, 2208-2228.	1.5	25
200	Two-step almost p-stable complete in phase methods for the numerical integration of second order periodic initial-value problems. International Journal of Computer Mathematics, 1992, 46, 77-85.	1.8	24
201	STABILIZATION OF A FOUR-STEP EXPONENTIALLY-FITTED METHOD AND ITS APPLICATION TO THE SCHRÖDINGER EQUATION. International Journal of Modern Physics C, 2007, 18, 315-328.	1.7	24
202	A Fifth-order Symplectic Trigonometrically Fitted Partitioned Runge-Kutta Method. AIP Conference Proceedings, 2007, , .	0.4	24
203	A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation. Journal of Molecular Modeling, 2010, 16, 1339-1346.	1.8	24
204	Hybrid Numerov-Type Methods with Coefficients Trained to Perform Better on Classical Orbits. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42, 2119-2134.	0.9	24
205	An explicit four-step phase-fitted method for the numerical integration of second-order initial-value problems. Journal of Computational and Applied Mathematics, 1994, 55, 125-133.	2.0	23
206	Accurate computations for the elastic scattering phase-shift problem. Computers & Chemistry, 1997, 21, 125-128.	1.2	23
207	Trigonometrically fitted fifth-order runge-kutta methods for the numerical solution of the schrĶdinger equation. Mathematical and Computer Modelling, 2005, 42, 877-886.	2.0	23
208	A Runge–Kutta type crowded in phase algorithm for quantum chemistry problems. Journal of Mathematical Chemistry, 2019, 57, 1983-2006.	1.5	23
209	Hybrid, phase–fitted, four–step methods of seventh order for solving <i>x″</i> (<i>t</i>) = <i>f</i> (<i>t</i> , <i>x</i>). Mathematical Methods in the Applied Sciences 2019, 42, 2025-2032.	5,2.3	23
210	A phase fitted FinDiff process for DifEquns in quantum chemistry. Journal of Mathematical Chemistry, 2020, 58, 353-381.	1.5	23
211	A family of Numerov-type exponentially fitted methods for the numerical integration of the SchrĶdinger equation. Computers & Chemistry, 1997, 21, 403-417.	1.2	22
212	Optimizing a class of linear multi-step methods for the approximate solution of the radial SchrĶdinger equation and related problems with respect to phase-lag. Open Physics, 2011, 9, .	1.7	22
213	An explicit linear six-step method with vanished phase-lag and its first derivative. Journal of Mathematical Chemistry, 2014, 52, 1895-1920.	1.5	22
214	A new method for the numerical solution of fourth-order BVP's with oscillating solutions. Computers and Mathematics With Applications, 1996, 32, 1-6.	2.7	21
215	High Algebraic Order Methods with Minimal Phase-Lag for Accurate Solution of the SchrĶdinger Equation. International Journal of Modern Physics C, 1998, 09, 1055-1071.	1.7	21
216	An exponentially fitted eighth-order method for the numerical solution of the SchrĶdinger equation. Journal of Computational and Applied Mathematics, 1999, 108, 177-194.	2.0	21

#	Article	IF	CITATIONS
217	Effective Numerical Approximation of Schrödinger type Equations through Multiderivative Exponentially-fitted Schemes. Applied Numerical Analysis and Computational Mathematics, 2004, 1, 205-215.	0.6	21
218	Explicit, ninth order, two step methods for solving inhomogeneous linear problems x″(t)=Λx(t)+f(t). Applied Numerical Mathematics, 2020, 153, 344-351.	2.1	21
219	A family of four-step exponential fitted methods for the numerical integration of the radial SchrĶdinger equation. Computers and Mathematics With Applications, 1994, 28, 41-50.	2.7	20
220	AN EXPLICIT HIGH ORDER PREDICTOR-CORRECTOR METHOD FOR PERIODIC INITIAL VALUE PROBLEMS. Mathematical Models and Methods in Applied Sciences, 1995, 05, 159-166.	3.3	20
221	Eighth-order method for accurate computations for the elastic scattering phase-shift problem. International Journal of Quantum Chemistry, 1998, 68, 191-200.	2.0	20
222	A trigonometrically fitted Runge–Kutta method for the numerical solution of orbital problems. New Astronomy, 2005, 10, 301-309.	1.8	20
223	Computation of the eigenvalues of the Schrödinger equation by exponentially-fitted Runge–Kutta–Nyström methods. Computer Physics Communications, 2009, 180, 167-176.	7.5	20
224	New three–stages symmetric two step method with improved properties for second order initial/boundary value problems. Journal of Mathematical Chemistry, 2018, 56, 2591-2616.	1.5	20
225	Evolutionary Derivation of Sixth-Order P-stable SDIRKN Methods for the Solution of PDEs with the Method of Lines. Mediterranean Journal of Mathematics, 2019, 16, 1.	0.8	20
226	A complete in phase FiniteDiffrnc algorithm for DiffrntEqutins in chemistry. Journal of Mathematical Chemistry, 2020, 58, 1091-1132.	1.5	20
227	Bessel and Neumann fitted methods for the numerical solution of the SchrĶdinger equation. Computers and Mathematics With Applications, 2001, 42, 833-847.	2.7	19
228	A Symplectic Trigonometrically Fitted Modified Partitioned Runge-Kutta Method for the Numerical Integration of Orbital Problems. Applied Numerical Analysis and Computational Mathematics, 2005, 2, 359-364.	0.6	19
229	New finite difference pair with optimized phase and stability properties. Journal of Mathematical Chemistry, 2018, 56, 449-476.	1.5	19
230	An integrated in phase FD procedure for DiffEqns in chemical problems. Journal of Mathematical Chemistry, 2020, 58, 6-28.	1.5	19
231	A phase fitted FiniteDiffr process for DiffrntEqutns in chemistry. Journal of Mathematical Chemistry, 2020, 58, 1059-1090.	1.5	19
232	Some new Numerov-type methods with minimal phase lag for the numerical integration of the radial SchrĶdinger equation. Molecular Physics, 1994, 83, 1145-1153.	1.7	18
233	A family of four-step exponentially fitted predictor-corrector methods for the numerical integration of the SchrĶdinger equation. Journal of Computational and Applied Mathematics, 1995, 58, 337-344.	2.0	18
234	A new hybrid imbedded variable-step procedure for the numerical integration of the SchrĶdinger equation. Computers and Mathematics With Applications, 1998, 36, 51-63.	2.7	18

#	Article	IF	CITATIONS
235	A new two-step finite difference pair with optimal properties. Journal of Mathematical Chemistry, 2018, 56, 770-798.	1.5	18
236	New hybrid two-step method with optimized phase and stability characteristics. Journal of Mathematical Chemistry, 2018, 56, 2302-2340.	1.5	18
237	A multiple stage absolute in phase scheme for chemistry problems. Journal of Mathematical Chemistry, 2019, 57, 2049-2074.	1.5	18
238	Explicit hybrid six–step, sixth order, fully symmetric methods for solving   y  ″ =  f  (x Methods in the Applied Sciences, 2019, 42, 3305-3314.	, y). Math $^{2.3}$	nematical
239	Variable stepâ€size implementation of sixthâ€order Numerovâ€type methods. Mathematical Methods in the Applied Sciences, 2020, 43, 1204-1215.	2.3	18
240	A complete in phase FinitDiff procedure for DiffEquns in chemistry. Journal of Mathematical Chemistry, 2020, 58, 407-438.	1.5	18
241	A higher-order zeroing neural network for pseudoinversion of an arbitrary time-varying matrix with applications to mobile object localization. Information Sciences, 2022, 600, 226-238.	6.9	18
242	An accurate finite difference method for the numerical solution of the Schrödinger equation. Journal of Computational and Applied Mathematics, 1998, 91, 47-61.	2.0	17
243	Preface for the special issue on the international conference of computational methods in sciences and engineering 2003 (ICCMSE 2003). Journal of Mathematical Chemistry, 2005, 37, 201-201.	1.5	17
244	Runge–Kutta type methods with special properties for the numerical integration of ordinary differential equations. Physics Reports, 2014, 536, 75-146.	25.6	17
245	An implicit symmetric linear six-step methods with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial SchrĶdinger equation and related problems. Journal of Mathematical Chemistry, 2016, 54, 1010-1040.	1.5	17
246	Family of symmetric linear six-step methods with vanished phase-lag and its derivatives and their application to the radial SchrĶdinger equation and related problems. Journal of Mathematical Chemistry, 2016, 54, 466-502.	1.5	17
247	New five-stages finite difference pair with optimized phase properties. Journal of Mathematical Chemistry, 2018, 56, 982-1010.	1.5	17
248	A hybrid finite difference pair with maximum phase and stability properties. Journal of Mathematical Chemistry, 2018, 56, 423-448.	1.5	17
249	A perfect in phase FD algorithm for problems in quantum chemistry. Journal of Mathematical Chemistry, 2019, 57, 2019-2048.	1.5	17
250	New fifthâ€order twoâ€derivative Rungeâ€Kutta methods with constant and frequencyâ€dependent coefficients. Mathematical Methods in the Applied Sciences, 2019, 42, 1955-1966.	2.3	17
251	Direct estimation of SIR model parameters through secondâ€order finite differences. Mathematical Methods in the Applied Sciences, 2021, 44, 3819-3826.	2.3	17
252	Exponential integrators for linear inhomogeneous problems. Mathematical Methods in the Applied Sciences, 2021, 44, 937-944.	2.3	17

#	Article	IF	CITATIONS
253	Zeroing Neural Network for Pseudoinversion of an Arbitrary Time-Varying Matrix Based on Singular Value Decomposition. Mathematics, 2022, 10, 1208.	2.2	17
254	Eighth-order methods for elastic scattering phase shifts. International Journal of Theoretical Physics, 1997, 36, 663-672.	1.2	16
255	EXPONENTIALLY-FITTED RUNGE–KUTTA THIRD ALGEBRAIC ORDER METHODS FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION AND RELATED PROBLEMS. International Journal of Modern Physics C, 1999, 10, 839-851.	1.7	16
256	P-stable Exponentially Fitted Methods for the Numerical Integration of the Schrödinger Equation. Journal of Computational Physics, 1999, 148, 305-321.	3.8	16
257	An Exponentially Fitted and Trigonometrically Fitted Method for the Numerical Solution of Orbital Problems. Astronomical Journal, 2001, 122, 1656-1660.	4.7	16
258	A family of embedded explicit six-step methods with vanished phase-lag and its derivatives for the numerical integration of the SchrĶdinger equation: development and theoretical analysis. Journal of Mathematical Chemistry, 2016, 54, 1159-1186.	1.5	16
259	New multiple stages two-step complete in phase algorithm with improved characteristics for second order initial/boundary value problems. Journal of Mathematical Chemistry, 2019, 57, 494-515.	1.5	16
260	Time-varying Black–Litterman portfolio optimization using a bio-inspired approach and neuronets. Applied Soft Computing Journal, 2021, 112, 107767.	7.2	16
261	A high order predictor-corrector method for periodic IVPS. Applied Mathematics Letters, 1993, 6, 9-12.	2.7	15
262	Dissipative high phase-lag order Numerov-type methods for the numerical solution of the SchrĶdinger equation. Computers & Chemistry, 1999, 23, 439-446.	1.2	15
263	Efficient Numerical Solution of Orbital Problems with the use of Symmetric Four-step Trigonometrically-fitted Methods. Applied Numerical Analysis and Computational Mathematics, 2004, 1, 216-222.	0.6	15
264	A family of fifth algebraic order trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation. Computational Materials Science, 2005, 34, 342-354.	3.0	15
265	A family of two stages tenth algebraic order symmetric six-step methods with vanished phase-lag and its first derivatives for the numerical solution of the radial SchrĶdinger equation and related problems. Journal of Mathematical Chemistry, 2016, 54, 1835-1862.	1.5	15
266	New five-stages two-step method with improved characteristics. Journal of Mathematical Chemistry, 2018, 56, 1567-1594.	1.5	15
267	A five–stages symmetric method with improved phase properties. Journal of Mathematical Chemistry, 2018, 56, 1313-1338.	1.5	15
268	Phaseâ€fitted, sixâ€step methods for solving x ′ ′   =   f (t , x). Mathematical Methods in the Applia 2019, 42, 3942-3949.	ed Science 2.3	^{2S} 15
269	A new variable-step method for the numerical integration of special second-order initial value problems and their application to the one-dimensional Schrödinger equation. Applied Mathematics Letters, 1993, 6, 67-73.	2.7	14
270	New Numerov-type methods for computing eigenvalues, resonances, and phase shifts of the radial Schr�dinger equation. International Journal of Quantum Chemistry, 1997, 62, 467-475.	2.0	14

#	Article	IF	CITATIONS
271	A family of ten-step methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2011, 49, 1843-1888.	1.5	14
272	A new eight algebraic order embedded explicit six-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the SchrĶdinger equation. Journal of Mathematical Chemistry, 2016, 54, 1696-1727.	1.5	14
273	A new two stages tenth algebraic order symmetric six-step method with vanished phase-lag and its first and second derivatives for the solution of the radial Schrödinger equation and related problems. Journal of Mathematical Chemistry, 2017, 55, 105-131.	1.5	14
274	New Runge–Kutta type symmetric two-step method with optimized characteristics. Journal of Mathematical Chemistry, 2018, 56, 2454-2484.	1.5	14
275	New Runge–Kutta type symmetric two step finite difference pair with improved properties for second order initial and/or boundary value problems. Journal of Mathematical Chemistry, 2018, 56, 3014-3044.	1.5	14
276	New hybrid symmetric two step scheme with optimized characteristics for second order problems. Journal of Mathematical Chemistry, 2018, 56, 2816-2844.	1.5	14
277	Evolutionary derivation of Runge–Kutta pairs for addressing inhomogeneous linear problems. Numerical Algorithms, 2021, 87, 511-525.	1.9	14
278	Sixthâ€order, Pâ€stable, Numerovâ€type methods for use at moderate accuracies. Mathematical Methods in the Applied Sciences, 2021, 44, 6923-6930.	2.3	14
279	Zeroing Neural Network Approaches Based on Direct and Indirect Methods for Solving the Yang–Baxter-like Matrix Equation. Mathematics, 2022, 10, 1950.	2.2	14
280	New embedded explicit methods with minimal phase-lag for the numerical integration of the SchrĶdinger equation. Computers & Chemistry, 1998, 22, 433-440.	1.2	13
281	Explicit exponentially fitted methods for the numerical solution of the SchrĶdinger equation. Applied Mathematics and Computation, 1999, 98, 185-198.	2.2	13
282	Exponentially-fitted and trigonometrically-fitted symmetric linear multistep methods for the numerical integration of orbital problems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 315, 437-446.	2.1	13
283	Perspective of mathematical modeling and research of targeted formation of disperse phase clusters in working media for the next-generation power engineering technologies. AIP Conference Proceedings, 2017, , .	0.4	13
284	A new multistep method with optimized characteristics for initial and/or boundary value problems. Journal of Mathematical Chemistry, 2019, 57, 119-148.	1.5	13
285	Real-Time Estimation of RO for COVID-19 Spread. Mathematics, 2021, 9, 664.	2.2	13
286	Runge–Kutta pairs suited for SIRâ€ŧype epidemic models. Mathematical Methods in the Applied Sciences, 2021, 44, 5210-5216.	2.3	13
287	A FAMILY OF HYBRID EIGHTH ORDER METHODS WITH MINIMAL PHASE-LAG FOR THE NUMERICAL SOLUTION OF THE SCHR×DINGER EQUATION AND RELATED PROBLEMS. International Journal of Modern Physics C, 2000, 11, 415-437.	1.7	12
288	A generator of hybrid explicit methods for the numerical solution of the Schrödinger equation and related problems. Computer Physics Communications, 2001, 136, 14-28.	7.5	12

#	Article	IF	CITATIONS
289	New two stages high order symmetric six-step method with vanished phase–lag and its first, second and third derivatives for the numerical solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2017, 55, 503-531.	1.5	12
290	Two stages six-step method with eliminated phase-lag and its first, second, third and fourth derivatives for the approximation of the SchrĶdinger equation. Journal of Mathematical Chemistry, 2017, 55, 961-986.	1.5	12
291	Ninthâ€order, explicit, twoâ€step methods for secondâ€order inhomogeneous linear IVPs. Mathematical Methods in the Applied Sciences, 2020, 43, 4918.	2.3	12
292	Full in phase finite difference algorithm for differential equations in quantum chemistry. Journal of Mathematical Chemistry, 2020, 58, 1197-1218.	1.5	12
293	New P-stable high-order methods with minimal phase-lag for the numerical integration of the radial Schrödinger equation. Physica Scripta, 1997, 55, 644-650.	2.5	11
294	A P-stable hybrid exponentially-fitted method for the numerical integration of the SchrĶdinger equation. Computer Physics Communications, 2000, 131, 109-119.	7.5	11
295	Numerical Solution of the two-dimensional time independent Schrödinger Equation by symplectic schemes. Applied Numerical Analysis and Computational Mathematics, 2004, 1, 195-204.	0.6	11
296	Dissipative trigonometrically fitted methods for the numerical solution of orbital problems. New Astronomy, 2004, 9, 59-68.	1.8	11
297	Optimized Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 363, 38-47.	2.1	11
298	A new four-step Runge–Kutta type method with vanished phase-lag and its first, second and third derivatives for the numerical solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2013, 51, 1418-1445.	1.5	11
299	Three stages symmetric six-step method with eliminated phase-lag and its derivatives for the solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2017, 55, 1213-1235.	1.5	11
300	A multistep method with optimal properties for second order differential equations. Journal of Mathematical Chemistry, 2018, 56, 1-29.	1.5	11
301	An explicit eighth-order method with minimal phase-lag for accurate computations of eigenvalues, resonances and phase shifts. Computers & Chemistry, 1997, 21, 327-334.	1.2	10
302	A new finite difference scheme with minimal phase-lag for the numerical solution of the SchrĶdinger equation. Applied Mathematics and Computation, 1999, 106, 245-264.	2.2	10
303	Exponentially-fitted and trigonometrically-fitted methods for long-term integration of orbital problems. New Astronomy, 2002, 7, 1-7.	1.8	10
304	A family of Runge-Kutta methods with zero phase-lag and derivatives for the numerical solution of the SchrĶdinger equation and related problems. Journal of Mathematical Chemistry, 2009, 46, 1158-1171.	1.5	10
305	High order computationally economical six-step method with vanished phase-lag and its derivatives for the numerical solution of the SchrĶdinger equation. Journal of Mathematical Chemistry, 2017, 55, 987-1013.	1.5	10
306	Twoâ€derivative Rungeâ€Kutta methods with optimal phase properties. Mathematical Methods in the Applied Sciences, 2020, 43, 1267-1277.	2.3	10

#	Article	IF	CITATIONS
307	Evolutionary Derivation of Runge–Kutta Pairs of Orders 5(4) Specially Tuned for Problems with Periodic Solutions. Mathematics, 2021, 9, 2306.	2.2	10
308	New family for Rungeâ€Kuttaâ€Nyström pairs of orders 6(4) with coefficients trained to address oscillatory problems. Mathematical Methods in the Applied Sciences, 0, , .	2.3	10
309	SIMPLE AND ACCURATE EXPLICIT BESSEL AND NEUMANN FITTED METHODS FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION. International Journal of Modern Physics C, 2000, 11, 79-89.	1.7	9
310	P-stability, Trigonometric-fitting and the numerical solution of the radial SchrĶdinger equation. Computer Physics Communications, 2009, 180, 1072-1085.	7.5	9
311	An efficient six-step method for the solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2017, 55, 1521-1547.	1.5	9
312	Explicit, Eighth-Order, Four-Step Methods for Solving \$\$y^{prime prime }=f(x,y)\$\$. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43, 3791-3807.	0.9	9
313	Fitted modifications of Runge–Kutta–Nyström pairs of orders 7(5) for addressing oscillatory problems. Mathematical Methods in the Applied Sciences, 0, , .	2.3	9
314	Some new variable-step methods with minimal phase lag for the numerical integration of special second-order initial-value problem. Applied Mathematics and Computation, 1994, 64, 65-72.	2.2	8
315	On variable-step methods for the numerical solution of Schrödinger equation and related problems. Computers & Chemistry, 2001, 25, 3-13.	1.2	8
316	Trigonometrically-fitted symmetric multistep methods for the approximate solution of orbital problems. New Astronomy, 2003, 8, 679-690.	1.8	8
317	High order four-step hybrid method with vanished phase-lag and its derivatives for the approximate solution of the SchrA¶dinger equation. Journal of Mathematical Chemistry, 2013, 51, 532-555.	1.5	8
318	Interpolants for sixthâ€order Numerovâ€ŧype methods. Mathematical Methods in the Applied Sciences, 2019, 42, 7349-7358.	2.3	8
319	A Neural Network Technique for the Derivation of Runge–Kutta Pairs Adjusted for Scalar Autonomous Problems. Mathematics, 2021, 9, 1842.	2.2	8
320	On high order Runge–Kutta–Nyström pairs. Journal of Computational and Applied Mathematics, 2022, 400, 113753.	2.0	8
321	On a New Family of Runge–Kutta–Nyström Pairs of Orders 6(4). Mathematics, 2022, 10, 875.	2.2	8
322	A phase-fitting, first, second and third derivatives phase-fitting singularly P-stable economical two-step method for problems in quantum chemistry. Journal of Mathematical Chemistry, 2022, 60, 1632-1657.	1.5	8
323	SOME LOW ORDER TWO-STEP ALMOST P-STABLE METHODS WITH PHASE-LAG OF ORDER INFINITY FOR THE NUMERICAL INTEGRATION OF THE RADIAL SCHRÖDINGER EQUATION. International Journal of Modern Physics A, 1995, 10, 2431-2438.	1.5	7
324	An explicit eighth order method with minimal phase-lag for the numerical solution of the SchrĶdinger equation. Computational Materials Science, 1997, 8, 317-326.	3.0	7

#	Article	IF	CITATIONS
325	P-stable eighth algebraic order methods for the numerical solution of the Schrödinger equation. Computers & Chemistry, 2002, 26, 105-111.	1.2	7
326	A generator of dissipative methods for the numerical solution of the SchrĶdinger equation. Computer Physics Communications, 2002, 148, 59-73.	7.5	7
327	A new family of exponentially fitted methods. Mathematical and Computer Modelling, 2003, 38, 571-584.	2.0	7
328	Exponentially-fitted and trigonometrically-fitted methods for the numerical solution of orbital problems. New Astronomy, 2003, 8, 391-400.	1.8	7
329	A new hybrid two-step method with vanished phase-lag and its first and second derivatives for the numerical solution of the SchrĶdinger equation and related problems. Journal of Mathematical Chemistry, 2012, 50, 1861-1881.	1.5	7
330	Local interpolants for Numerovâ€ŧype methods and their implementation in variable step schemes. Mathematical Methods in the Applied Sciences, 2019, 42, 7047-7058.	2.3	7
331	Lowâ€order, Pâ€stable, twoâ€step methods for use with lax accuracies. Mathematical Methods in the Applied Sciences, 2019, 42, 6301-6314.	2.3	7
332	A four-stages multistep fraught in phase method for quantum chemistry problems. Journal of Mathematical Chemistry, 2019, 57, 1627-1651.	1.5	7
333	New four stages multistep in phase algorithm with best possible properties for second order problems. Journal of Mathematical Chemistry, 2019, 57, 895-917.	1.5	7
334	Runge–Kutta Pairs of Orders 6(5) with Coefficients Trained to Perform Best on Classical Orbits. Mathematics, 2021, 9, 1342.	2.2	7
335	Runge–Kutta Pairs of Orders 5(4) Trained to Best Address Keplerian Type Orbits. Mathematics, 2021, 9, 2400.	2.2	7
336	Multi-input bio-inspired weights and structure determination neuronet with applications in European Central Bank publications. Mathematics and Computers in Simulation, 2022, 193, 451-465.	4.4	7
337	A phase-fitting, first and second derivatives phase-fitting singularly P-stable economical two-step method for problems in chemistry. Journal of Mathematical Chemistry, 2022, 60, 1480-1504.	1.5	7
338	A predictor-corrector phase-fitted method for y″ = f(x, y). Mathematics and Computers in Simulation, 1993, 35, 153-159.	4.4	6
339	An Exponentially Fitted Method for the Numerical Solution of the Schrödinger Equation. Journal of Chemical Information and Computer Sciences, 1997, 37, 343-348.	2.8	6
340	Trigonometrically-fitted partitioned multistep methods for the integration of orbital problems. New Astronomy, 2004, 9, 409-415.	1.8	6
341	A new trigonometrically-fitted sixth algebraic order P-C algorithm for the numerical solution of the radial schrĶdinger equation. Mathematical and Computer Modelling, 2005, 42, 887-902.	2.0	6
342	A new high order two-step method with vanished phase-lag and its derivatives for the numerical integration of the SchrĶdinger equation. Journal of Mathematical Chemistry, 2012, 50, 2351-2373.	1.5	6

#	Article	IF	CITATIONS
343	New open modified trigonometrically-fitted Newton-Cotes type multilayer symplectic integrators for the numerical solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2012, 50, 782-804.	1.5	6
344	A new multistage multistep full in phase algorithm with optimized characteristics for problems in chemistry. Journal of Mathematical Chemistry, 2019, 57, 1112-1139.	1.5	6
345	New multistage two-step complete in phase scheme with improved properties for quantum chemistry problems. Journal of Mathematical Chemistry, 2019, 57, 1088-1111.	1.5	6
346	A new four-stages two-step phase fitted scheme for problems in quantum chemistry. Journal of Mathematical Chemistry, 2019, 57, 1201-1229.	1.5	6
347	New multiple stages scheme with improved properties for second order problems. Journal of Mathematical Chemistry, 2019, 57, 232-262.	1.5	6
348	A fuzzy WASD neuronet with application in breast cancer prediction. Neural Computing and Applications, 2022, 34, 3019-3031.	5.6	6
349	Eighth Order Two-Step Methods Trained to Perform Better on Keplerian-Type Orbits. Mathematics, 2021, 9, 3071.	2.2	6
350	A two-step singularly P-stable method with high phase and large stability properties for problems in chemistry. Journal of Mathematical Chemistry, 2022, 60, 475-501.	1.5	6
351	A phase-fitting and first derivative phase-fitting singularly P-stable economical two-step method for problems in quantum chemistry. Journal of Mathematical Chemistry, 2022, 60, 1383-1404.	1.5	6
352	High-order methods with minimal phase-lag for the numerical integration of the special second-order initial value problem and their application to the one-dimensional SchrĶdinger equation. Computer Physics Communications, 1993, 74, 63-66.	7.5	5
353	A family of two-step almostP-stable methods with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems. Japan Journal of Industrial and Applied Mathematics, 1993, 10, 289-297.	0.9	5
354	An Accurate Method for the Numerical Solution of the Schrödinger Equation. Modern Physics Letters A, 1997, 12, 1891-1900.	1.2	5
355	Title is missing!. Journal of Scientific Computing, 1998, 13, 51-63.	2.3	5
356	High-algebraic, high-phase lag methods for accurate computations for the elastic- scattering phase shift problem. Canadian Journal of Physics, 1998, 76, 473-493.	1.1	5
357	A new finite-difference method with minimal phase lag for the numerical solution of differential equations with engineering applications. Advances in Engineering Software, 1999, 30, 103-107.	3.8	5
358	ENCKE METHODS ADAPTED TO REGULARIZING VARIABLES. International Journal of Modern Physics A, 2000, 15, 3993-4010.	1.5	5
359	A trigonometrically-fitted method for long-time integration of orbital problems. Mathematical and Computer Modelling, 2004, 40, 1263-1272.	2.0	5
360	Computation of the eigenvalues of the one-dimensional SchrĶdinger equation by symplectic methods. International Journal of Quantum Chemistry, 2006, 106, 795-802.	2.0	5

#	Article	IF	CITATIONS
361	A Family of Trigonometrically-fitted Partitioned Runge-Kutta Symplectic Methods. AIP Conference Proceedings, 2007, , .	0.4	5
362	A new methodology for the development of numerical methods for the numerical solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2009, 46, 621-651.	1.5	5
363	High algebraic order Runge–Kutta type two-step method with vanished phase-lag and its first, second, third, fourth, fifth and sixth derivatives. Computer Physics Communications, 2015, 196, 226-235.	7.5	5
364	Trigonometrical fitting conditions for two derivative Runge Kutta methods. AIP Conference Proceedings, 2016, , .	0.4	5
365	Efficiently inaccurate approximation of hyperbolic tangent used as transfer function in artificial neural networks. Neural Computing and Applications, 2021, 33, 10227-10233.	5.6	5
366	Sixth Order Numerov-Type Methods with Coefficients Trained to Perform Best on Problems with Oscillating Solutions. Mathematics, 2021, 9, 2756.	2.2	5
367	A variable-step algorithm for computing eigenvalues of the radial Schr�dinger equation. International Journal of Quantum Chemistry, 1996, 59, 477-485.	2.0	4
368	Computer-algebra program for constructing exponentially fitted methods for solution of the Schrol^dinger equation. Computers in Physics, 1998, 12, 290.	0.5	4
369	High algebraic order explicit methods with reduced phase-lag for an efficient solution of the Schr�dinger equation. International Journal of Quantum Chemistry, 1999, 73, 479-496.	2.0	4
370	New P-stable exponentially-fitted methods for the numerical solution of the SchrĶdinger equation. Computational Materials Science, 2001, 21, 301-319.	3.0	4
371	Construction of exponentially fitted symplectic Runge-Kutta-Nyström methods from partitioned Runge-Kutta methods. , 2014, , .		4
372	Trigonometric fitted modification of RADAU5. Mathematical Methods in the Applied Sciences, 2020, 43, 1582-1589.	2.3	4
373	Phase fitted method for quantum chemistry problems. Journal of Mathematical Chemistry, 2020, 58, 1313-1336.	1.5	4
374	Complete in phase method for problems in chemistry. Journal of Mathematical Chemistry, 2020, 58, 1785-1814.	1.5	4
375	High Algebraic Order Methods for the Numerical Solution of the SchrĶdinger Equation. Molecular Simulation, 1999, 22, 303-349.	2.0	3
376	An accurate eighth order exponentially-fitted method for the efficient solution of the SchrĶdinger equation. Computer Physics Communications, 2000, 125, 21-59.	7.5	3
377	A P-stable exponentially-fitted method for the numerical integration of the SchrĶdinger equation. Molecular Simulation, 2005, 31, 1095-1100.	2.0	3
378	A Phase-fitted Symplectic Partitioned Runge-Kutta Methods for the Numerical Solution of the Schrol^dinger Equation. , 2009, , .		3

#	Article	IF	CITATIONS
379	A trigonometrically fitted optimized two-step hybrid block method for solving initial-value problems of the form $y\hat{a}\in 3 = f(x, y, y\hat{a}\in 2)$ with oscillatory solutions. AIP Conference Proceedings, 2015, , .	0.4	3
380	An optimized two-step hybrid block method for solving general second order initial-value problems of the form y″ = f (x, y, y′). AlP Conference Proceedings, 2015, , .	0.4	3
381	Construction of two derivative Runge Kutta methods of order five. AIP Conference Proceedings, 2017,	0.4	3
382	A new six-step algorithm with improved properties for the numerical solution of second order initial and/or boundary value problems. Journal of Mathematical Chemistry, 2018, 56, 1206-1233.	1.5	3
383	A new multistep finite difference pair for the Schrödinger equation and related problems. Journal of Mathematical Chemistry, 2018, 56, 656-686.	1.5	3
384	New 8-step symmetric embedded predictor–corrector (EPCM) method with vanished phase-lag and its first derivative for the numerical integration of the Schrödinger equation. Journal of Mathematical Chemistry, 2018, 56, 2741-2767.	1.5	3
385	A neural network training algorithm for singular perturbation boundary value problems. Neural Computing and Applications, 2022, 34, 607-615.	5.6	3
386	A Neural Network Type Approach for Constructing Runge–Kutta Pairs of Orders Six and Five That Perform Best on Problems with Oscillatory Solutions. Mathematics, 2022, 10, 827.	2.2	3
387	A Sixth Order Bessel and Neurnann Fitted Method for the Numerical Solution of the Schrödinger Equation. Molecular Simulation, 1999, 21, 191-204.	2.0	2
388	Dissipative exponentially-fitted methods for the numerical solution of the SchrĶdinger equation. Computers & Chemistry, 2001, 25, 261-273.	1.2	2
389	High order multistep methods with improved phase-lag characteristics for the integration of the SchrĶdinger equation. Journal of Mathematical Chemistry, 2009, 46, 692-725.	1.5	2
390	Deriving numerical techniques with zero phase-lag and derivatives for initial value problems of second order. , 2012, , .		2
391	A Runge-Kutta method by using phase-lag and amplification error properties for the numerical solution of orbital problems. , 2013, , .		2
392	A sixth order symmetric and symplectic diagonally implicit Runge-Kutta method. , 2014, , .		2
393	A new three-stages six-step finite difference pair with optimal phase properties for second order initial and/or boundary value problems with periodical and/or oscillating solutions. Journal of Mathematical Chemistry, 2018, 56, 1280-1312.	1.5	2
394	New three-stages symmetric six-step finite difference method with vanished phase-lag and its derivatives up to sixth derivative for second order initial and/or boundary value problems with periodical and/or oscillating solutions. Journal of Mathematical Chemistry, 2018, 56, 2267-2301.	1.5	2
395	New four-stages symmetric six-step method with improved phase properties for second order problems with periodical and/or oscillating solutions. Journal of Mathematical Chemistry, 2018, 56, 2898-2928.	1.5	2
396	Eighthâ€order, phaseâ€fitted, fourâ€step methods for solving y′′=f(x,y). Mathematical Methods in the Ap Sciences, 2019, 43, 4016.	olied 2.3	2

#	Article	IF	CITATIONS
397	New multiple stages multistep method with best possible phase properties for second order initial/boundary value problems. Journal of Mathematical Chemistry, 2019, 57, 834-857.	1.5	2
398	A finite difference method with phase-lag and its derivatives equal to zero for problems in chemistry. Journal of Mathematical Chemistry, 2020, 58, 2024-2060.	1.5	2
399	A finite difference method with zero phase-lag and its derivatives for quantum chemistry problems. Journal of Mathematical Chemistry, 2020, 58, 1680-1710.	1.5	2
400	Phase fitted algorithm for problems in quantum chemistry. Journal of Mathematical Chemistry, 2020, 58, 1499-1530.	1.5	2
401	NUMERICAL SOLUTION OF THE TWO-DIMENSIONAL TIME INDEPENDENT SCHRÃ-DINGER EQUATION WITH EXPONENTIAL-FITTING METHODS. , 2003, , .		2
402	Runge-Kutta-Nyström Pairs of Orders 8(6) with Coefficients Trained to Perform Best on Classical Orbits. Mathematics, 2022, 10, 654.	2.2	2
403	An Accurate Exponentially-Fitted Four-Step Method for the Numerical Solution of the Radial SchrĶdinger Equation. Molecular Simulation, 1998, 20, 285-301.	2.0	1
404	INTEGRATION OF SOME CONSTITUTIVE RELATIONS OF PLANE STRAIN ELASTOPLASTICITY USING MODIFIED RUNGE-KUTTA METHODS. Civil Engineering and Environmental Systems, 1999, 16, 77-92.	0.9	1
405	Regression models for intercity auto directional travel demand. Journal of Statistics and Management Systems, 2001, 4, 1-28.	0.6	1
406	A New Multistep Integrator Based on Discrete Langrangian Formulation. , 2008, , .		1
407	A Modified Zero Dispersion and Zero Dissipation RKN Method for the Numerical Solution of the Radial Schrol^dinger Equation. , 2009, , .		1
408	A new methodology for the construction of numerical methods for the approximate solution of the SchrĶdinger equation. Journal of Mathematical Chemistry, 2009, 46, 652-691.	1.5	1
409	High order phase fitted multistep integrators for the Schrödinger equation with improved frequency tolerance. Journal of Mathematical Chemistry, 2009, 46, 1009-1049.	1.5	1
410	The Use of Phase-Lag and Amplification Error Derivatives in the Numerical Integration of ODEs with Oscillating Solutions. , 2009, , .		1
411	Efficient Exponential Fitting Algorithm with Two Fitting Parameters for Oscillation Problems. , 2011, ,		1
412	Multi-Parameter Exponentially Fitted, P-stable Obrechkoff Methods. , 2011, , .		1
413	Exponentially fitted symplectic Runge-Kutta-Nystrol̀^m methods derived by partitioned Runge-Kutta methods. , 2013, , .		1
414	Limb volume measurements for the assessment of lymphedema. Methodological issues. AIP Conference Proceedings, 2015, , .	0.4	1

#	Article	IF	CITATIONS
415	Hybrid high algebraic order two-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives. International Journal of Modern Physics C, 2016, 27, 1650049.	1.7	1
416	Trigonometrically fitted two derivative Runge Kutta methods with three stages. AIP Conference Proceedings, 2017, , .	0.4	1
417	Order conditions for two derivative Runge Kutta methods up to order six. AIP Conference Proceedings, 2017, , .	0.4	1
418	A new fourteenth algebraic order finite difference method for the approximate solution of the SchrĶdinger equation. Journal of Mathematical Chemistry, 2017, 55, 697-716.	1.5	1
419	Modified two-derivative Runge-Kutta methods for solving oscillatory problems. AIP Conference Proceedings, 2017, , .	0.4	1
420	Symmetric embedded predictor–predictor–corrector (EPPCM) methods with vanished phase–lag and its derivatives for second order problems. AIP Conference Proceedings, 2017, , .	0.4	1
421	Optimized two derivative Runge-Kutta methods for solving orbital and oscillatory problems. AIP Conference Proceedings, 2019, , .	0.4	1
422	New FD scheme with vanished phase-lag and its derivatives up to order six for problems in chemistry. Journal of Mathematical Chemistry, 2020, 58, 2324-2360.	1.5	1
423	A new algorithm with eliminated phase-lag and its derivatives up to order five for problems in quantum chemistry. Journal of Mathematical Chemistry, 2020, 58, 2361-2398.	1.5	1
424	A new economical method with eliminated phase-lag and its derivative for problems in chemistry. Journal of Mathematical Chemistry, 2021, 59, 1395.	1.5	1
425	A new method with improved phase-lag and stability properties for problems in quantum chemistry - an economical case. Journal of Mathematical Chemistry, 2021, 59, 1571-1602.	1.5	1
426	A new improved economical finite difference method for problems in quantum chemistry. Journal of Mathematical Chemistry, 2021, 59, 1738-1766.	1.5	1
427	A phase-fitting singularly P-stable economical two-step method for problems in quantum chemistry. Journal of Mathematical Chemistry, 0, , 1.	1.5	1
428	R 0 estimation for COVIDâ€19 pandemic through exponential fit. Mathematical Methods in the Applied Sciences, 2021, , .	2.3	1
429	Four-Stages High Algebraic Order Two-Step Method with Vanished Phase-Lag and Its First, Second and Third Derivatives for the Numerical Integration of the SchrĶdinger Equation. Journal of Computational and Theoretical Nanoscience, 2016, 13, 7886-7902.	0.4	1
430	A two-step method singularly P-stable with improved properties for problems in quantum chemistry. Journal of Mathematical Chemistry, 0, , 1.	1.5	1
431	A multistep method with optimal phase and stability properties for problems in quantum chemistry. Journal of Mathematical Chemistry, 0, , .	1.5	1
432	New variable-step algorithms for computing eigenvalues of the one-dimensional Schr�dinger equation. Computational Mechanics, 1998, 21, 424-428.	4.0	0

#	Article	IF	CITATIONS
433	Derivation of high order efficient numerical methods fory'=f(x, y) – A constrained optimization problem. Journal of Statistics and Management Systems, 1999, 2, 61-72.	0.6	0
434	PREFACE OF MILLENNIUM ISSUE. International Journal of Modern Physics C, 2000, 11, 1079-1079.	1.7	0
435	A Dissipative Exponentially-Fitted Method for the Numerical Solution of the Schr¶dinger Equation. Journal of Chemical Information and Computer Sciences, 2001, 41, 909-917.	2.8	0
436	Exponentiallyâ€Fitted Rungeâ€Kuttaâ€Nyström Methods for the Solution of the Schrödinger Equation. , 2008, , .		0
437	A Reaction $\hat{a} \in D$ iffusion Technique for Community Structure Identification in Complex Networks. , 2008, , \cdot		Ο
438	The Use of Phase-Lag and Amplification Error Integrators for the Numerical Solution of the Radial Schrol^dinger Equation. , 2010, , .		0
439	A Modified RKN with Infinity Order of Phase-lag Derivative for the Numerical Integration of ODEs with Oscillating Solutions. , 2011, , .		Ο
440	A New Modified RKN Method by Using the Phase-lag Properties. , 2011, , .		0
441	A Fitted Runge-Kutta-Nystrol^m Method with Six Stages for the Integration of the Two-Body Problem. , 2011, , .		Ο
442	Exponentially fitted symplectic Runge-Kutta-Nystrol̂ $^{\circ}$ m methods. , 2012, , .		0
443	A Runge-Kutta method with zero phase-lag and derivatives for the numerical solution of orbital problems. , 2012, , .		Ο
444	Construction of an explicit Runge-Kutta-Nystrol method with constant coefficients and of a phase-fitted and amplification-fitted explicit Runge-Kutta-Nystrol method for the numerical solution of the Schrol dinger equation. , 2012, , .		0
445	Optimized explicit symmetric linear multistep methods for the numerical solution of the Schrol ^dinger equation and related orbital problems. , 2012, , .		Ο
446	Construction of an optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrol^dinger equation. , 2012, , .		0
447	A fourth order modified trigonometrically fitted symplectic Runge-Kutta-NystroÌ^m method. , 2013, , .		Ο
448	Four-step hybrid type methods with vanished phase-lag and its derivatives for each level for the numerical solution of the Schrol´dinger equation and related problems. , 2013, , .		0
449	A linear four-step method with vanished phase-lag and its first and second derivatives for the numerical solution of periodic initial and/or boundary value problems. , 2014, , .		0
450	Six-step methods with vanished phase-lag and its first derivatives for the approximate solution of the SchrĶdinger equation and related problems. , 2014, , .		0

#	Article	IF	CITATIONS
451	A modified Runge-Kutta method with increased phase-lag and amplification error properties for the numerical solution of orbital problems. , 2014, , .		0
452	An embedded phase-fitted and amplification-fitted RKN method for the numerical integration of oscillatory problems. AIP Conference Proceedings, 2015, , .	0.4	0
453	A family of implicit six-step methods with vanished phase-lag and its derivatives for the numerical solution of the SchrĶdinger equation and related problems. AIP Conference Proceedings, 2015, , .	0.4	0
454	Trigonometrically fitted two step hybrid methods for the numerical solution of the SchrĶdinger equation. AIP Conference Proceedings, 2015, , .	0.4	0
455	A new approach on the construction of trigonometrically fitted two step hybrid methods. AIP Conference Proceedings, 2015, , .	0.4	Ο
456	An embedded RKN method for the numerical integration of oscillatory problems. AIP Conference Proceedings, 2015, , .	0.4	0
457	Implicit three-step methods with phase-lag and its derivatives equal to zero for the numerical solution of the SchrĶdinger equation and related problems. AIP Conference Proceedings, 2015, , .	0.4	Ο
458	A family of two-stages implicit six-step methods with vanished phase-lag and its derivatives. AIP Conference Proceedings, 2016, , .	0.4	0
459	Two step hybrid methods of 7th and 8th order for the numerical integration of second order IVPs. AIP Conference Proceedings, 2016, , .	0.4	0
460	A modified seventh order two step hybrid method for the numerical integration of oscillatory problems. AIP Conference Proceedings, 2016, , .	0.4	0
461	A family of high algebraic order embedded explicit six-step methods with vanished phase-lag and its derivatives for the numerical solution of the SchrĶdinger equation and related problems. AIP Conference Proceedings, 2016, , .	0.4	Ο
462	Symmetric embedded predictor–corrector (EPCM) methods with vanished phase–lag and its derivatives for the numerical solution of the Schrödinger equation. AIP Conference Proceedings, 2016, , .	0.4	0
463	Symmetric eight–step embedded methods (SESM) with vanished phase-lag and its derivatives for the numerical solution of the SchrĶdinger equation and related problems. AIP Conference Proceedings, 2016, , .	0.4	Ο
464	Numerical integration of Chaplain and stuart model. AIP Conference Proceedings, 2016, , .	0.4	0
465	Symmetric three–stages eight–step embedded methods (S3SESM) with eliminated phase-lag and its derivatives for the numerical solution of second order problems. AIP Conference Proceedings, 2017, , .	0.4	0
466	A family of three stages embedded explicit six–step methods with eliminated phase-lag and its derivatives for the numerical solution of second order problems. AIP Conference Proceedings, 2017, , .	0.4	0
467	A family of four stages embedded explicit six $\hat{s} \in \hat{s}$ step methods with eliminated phase $\hat{s} \in \hat{s}$ and its derivatives for the numerical solution of the second order problems. AIP Conference Proceedings, 2017, , .	0.4	0
468	Symmetric embedded predictor–corrector (EP2CM) methods with vanished phase–lag and its derivatives for second order problems. AIP Conference Proceedings, 2017, , .	0.4	0

#	Article	IF	CITATIONS
469	Symmetric three–stages ten–step embedded methods (S3S10SEME) with optimal phase properties for the numerical solution of second order problems. AIP Conference Proceedings, 2017, , .	0.4	0
470	Trigonometrically fitted two derivative Runge Kutta methods for the Schrödinger equation. AlP Conference Proceedings, 2018, , .	0.4	0
471	Symmetric embedded predictor4–corrector (EP4CM) complete in phase methods. AIP Conference Proceedings, 2018, , .	0.4	0
472	A family of six–stages embedded explicit six–step schemes with optimized properties. AIP Conference Proceedings, 2018, , .	0.4	0
473	Features of the research of the efficiency of thermal protection of complex-profile surfaces streamlined by high-speed disperse flow. AIP Conference Proceedings, 2018, , .	0.4	0
474	Phase fitted and amplification fitted two derivative Runge Kutta methods. AIP Conference Proceedings, 2018, , .	0.4	0
475	Comparison of two derivative Runge Kutta methods. AIP Conference Proceedings, 2018, , .	0.4	0
476	Symmetric five–stages ten–step complete in phase embedded methods (S5S10SEMB). AIP Conference Proceedings, 2018, , .	0.4	0
477	Two derivative Runge Kutta methods with minimum phase-lag and amplification error. AIP Conference Proceedings, 2018, , .	0.4	0
478	A family of five–stages embedded explicit six–step schemes with vanished phase–lag and its derivatives. AIP Conference Proceedings, 2018, , .	0.4	0
479	Symmetric four–stages ten–step embedded methods (s4s10SEMB) with improved phase properties. AIP Conference Proceedings, 2018, , .	0.4	0
480	Symmetric embedded predictor3–Corrector (EP3CM) methods with vanished phase–lag and its derivatives. AIP Conference Proceedings, 2018, , .	0.4	0
481	Two derivative Runge-Kutta methods of order six. AIP Conference Proceedings, 2019, , .	0.4	0
482	Symmetric embedded predictor5–corrector (EP5CM) full in phase methods. AIP Conference Proceedings, 2019, , .	0.4	0
483	Symmetric six–stages multistep full in phase embedded methods (S6S10SEMB). AIP Conference Proceedings, 2019, , .	0.4	0
484	A new family of multistage multistep embedded explicit algorithms with improved characteristics. AIP Conference Proceedings, 2019, , .	0.4	0
485	A new family of hybrid six–step embedded explicit algorithms with eliminated phase–lag and its derivatives. AIP Conference Proceedings, 2019, , .	0.4	0
486	Efficient FinDiff algorithm with optimal phase properties for problems in quantum chemistry. Journal of Mathematical Chemistry, 2021, 59, 597-640.	1.5	0

#	Article	IF	CITATIONS
487	New FD methods with phase-lag and its derivatives equal to zero for periodic initial value problems. Journal of Mathematical Chemistry, 2021, 59, 641-675.	1.5	0
488	A new finite difference method with optimal phase and stability properties for problems in chemistry. Journal of Mathematical Chemistry, 2021, 59, 951-984.	1.5	0
489	A new method with vanished phase-lag and its derivatives of the highest order for problems in quantum chemistry. Journal of Mathematical Chemistry, 2021, 59, 1155-1200.	1.5	0
490	A new FinDiff numerical scheme with phase-lag and its derivatives equal to zero for periodic initial value problems. Journal of Mathematical Chemistry, 2021, 59, 1201-1233.	1.5	0
491	An economical two-step method with improved phase and stability properties for problems in chemistry. Journal of Mathematical Chemistry, 2021, 59, 1704-1737.	1.5	0
492	Two-step method with vanished phase-lag and its derivatives for problems in quantum chemistry: an economical case. Journal of Mathematical Chemistry, 2021, 59, 1880-1916.	1.5	0
493	An economical two-step method with optimal phase and stability properties for problems in chemistry. Journal of Mathematical Chemistry, 2021, 59, 1938-1975.	1.5	0
494	A singularly P-stable two-step method with improved characteristics for problems in chemistry. Journal of Mathematical Chemistry, 0, , 1.	1.5	0
495	RUNGE-KUTTA METHODS WITH MINIMAL DISPERSION AND DISSIPATION FOR PROBLEMS ARISING FROM COMPUTATIONAL ACOUSTICS. , 2003, , .		0
496	SYMMETRIC MULTISTEP METHODS WITH MINIMAL PHASE-LAG FOR THE APPROXIMATE SOLUTION OF ORBITAL PROBLEMS. , 2003, , .		0
497	EXPONENTIAL-FITTING SYMPLECTIC METHODS FOR THE NUMERICAL INTEGRATION OF THE SCHRÖDINGER EQUATION. , 2003, , .		0
498	A FAMILY OF OPTIMIZED RUNGE-KUTTA METHODS WITH FIVE STAGES AND FOURTH ORDER FOR IVPS WITH OSCILLATING SOLUTIONS. , 2003, , .		0
499	ADMINISTRATIVE FACULTIES OF ACADEMIC LEADERS. , 2010, , .		0
500	Symmetric seven–stages multistep perfect in phase embedded pairs (S7S2mSEMB). AIP Conference Proceedings, 2020, , .	0.4	0
501	A phase fitted RKN method for the numerical integration of oscillatory problems. AIP Conference Proceedings, 2022, , .	0.4	0
502	Preface of the "The First Symposium on Information, Educational Technology, Applied Mathematics and Engineering (IETAME 2020)― AIP Conference Proceedings, 2022, , .	0.4	0
503	A multistep conditionally P-stable method with phase properties of high order for problems in quantum chemistry. Journal of Mathematical Chemistry, 2022, 60, 637-665.	1.5	0