

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6807107/publications.pdf Version: 2024-02-01

		369	1190
804	71,906	135	228
papers	citations	h-index	g-index
819 all docs	819 docs citations	819 times ranked	38110 citing authors

ALEY IEN

#	Article	IF	CITATIONS
1	Non-fullerene acceptors for organic solar cells. Nature Reviews Materials, 2018, 3, .	48.7	2,163
2	Molecular biomimetics: nanotechnology through biology. Nature Materials, 2003, 2, 577-585.	27.5	1,498
3	Additive Enhanced Crystallization of Solutionâ€Processed Perovskite for Highly Efficient Planarâ€Heterojunction Solar Cells. Advanced Materials, 2014, 26, 3748-3754.	21.0	1,344
4	Polymer-Based Optical Waveguides: Materials, Processing, and Devices. Advanced Materials, 2002, 14, 1339-1365.	21.0	1,248
5	Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature, 1997, 388, 845-851.	27.8	1,016
6	Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy and Environmental Science, 2012, 5, 5994.	30.8	993
7	Interface Engineering for Organic Electronics. Advanced Functional Materials, 2010, 20, 1371-1388.	14.9	859
8	Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Applied Physics Letters, 2008, 92, .	3.3	790
9	Highâ€Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solutionâ€Processed Copperâ€Doped Nickel Oxide Holeâ€Transporting Layer. Advanced Materials, 2015, 27, 695-701.	21.0	751
10	Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy and Environmental Science, 2015, 8, 1160-1189.	30.8	725
11	Heterojunction Modification for Highly Efficient Organic–Inorganic Perovskite Solar Cells. ACS Nano, 2014, 8, 12701-12709.	14.6	614
12	High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers. Nano Letters, 2013, 13, 3124-3128.	9.1	602
13	Polymer Solar Cells That Use Selfâ€Assembledâ€Monolayer―Modified ZnO/Metals as Cathodes. Advanced Materials, 2008, 20, 2376-2382.	21.0	511
14	Efficient CdSe/CdS Quantum Dot Light-Emitting Diodes Using a Thermally Polymerized Hole Transport Layer. Nano Letters, 2006, 6, 463-467.	9.1	502
15	Synthesis and Processing of Improved Organic Second-Order Nonlinear Optical Materials for Applications in Photonics. Chemistry of Materials, 1995, 7, 1060-1081.	6.7	484
16	Functional fullerenes for organic photovoltaics. Journal of Materials Chemistry, 2012, 22, 4161.	6.7	478
17	Pinhole-Free and Surface-Nanostructured NiO _{<i>x</i>} Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility. ACS Nano, 2016, 10, 1503-1511.	14.6	477
18	The role of spin in the kinetic control of recombination in organic photovoltaics. Nature, 2013, 500, 435-439.	27.8	460

#	Article	IF	CITATIONS
19	Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO ₂ Nanocrystals as the Robust Electronâ€Transporting Layer. Advanced Materials, 2016, 28, 6478-6484.	21.0	447
20	Dopant-Free Hole-Transporting Material with a <i>C</i> _{3<i>h</i>} Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 2528-2531.	13.7	446
21	Fluoroâ€Substituted nâ€Type Conjugated Polymers for Additiveâ€Free Allâ€Polymer Bulk Heterojunction Solar Cells with High Power Conversion Efficiency of 6.71%. Advanced Materials, 2015, 27, 3310-3317.	21.0	421
22	Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. Journal of the American Chemical Society, 2020, 142, 20134-20142.	13.7	414
23	A Lowâ€Temperature, Solutionâ€Processable, Cuâ€Doped Nickel Oxide Holeâ€Transporting Layer via the Combustion Method for Highâ€Performance Thinâ€Film Perovskite Solar Cells. Advanced Materials, 2015, 27, 7874-7880.	21.0	405
24	Integrated Molecular, Interfacial, and Device Engineering towards Highâ€Performance Nonâ€Fullerene Based Organic Solar Cells. Advanced Materials, 2014, 26, 5708-5714.	21.0	400
25	From molecules to opto-chips: organic electro-optic materials. Journal of Materials Chemistry, 1999, 9, 1905-1920.	6.7	388
26	Dithienopicenocarbazole-Based Acceptors for Efficient Organic Solar Cells with Optoelectronic Response Over 1000 nm and an Extremely Low Energy Loss. Journal of the American Chemical Society, 2018, 140, 2054-2057.	13.7	369
27	Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nature Communications, 2020, 11, 177.	12.8	360
28	Role of Chloride in the Morphological Evolution of Organo-Lead Halide Perovskite Thin Films. ACS Nano, 2014, 8, 10640-10654.	14.6	353
29	Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione. Chemistry of Materials, 2010, 22, 2696-2698.	6.7	346
30	Improved Charge Transport and Absorption Coefficient in Indacenodithieno[3,2â€b]thiopheneâ€based Ladderâ€Type Polymer Leading to Highly Efficient Polymer Solar Cells. Advanced Materials, 2012, 24, 6356-6361.	21.0	343
31	Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials. Journal of Applied Physics, 2011, 109, 043505-043505-5.	2.5	342
32	Interfacial modification to improve inverted polymer solar cells. Journal of Materials Chemistry, 2008, 18, 5113.	6.7	339
33	Development of New Conjugated Polymers with Donorâ^'ï€-Bridgeâ^'Acceptor Side Chains for High Performance Solar Cells. Journal of the American Chemical Society, 2009, 131, 13886-13887.	13.7	335
34	Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Advanced Materials, 2018, 30, e1800455.	21.0	332
35	Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients. Nature Photonics, 2007, 1, 180-185.	31.4	331
36	C ₆₀ as an Efficient n-Type Compact Layer in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2399-2405.	4.6	324

#	Article	IF	CITATIONS
37	Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. Energy and Environmental Science, 2012, 5, 9551.	30.8	323
38	Indacenodithiophene and Quinoxaline-Based Conjugated Polymers for Highly Efficient Polymer Solar Cells. Chemistry of Materials, 2011, 23, 2289-2291.	6.7	318
39	Defect Passivation of Organic–Inorganic Hybrid Perovskites by Diammonium Iodide toward High-Performance Photovoltaic Devices. ACS Energy Letters, 2016, 1, 757-763.	17.4	317
40	Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Bladeâ€Coating. Advanced Energy Materials, 2015, 5, 1401229.	19.5	303
41	Stable Lowâ€Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells. Advanced Materials, 2016, 28, 8990-8997.	21.0	302
42	Ultralarge and Thermally Stable Electro-Optic Activities from Supramolecular Self-Assembled Molecular Glasses. Journal of the American Chemical Society, 2007, 129, 488-489.	13.7	300
43	Mixed Cation FA <i>_x</i> PEA _{1–} <i>_x</i> PbI ₃ with Enhanced Phase and Ambient Stability toward Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601307.	19.5	298
44	High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer. Applied Physics Letters, 2008, 93, .	3.3	295
45	Binaryâ€Metal Perovskites Toward Highâ€Performance Planarâ€Heterojunction Hybrid Solar Cells. Advanced Materials, 2014, 26, 6454-6460.	21.0	295
46	Highâ€Performance Fully Printable Perovskite Solar Cells via Bladeâ€Coating Technique under the Ambient Condition. Advanced Energy Materials, 2015, 5, 1500328.	19.5	294
47	A Review on the Development of the Inverted Polymer Solar Cell Architecture. Polymer Reviews, 2010, 50, 474-510.	10.9	293
48	Roles of Fullereneâ€Based Interlayers in Enhancing the Performance of Organometal Perovskite Thinâ€Film Solar Cells. Advanced Energy Materials, 2015, 5, 1402321.	19.5	289
49	CuGaO ₂ : A Promising Inorganic Holeâ€Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2017, 29, 1604984.	21.0	282
50	The Important Role of Heteroaromatics in the Design of Efficient Second-Order Nonlinear Optical Molecules:Â Theoretical Investigation on Pushâ^Pull Heteroaromatic Stilbenes. Journal of the American Chemical Society, 1996, 118, 12443-12448.	13.7	280
51	Optical modulation and detection in slotted Silicon waveguides. Optics Express, 2005, 13, 5216.	3.4	279
52	Highly Efficient Perovskite–Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage. Advanced Materials, 2017, 29, 1702140.	21.0	278
53	Terahertz all-optical modulation in a silicon–polymer hybrid system. Nature Materials, 2006, 5, 703-709.	27.5	276
54	Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. Applied Physics Letters, 2010, 96.	3.3	273

#	Article	IF	CITATIONS
55	Over 12% Efficiency Nonfullerene Allâ€&mallâ€Molecule Organic Solar Cells with Sequentially Evolved Multilength Scale Morphologies. Advanced Materials, 2019, 31, e1807842.	21.0	272
56	Rational Design of Advanced Thermoelectric Materials. Advanced Energy Materials, 2013, 3, 549-565.	19.5	264
57	2D metal–organic framework for stable perovskite solar cells with minimized lead leakage. Nature Nanotechnology, 2020, 15, 934-940.	31.5	258
58	A Non-fullerene Acceptor with Enhanced Intermolecular π-Core Interaction for High-Performance Organic Solar Cells. Journal of the American Chemical Society, 2020, 142, 15246-15251.	13.7	257
59	Highly Efficient Organic Solar Cells with Improved Vertical Donor–Acceptor Compositional Gradient Via an Inverted Offâ€Center Spinning Method. Advanced Materials, 2016, 28, 967-974.	21.0	256
60	Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes. Organic Electronics, 2009, 10, 1401-1407.	2.6	255
61	Highly Efficient Blue-Light-Emitting Diodes from Polyfluorene Containing Bipolar Pendant Groups. Macromolecules, 2003, 36, 6698-6703.	4.8	247
62	High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor. Journal of the American Chemical Society, 2021, 143, 2665-2670.	13.7	245
63	The molecular and supramolecular engineering of polymeric electro-optic materials. Chemical Physics, 1999, 245, 35-50.	1.9	244
64	Doping of Fullerenes via Anionâ€Induced Electron Transfer and Its Implication for Surfactant Facilitated High Performance Polymer Solar Cells. Advanced Materials, 2013, 25, 4425-4430.	21.0	244
65	CsPbBr ₃ Perovskite Quantum Dot Vertical Cavity Lasers with Low Threshold and High Stability. ACS Photonics, 2017, 4, 2281-2289.	6.6	243
66	Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers. Chemical Communications, 2011, 47, 11026.	4.1	241
67	Rigidifying Nonplanar Perylene Diimides by Ring Fusion Toward Geometryâ€Tunable Acceptors for Highâ€Performance Fullereneâ€Free Solar Cells. Advanced Materials, 2016, 28, 951-958.	21.0	238
68	Highly Efficient Fluorene- and Benzothiadiazole-Based Conjugated Copolymers for Polymer Light-Emitting Diodes. Macromolecules, 2002, 35, 6094-6100.	4.8	228
69	Highly Efficient and Thermally Stable Nonlinear Optical Dendrimer for Electrooptics. Journal of the American Chemical Society, 2001, 123, 986-987.	13.7	226
70	Two-Dimensional Perovskite Solar Cells with 14.1% Power Conversion Efficiency and 0.68% External Radiative Efficiency. ACS Energy Letters, 2018, 3, 2086-2093.	17.4	224
71	Tailor-Making Low-Cost Spiro[fluorene-9,9′-xanthene]-Based 3D Oligomers for Perovskite Solar Cells. CheM, 2017, 2, 676-687.	11.7	222
72	Enhancement of Aggregationâ€Induced Emission in Dyeâ€Encapsulating Polymeric Micelles for Bioimaging. Advanced Functional Materials, 2010, 20, 1413-1423.	14.9	221

#	Article	IF	CITATIONS
73	Highâ€Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Holeâ€Transporting Material. Advanced Energy Materials, 2015, 5, 1500486.	19.5	221
74	Divalent Osmium Complexes:Â Synthesis, Characterization, Strong Red Phosphorescence, and Electrophosphorescence. Journal of the American Chemical Society, 2002, 124, 14162-14172.	13.7	218
75	Highly Efficient and Thermally Stable Electro-Optical Dendrimers for Photonics. Advanced Functional Materials, 2002, 12, 565-574.	14.9	209
76	Suppressed Charge Recombination in Inverted Organic Photovoltaics via Enhanced Charge Extraction by Using a Conductive Fullerene Electron Transport Layer. Advanced Materials, 2014, 26, 6262-6267.	21.0	206
77	Surface Doping of Conjugated Polymers by Graphene Oxide and Its Application for Organic Electronic Devices. Advanced Materials, 2011, 23, 1903-1908.	21.0	204
78	Electrophosphorescence from a Conjugated Copolymer Doped with an Iridium Complex: High Brightness and Improved Operational Stability. Advanced Materials, 2003, 15, 45-49.	21.0	202
79	Realizing Efficient Leadâ€Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Advanced Materials, 2018, 30, 1703800.	21.0	198
80	Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V. Applied Physics Letters, 2008, 92, 163303.	3.3	195
81	Molecular Engineered Holeâ€Extraction Materials to Enable Dopantâ€Free, Efficient pâ€iâ€n Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700012.	19.5	195
82	Highly Efficient Organic Solar Cells Based on S,N-Heteroacene Non-Fullerene Acceptors. Chemistry of Materials, 2018, 30, 5429-5434.	6.7	194
83	Stabilized Wide Bandgap Perovskite Solar Cells by Tin Substitution. Nano Letters, 2016, 16, 7739-7747.	9.1	193
84	Inorganic CsPb _{1â^'} <i>_x</i> Sn <i>_x</i> IBr ₂ for Efficient Wideâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800525.	19.5	192
85	A Simple and Effective Way of Achieving Highly Efficient and Thermally Stable Bulk-Heterojunction Polymer Solar Cells Using Amorphous Fullerene Derivatives as Electron Acceptor. Chemistry of Materials, 2009, 21, 2598-2600.	6.7	191
86	Current Challenges and Prospective Research for Upscaling Hybrid Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2016, 7, 811-819.	4.6	188
87	Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells. ACS Energy Letters, 2020, 5, 2711-2720.	17.4	188
88	Significant Improved Performance of Photovoltaic Cells Made from a Partially Fluorinated Cyclopentadithiophene/Benzothiadiazole Conjugated Polymer. Macromolecules, 2012, 45, 5427-5435.	4.8	186
89	Enhanced Open ircuit Voltage in High Performance Polymer/Fullerene Bulkâ€Heterojunction Solar Cells by Cathode Modification with a C ₆₀ Surfactant. Advanced Energy Materials, 2012, 2, 82-86.	19.5	185
90	Effects of Selfâ€Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells. ChemSusChem, 2017, 10, 3794-3803.	6.8	185

#	Article	IF	CITATIONS
91	High Performance Amorphous Metallated π-Conjugated Polymers for Field-Effect Transistors and Polymer Solar Cells. Chemistry of Materials, 2008, 20, 5734-5736.	6.7	182
92	Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments. RSC Advances, 2014, 4, 62971-62977.	3.6	182
93	Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells. Nano Energy, 2016, 22, 328-337.	16.0	180
94	Design of a Highly Crystalline Low-Band Gap Fused-Ring Electron Acceptor for High-Efficiency Solar Cells with Low Energy Loss. Chemistry of Materials, 2017, 29, 8369-8376.	6.7	180
95	Synthesis and Optoelectronic Properties of Starlike Polyfluorenes with a Silsesquioxane Core. Macromolecules, 2004, 37, 2335-2341.	4.8	178
96	Interfacial Engineering of Ultrathin Metal Film Transparent Electrode for Flexible Organic Photovoltaic Cells. Advanced Materials, 2014, 26, 3618-3623.	21.0	178
97	Rational Design of Dipolar Chromophore as an Efficient Dopant-Free Hole-Transporting Material for Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 11833-11839.	13.7	178
98	Modulation of PEDOT:PSS pH for Efficient Inverted Perovskite Solar Cells with Reduced Potential Loss and Enhanced Stability. ACS Applied Materials & amp; Interfaces, 2016, 8, 32068-32076.	8.0	178
99	Toward All Roomâ€Temperature, Solutionâ€Processed, Highâ€Performance Planar Perovskite Solar Cells: A New Scheme of Pyridineâ€Promoted Perovskite Formation. Advanced Materials, 2017, 29, 1604695.	21.0	178
100	Highly Efficient Porphyrinâ€Based OPV/Perovskite Hybrid Solar Cells with Extended Photoresponse and High Fill Factor. Advanced Materials, 2017, 29, 1703980.	21.0	176
101	Novel Oxadiazole-Containing Polyfluorene with Efficient Blue Electroluminescence. Chemistry of Materials, 2003, 15, 269-274.	6.7	173
102	Crosslinkable Hole-Transport Layer on Conducting Polymer for High-Efficiency White Polymer Light-Emitting Diodes. Advanced Materials, 2007, 19, 300-304.	21.0	170
103	Systematic Study of the Structureâ^'Property Relationship of a Series of Ferrocenyl Nonlinear Optical Chromophores. Journal of the American Chemical Society, 2005, 127, 2758-2766.	13.7	168
104	Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells. Energy and Environmental Science, 2013, 6, 3241.	30.8	168
105	Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells. Applied Physics Letters, 2008, 92, .	3.3	167
106	Effect of Chemical Modification of Fullerene-Based Self-Assembled Monolayers on the Performance of Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2010, 2, 1892-1902.	8.0	166
107	Large Electro-optic Activity and Enhanced Thermal Stability from Diarylaminophenyl-Containing High-β Nonlinear Optical Chromophores. Chemistry of Materials, 2007, 19, 1154-1163.	6.7	164
108	Novel push-pull thiophenes for second order nonlinear optical applications. Tetrahedron Letters, 1993, 34, 1747-1750.	1.4	162

#	Article	lF	CITATIONS
109	Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy, 2017, 34, 392-398.	16.0	162
110	Current-Induced Phase Segregation in Mixed Halide Hybrid Perovskites and its Impact on Two-Terminal Tandem Solar Cell Design. ACS Energy Letters, 2017, 2, 1841-1847.	17.4	161
111	Functionalized thiophenes: second-order nonlinear optical materials. Journal of the Chemical Society Chemical Communications, 1993, , 90.	2.0	160
112	Nanoscale Architectural Control and Macromolecular Engineering of Nonlinear Optical Dendrimers and Polymers for Electro-Opticsâ€. Journal of Physical Chemistry B, 2004, 108, 8523-8530.	2.6	160
113	Highly Efficient Polymer Whiteâ€Lightâ€Emitting Diodes Based on Lithium Salts Doped Electron Transporting Layer. Advanced Materials, 2009, 21, 361-365.	21.0	160
114	Effective interfacial layer to enhance efficiency of polymer solar cells via solution-processed fullerene-surfactants. Journal of Materials Chemistry, 2012, 22, 8574.	6.7	159
115	Crosslinkable hole-transporting materials for solution processed polymer light-emitting diodes. Journal of Materials Chemistry, 2008, 18, 4495.	6.7	157
116	Donorâ^'Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability. Chemistry of Materials, 2008, 20, 5047-5054.	6.7	156
117	Flexible and twistable non-volatile memory cell array with all-organic one diode–one resistor architecture. Nature Communications, 2013, 4, 2707.	12.8	156
118	Molecular Weight Effect on the Absorption, Charge Carrier Mobility, and Photovoltaic Performance of an Indacenodiselenophene-Based Ladder-Type Polymer. Chemistry of Materials, 2013, 25, 3188-3195.	6.7	155
119	10.4% Power Conversion Efficiency of ITOâ€Free Organic Photovoltaics Through Enhanced Light Trapping Configuration. Advanced Energy Materials, 2015, 5, 1500406.	19.5	154
120	Functional Dendrimers for Nonlinear Optics. Advanced Materials, 2001, 13, 1201-1205.	21.0	152
121	Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. Journal of Materials Chemistry A, 2016, 4, 17939-17945.	10.3	151
122	Theory-Guided Design and Synthesis of Multichromophore Dendrimers:  An Analysis of the Electro-optic Effect. Journal of the American Chemical Society, 2007, 129, 7523-7530.	13.7	149
123	Ag-Incorporated Organic–Inorganic Perovskite Films and Planar Heterojunction Solar Cells. Nano Letters, 2017, 17, 3231-3237.	9.1	149
124	The roles of alkyl halide additives in enhancing perovskite solar cell performance. Journal of Materials Chemistry A, 2015, 3, 9058-9062.	10.3	147
125	A copper-doped nickel oxide bilayer for enhancing efficiency and stability of hysteresis-free inverted mesoporous perovskite solar cells. Nano Energy, 2017, 40, 155-162.	16.0	147
126	Tailoring the Functionality of Organic Spacer Cations for Efficient and Stable Quasiâ€⊉D Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900221.	14.9	144

#	Article	IF	CITATIONS
127	Ternary non-fullerene polymer solar cells with 13.51% efficiency and a record-high fill factor of 78.13%. Energy and Environmental Science, 2018, 11, 3392-3399.	30.8	143
128	Lowâ€Bandgap Porphyrins for Highly Efficient Organic Solar Cells: Materials, Morphology, and Applications. Advanced Materials, 2020, 32, e1906129.	21.0	143
129	Two-Step Synthesis of Side-Chain Aromatic Polyimides for Second-Order Nonlinear Optics. Macromolecules, 1996, 29, 535-539.	4.8	142
130	Focused Microwave-Assisted Synthesis of 2,5-Dihydrofuran Derivatives as Electron Acceptors for Highly Efficient Nonlinear Optical Chromophores. Advanced Materials, 2003, 15, 603-607.	21.0	142
131	ï€â€iJfâ€Phosphonic Acid Organic Monolayer/Sol–Gel Hafnium Oxide Hybrid Dielectrics for Lowâ€Voltage Organic Transistors. Advanced Materials, 2008, 20, 3697-3701.	21.0	142
132	Approaching 16% Efficiency in All-Small-Molecule Organic Solar Cells Based on Ternary Strategy with a Highly Crystalline Acceptor. Joule, 2020, 4, 2223-2236.	24.0	142
133	Toward Highâ€Performance Semiâ€Transparent Polymer Solar Cells: Optimization of Ultraâ€Thin Light Absorbing Layer and Transparent Cathode Architecture. Advanced Energy Materials, 2013, 3, 417-423.	19.5	141
134	Over 17% Efficiency Binary Organic Solar Cells with Photoresponses Reaching 1000 nm Enabled by Selenophene-Fused Nonfullerene Acceptors. ACS Energy Letters, 2021, 6, 9-15.	17.4	141
135	Facile Approach to Nonlinear Optical Side-Chain Aromatic Polyimides with Large Second-Order Nonlinearity and Thermal Stability. Journal of the American Chemical Society, 1995, 117, 7295-7296.	13.7	140
136	Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells. Progress in Polymer Science, 2019, 99, 101175.	24.7	140
137	The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances. Nature Communications, 2021, 12, 332.	12.8	140
138	Effect of Cyano Substituents on Electron Affinity and Electron-Transporting Properties of Conjugated Polymers. Macromolecules, 2002, 35, 3532-3538.	4.8	138
139	Reducing Surface Recombination Velocities at the Electrical Contacts Will Improve Perovskite Photovoltaics. ACS Energy Letters, 2019, 4, 222-227.	17.4	138
140	Multifunctional phosphonic acid self-assembled monolayers on metal oxides as dielectrics, interface modification layers and semiconductors for low-voltage high-performance organic field-effect transistors. Physical Chemistry Chemical Physics, 2012, 14, 14110.	2.8	137
141	Lowâ€Temperature Solutionâ€Processed CuCrO ₂ Holeâ€Transporting Layer for Efficient and Photostable Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702762.	19.5	137
142	Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length. Nature Communications, 2021, 12, 468.	12.8	137
143	Triarylamine-Containing Poly(perfluorocyclobutane) as Hole-Transporting Material for Polymer Light-Emitting Diodes. Macromolecules, 2000, 33, 3514-3517.	4.8	135
144	SrCl ₂ Derived Perovskite Facilitating a High Efficiency of 16% in Holeâ€Conductorâ€Free Fully Printable Mesoscopic Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606608.	21.0	135

#	Article	IF	CITATIONS
145	A Conjugated, Neutral Surfactant as Electron-Injection Material for High-Efficiency Polymer Light-Emitting Diodes. Advanced Materials, 2007, 19, 2010-2014.	21.0	134
146	Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials. Journal of Materials Chemistry, 2009, 19, 7410.	6.7	134
147	Ideal Bandgap Organic–Inorganic Hybrid Perovskite Solar Cells. Advanced Materials, 2017, 29, 1704418.	21.0	133
148	Dramatically enhanced second-order nonlinear optical susceptibilities in tricyanovinylthiophene derivatives. Journal of the Chemical Society Chemical Communications, 1993, , 1118.	2.0	132
149	Synthesis and characterization of highly efficient and thermally stable diphenylamino-substituted thiophene stilbene chromophores for nonlinear optical applications. Advanced Materials, 1997, 9, 132-135.	21.0	132
150	Highly Efficient Inverted Organic Solar Cells Through Material and Interfacial Engineering of Indacenodithieno[3,2â€ <i>b</i>]thiopheneâ€Based Polymers and Devices. Advanced Functional Materials, 2014, 24, 1465-1473.	14.9	132
151	Improved Performance from Multilayer Quantum Dot Lightâ€Emitting Diodes via Thermal Annealing of the Quantum Dot Layer. Advanced Materials, 2007, 19, 3371-3376.	21.0	130
152	Solutionâ€Processible Highly Conducting Fullerenes. Advanced Materials, 2013, 25, 2457-2461.	21.0	130
153	Systematic Nanoengineering of Soft Matter Organic Electro-optic Materials. Chemistry of Materials, 2011, 23, 430-445.	6.7	129
154	pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials, 2013, 34, 4501-4509.	11.4	128
155	Effective in-device r_33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides. Optics Letters, 2011, 36, 882.	3.3	126
156	Dielsâ^'Alder "Click Chemistry―for Highly Efficient Electrooptic Polymers. Macromolecules, 2006, 39, 1676-1680.	4.8	125
157	Optical Design of Transparent Thin Metal Electrodes to Enhance Inâ€Coupling and Trapping of Light in Flexible Polymer Solar Cells. Advanced Materials, 2012, 24, 6362-6367.	21.0	125
158	Multi‣elenophene ontaining Narrow Bandgap Polymer Acceptors for Allâ€Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. Angewandte Chemie - International Edition, 2021, 60, 15935-15943.	13.8	125
159	Design, Synthesis, and Properties of Highly Efficient Side-Chain Dendronized Nonlinear Optical Polymers for Electro-Optics. Advanced Materials, 2002, 14, 1763-1768.	21.0	124
160	Efficient Green-Light-Emitting Diodes from Silole-Containing Copolymers. Chemistry of Materials, 2003, 15, 3496-3500.	6.7	123
161	Water-resistant perovskite nanodots enable robust two-photon lasing in aqueous environment. Nature Communications, 2020, 11, 1192.	12.8	123
162	Binary Chromophore Systems in Nonlinear Optical Dendrimers and Polymers for Large Electrooptic Activities. Journal of Physical Chemistry C, 2008, 112, 8091-8098.	3.1	121

#	Article	IF	CITATIONS
163	Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. Chemical Communications, 2019, 55, 4315-4318.	4.1	121
164	Guestâ~'Host Cooperativity in Organic Materials Greatly Enhances the Nonlinear Optical Response. Journal of Physical Chemistry C, 2008, 112, 4355-4363.	3.1	120
165	Thermally Cross-Linkable Hole-Transporting Materials on Conducting Polymer: Synthesis, Characterization, and Applications for Polymer Light-Emitting Devices. Chemistry of Materials, 2008, 20, 413-422.	6.7	119
166	Influence of Molecular Geometry of Perylene Diimide Dimers and Polymers on Bulk Heterojunction Morphology Toward Highâ€Performance Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2015, 25, 5326-5332.	14.9	119
167	C–H activation: making diketopyrrolopyrrole derivatives easily accessible. Journal of Materials Chemistry A, 2013, 1, 2795.	10.3	118
168	A General Route to Enhance Polymer Solar Cell Performance using Plasmonic Nanoprisms. Advanced Energy Materials, 2014, 4, 1400206.	19.5	118
169	Hexaazatrinaphthylene Derivatives: Efficient Electronâ€Transporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 8999-9003.	13.8	118
170	Highâ€Performance Planarâ€Heterojunction Solar Cells Based on Ternary Halide Largeâ€Bandâ€Gap Perovskites. Advanced Energy Materials, 2015, 5, 1400960.	19.5	117
171	A 0D/3D Heterostructured Allâ€Inorganic Halide Perovskite Solar Cell with High Performance and Enhanced Phase Stability. Advanced Materials, 2019, 31, e1904735.	21.0	117
172	High-performance organic second- and third-order nonlinear optical materials for ultrafast information processing. Journal of Materials Chemistry C, 2020, 8, 15009-15026.	5.5	117
173	Highâ€Efficiency Polymer Solar Cells Achieved by Doping Plasmonic Metallic Nanoparticles into Dual Charge Selecting Interfacial Layers to Enhance Light Trapping. Advanced Energy Materials, 2013, 3, 666-673.	19.5	116
174	Defect Passivation via a Graded Fullerene Heterojunction in Low-Bandgap Pb–Sn Binary Perovskite Photovoltaics. ACS Energy Letters, 2017, 2, 2531-2539.	17.4	116
175	Nearâ€Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells. Advanced Materials, 2018, 30, e1803769.	21.0	116
176	An Electron Acceptor with Broad Visible–NIR Absorption and Unique Solid State Packing for As ast High Performance Binary Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1802324.	14.9	116
177	4â€ <i>Tert</i> â€butylpyridine Free Organic Hole Transporting Materials for Stable and Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700683.	19.5	115
178	Pyrroline Chromophores for Electro-Optics. Chemistry of Materials, 2006, 18, 2982-2988.	6.7	114
179	Silicon-polymer hybrid slot waveguide †ring-resonator modulator. Optics Express, 2011, 19, 3952.	3.4	114
180	Asymmetric Acceptors Enabling Organic Solar Cells to Achieve an over 17% Efficiency: Conformation Effects on Regulating Molecular Properties and Suppressing Nonradiative Energy Loss. Advanced Energy Materials, 2021, 11, 2003177.	19.5	114

#	Article	IF	CITATIONS
181	High-performance polymer light-emitting diodes fabricated with a polymer hole injection layer. Applied Physics Letters, 2003, 83, 183-185.	3.3	113
182	Investigation of Polymers and Marine-Derived DNA in Optoelectronicsâ€. Journal of Physical Chemistry B, 2004, 108, 8584-8591.	2.6	113
183	Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator. Journal of Lightwave Technology, 2014, 32, 3774-3784.	4.6	113
184	Anode modification of inverted polymer solar cells using graphene oxide. Applied Physics Letters, 2010, 97, .	3.3	112
185	Pseudohalideâ€Induced Recrystallization Engineering for CH ₃ NH ₃ PbI ₃ Film and Its Application in Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1704836.	14.9	112
186	Synthesis, Characterization, Charge Transport, and Photovoltaic Properties of Dithienobenzoquinoxaline- and Dithienobenzopyridopyrazine-Based Conjugated Polymers. Macromolecules, 2011, 44, 4752-4758.	4.8	111
187	Highly Efficient, Thermally and Chemically Stable Second Order Nonlinear Optical Chromophores Containing a 2-Phenyl-tetracyanobutadienyl Acceptor. Journal of the American Chemical Society, 1999, 121, 472-473.	13.7	110
188	Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications. Chemistry of Materials, 2011, 23, 544-553.	6.7	110
189	Conjugated polymers based on C, Si and N-bridged dithiophene and thienopyrroledione units: synthesis, field-effect transistors and bulk heterojunction polymer solar cells. Journal of Materials Chemistry, 2011, 21, 3895.	6.7	110
190	A Versatile Fluoroâ€Containing Lowâ€Bandgap Polymer for Efficient Semitransparent and Tandem Polymer Solar Cells. Advanced Functional Materials, 2013, 23, 5084-5090.	14.9	110
191	Highâ€Dielectric Constant Sideâ€Chain Polymers Show Reduced Nonâ€Geminate Recombination in Heterojunction Solar Cells. Advanced Energy Materials, 2014, 4, 1301857.	19.5	110
192	A Lowâ€Temperature, Solution Processable Tin Oxide Electronâ€Transporting Layer Prepared by the Dualâ€Fuel Combustion Method for Efficient Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600122.	3.7	107
193	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie - International Edition, 2021, 60, 7227-7233.	13.8	107
194	A Side-Chain Dendronized Nonlinear Optical Polyimide with Large and Thermally Stable Electrooptic Activity. Macromolecules, 2004, 37, 248-250.	4.8	105
195	Ultralarge and Thermally Stable Electro-optic Activities from Diels–Alder Crosslinkable Polymers Containing Binary Chromophore Systems. Advanced Materials, 2006, 18, 3038-3042.	21.0	105
196	Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying. ACS Energy Letters, 2018, 3, 1261-1268.	17.4	105
197	Highly Efficient and Stable Perovskite Solar Cells Enabled by All-Crosslinked Charge-Transporting Layers. Joule, 2018, 2, 168-183.	24.0	105
198	Large electro-optic activity and low optical loss derived from a highly fluorinated dendritic nonlinear optical chromophore. Chemical Communications, 2002, , 888-889.	4.1	104

#	Article	IF	CITATIONS
199	Intensive Exposure of Functional Rings of a Polymeric Holeâ€Transporting Material Enables Efficient Perovskite Solar Cells. Advanced Materials, 2018, 30, e1804028.	21.0	104
200	Boosting Photovoltaic Performance for Lead Halide Perovskites Solar Cells with BF ₄ ^{â^'} Anion Substitutions. Advanced Functional Materials, 2019, 29, 1808833.	14.9	104
201	Synthesis and Relative Thermal Stabilities of Diphenylamino- vs Piperidinyl-Substituted Bithiophene Chromophores for Nonlinear Optical Materials. Journal of Organic Chemistry, 1996, 61, 2242-2246.	3.2	103
202	Selfâ€assembled Electroactive Phosphonic Acids on ITO: Maximizing Holeâ€Injection in Polymer Lightâ€Emitting Diodes. Advanced Functional Materials, 2008, 18, 3964-3971.	14.9	103
203	Dielectric Surface-Controlled Low-Voltage Organic Transistors via <i>n</i> -Alkyl Phosphonic Acid Self-Assembled Monolayers on High- <i>k</i> Metal Oxide. ACS Applied Materials & Interfaces, 2010, 2, 511-520.	8.0	103
204	Highâ€Performance Nearâ€IR Photodetector Using Lowâ€Bandgap MA _{0.5} FA _{0.5} Pb _{0.5} Sn _{0.5} I ₃ Perovskite. Advanced Functional Materials, 2017, 27, 1701053.	14.9	103
205	Wideband 15THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths. Applied Physics Letters, 2008, 92, .	3.3	102
206	Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement. Applied Physics Letters, 2010, 97, .	3.3	102
207	High-mobility low-bandgap conjugated copolymers based on indacenodithiophene and thiadiazolo[3,4-c]pyridine units for thin film transistor and photovoltaic applications. Journal of Materials Chemistry, 2011, 21, 13247.	6.7	102
208	A Lowâ€Temperature, Solutionâ€Processable Organic Electronâ€Transporting Layer Based on Planar Coronene for Highâ€performance Conventional Perovskite Solar Cells. Advanced Materials, 2016, 28, 10786-10793.	21.0	102
209	Perfluorocyclobutane-Based Arylamine Hole-Transporting Materials for Organic and Polymer Light-Emitting Diodes. Advanced Functional Materials, 2002, 12, 745-751.	14.9	101
210	Benzobis(silolothiophene)-Based Low Bandgap Polymers for Efficient Polymer Solar Cells. Chemistry of Materials, 2011, 23, 765-767.	6.7	101
211	Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide. Optics Letters, 2013, 38, 4931.	3.3	101
212	Design of a versatile interconnecting layer for highly efficient series-connected polymer tandem solar cells. Energy and Environmental Science, 2015, 8, 1712-1718.	30.8	101
213	Allâ€Inorganic CsPbl ₃ Quantum Dot Solar Cells with Efficiency over 16% by Defect Control. Advanced Functional Materials, 2021, 31, 2005930.	14.9	101
214	Effect of Initiators on the Kumada Catalyst-Transfer Polycondensation Reaction. Macromolecules, 2009, 42, 7670-7677.	4.8	100
215	Elevenâ€Membered Fusedâ€Ring Low Bandâ€Gap Polymer with Enhanced Charge Carrier Mobility and Photovoltaic Performance. Advanced Functional Materials, 2014, 24, 3631-3638.	14.9	99
216	Dilution effect for highly efficient multiple-component organic solar cells. Nature Nanotechnology, 2022, 17, 53-60.	31.5	99

#	Article	IF	CITATIONS
217	Electronâ€Rich Alcoholâ€Soluble Neutral Conjugated Polymers as Highly Efficient Electronâ€Injecting Materials for Polymer Lightâ€Emitting Diodes. Advanced Functional Materials, 2009, 19, 2457-2466.	14.9	98
218	Spraycoating of silver nanoparticle electrodes for inverted polymer solar cells. Organic Electronics, 2009, 10, 719-723.	2.6	98
219	Highly Efficient White Polymer Lightâ€Emitting Diodes Based on Nanometerâ€Scale Control of the Electron Injection Layer Morphology through Solvent Processing. Advanced Materials, 2008, 20, 1565-1570.	21.0	97
220	Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics. Nano Letters, 2018, 18, 3985-3993.	9.1	97
221	Large and Stable Nonlinear Optical Effects Observed for a Polyimide Covalently Incorporating a Nonlinear Optical Chromophore. Chemistry of Materials, 1994, 6, 104-106.	6.7	96
222	2-(2′-Hydroxyphenyl)benzoxazole-Containing Two-Photon-Absorbing Chromophores as Sensors for Zinc and Hydroxide Ions. Chemistry of Materials, 2008, 20, 1977-1987.	6.7	96
223	Supramolecular Selfâ€Assembled Dendritic Nonlinear Optical Chromophores: Fineâ€Tuning of Arene–Perfluoroarene Interactions for Ultralarge Electroâ€Optic Activity and Enhanced Thermal Stability. Advanced Materials, 2009, 21, 1976-1981.	21.0	96
224	Vertical Orientated Dion–Jacobson Quasiâ€2D Perovskite Film with Improved Photovoltaic Performance and Stability. Small Methods, 2020, 4, 1900831.	8.6	96
225	Synthesis, Characterization, and Photovoltaic Properties of Carbazole-Based Two-Dimensional Conjugated Polymers with Donor-Ï€-Bridge-Acceptor Side Chains. Chemistry of Materials, 2010, 22, 6444-6452.	6.7	95
226	Side-Chain Effect on Cyclopentadithiophene/Fluorobenzothiadiazole-Based Low Band Gap Polymers and Their Applications for Polymer Solar Cells. Macromolecules, 2013, 46, 5497-5503.	4.8	94
227	Site-Isolated Electro-optic Chromophores Based on Substituted 2,2′-Bis(3,4-propylenedioxythiophene) Ï€-Conjugated Bridges. Chemistry of Materials, 2008, 20, 3425-3434.	6.7	93
228	Terthieno[3,2â€ <i>b</i>]Thiophene (6T) Based Low Bandgap Fusedâ€Ring Electron Acceptor for Highly Efficient Solar Cells with a High Shortâ€Circuit Current Density and Low Openâ€Circuit Voltage Loss. Advanced Energy Materials, 2018, 8, 1702831.	19.5	93
229	Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH ₃ NH ₃ Pb _{<i>x</i>} Sn _{1–<i>x</i>} Br ₃ Single Crystals. Chemistry of Materials, 2018, 30, 1556-1565.	6.7	93
230	Plasmonic Metal Nanoparticles with Core–Bishell Structure for High-Performance Organic and Perovskite Solar Cells. ACS Nano, 2019, 13, 5397-5409.	14.6	93
231	Creating Favorable Geometries for Directing Organic Photoreactions in Alkanethiolate Monolayers. Science, 2011, 331, 1312-1315.	12.6	92
232	Tackling Energy Loss for Highâ€Efficiency Organic Solar Cells with Integrated Multiple Strategies. Advanced Materials, 2018, 30, e1706816.	21.0	92
233	Bright red-emitting electrophosphorescent device using osmium complex as a triplet emitter. Applied Physics Letters, 2003, 83, 776-778.	3.3	91
234	Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex. Chemistry of Materials, 2005, 17, 3532-3536.	6.7	91

#	Article	IF	CITATIONS
235	Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chemical Society Reviews, 2021, 50, 13090-13128.	38.1	91
236	Semiconducting Polymer Photodetectors with Electron and Hole Blocking Layers: High Detectivity in the Near-Infrared. Sensors, 2010, 10, 6488-6496.	3.8	90
237	Graphene oxide nanosheets based organic field effect transistor for nonvolatile memory applications. Applied Physics Letters, 2010, 97, .	3.3	90
238	Thermally Cross-Linkable Hole-Transporting Materials for Improving Hole Injection in Multilayer Blue-Emitting Phosphorescent Polymer Light-Emitting Diodes. Macromolecules, 2008, 41, 9570-9580.	4.8	89
239	Facile synthesis of a 56ï€-electron 1,2-dihydromethano-[60]PCBM and its application for thermally stable polymer solar cells. Chemical Communications, 2011, 47, 10082.	4.1	89
240	Microcavityâ€Enhanced Lightâ€Trapping for Highly Efficient Organic Parallel Tandem Solar Cells. Advanced Materials, 2014, 26, 6778-6784.	21.0	89
241	Influence of Regio- and Chemoselectivity on the Properties of Fluoro-Substituted Thienothiophene and Benzodithiophene Copolymers. Journal of the American Chemical Society, 2015, 137, 7616-7619.	13.7	89
242	Highly Efficient Semitransparent Solar Cells with Selective Absorption and Tandem Architecture. Advanced Materials, 2019, 31, e1901683.	21.0	89
243	A Dopantâ€Free Polymeric Holeâ€Transporting Material Enabled High Fill Factor Over 81% for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1902600.	19.5	89
244	Lowâ€Bandgap Organic Bulkâ€Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. Advanced Materials, 2021, 33, e2105539.	21.0	89
245	Highly-efficient fabrication of nanoscrolls from functionalized graphene oxide by Langmuir–Blodgett method. Carbon, 2010, 48, 4475-4482.	10.3	88
246	Ring resonator-based electrooptic polymer traveling-wave modulator. Journal of Lightwave Technology, 2006, 24, 3514-3519.	4.6	87
247	Synthesis, Properties, and Application of New Luminescent Polymers with Both Hole and Electron Injection Abilities for Light-Emitting Devices. Chemistry of Materials, 1999, 11, 1568-1575.	6.7	86
248	Phenyltetraene-Based Nonlinear Optical Chromophores with Enhanced Chemical Stability and Electrooptic Activity. Organic Letters, 2007, 9, 4471-4474.	4.6	86
249	Directed selfâ€immobilization of alkaline phosphatase on microâ€patterned substrates via genetically fused metalâ€binding peptide. Biotechnology and Bioengineering, 2009, 103, 696-705.	3.3	86
250	Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer. Advanced Science, 2016, 3, 1600027.	11.2	86
251	A Generally Applicable Approach Using Sequential Deposition to Enable Highly Efficient Organic Solar Cells. Small Methods, 2020, 4, 2000687.	8.6	86
252	A Novel Lattice-Hardening Process To Achieve Highly Efficient and Thermally Stable Nonlinear Optical Polymers. Macromolecules, 2004, 37, 688-690.	4.8	85

#	Article	IF	CITATIONS
253	Facile Synthesis of Highly Efficient Phenyltetraene-Based Nonlinear Optical Chromophores for Electrooptics. Organic Letters, 2006, 8, 1387-1390.	4.6	85
254	Bright white light electroluminescent devices based on a dye-dispersed polyfluorene derivative. Applied Physics Letters, 2004, 85, 1116-1118.	3.3	84
255	Synthesis of Diarylthiobarbituric acid Chromophores with Enhanced Second-order Optical Nonlinearities and Thermal Stability. Chemistry of Materials, 1994, 6, 1603-1604.	6.7	83
256	Selenium-Containing Organic Photovoltaic Materials. Accounts of Chemical Research, 2021, 54, 3906-3916.	15.6	83
257	High-performance blue light-emitting diode based on a binaphthyl-containing polyfluorene. Applied Physics Letters, 2000, 76, 1813-1815.	3.3	82
258	Electro-optic modulation in slotted resonant photonic crystal heterostructures. Applied Physics Letters, 2009, 94, .	3.3	82
259	Halogen-free solvent processing for sustainable development of high efficiency organic solar cells. Organic Electronics, 2012, 13, 2870-2878.	2.6	82
260	Highly crystalline Zn ₂ SnO ₄ nanoparticles as efficient electron-transporting layers toward stable inverted and flexible conventional perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 15294-15301.	10.3	82
261	Quantifying Efficiency Loss of Perovskite Solar Cells by a Modified Detailed Balance Model. Advanced Energy Materials, 2018, 8, 1701586.	19.5	82
262	Synthesis and Characterization of a Novel Light-Emitting Polymer Containing Highly Efficient Hole-Transporting Aromatic Diamine. Chemistry of Materials, 1998, 10, 3301-3304.	6.7	81
263	Thermally crosslinked hole-transporting layers for cascade hole-injection and effective electron-blocking/exciton-confinement in phosphorescent polymer light-emitting diodes. Applied Physics Letters, 2006, 88, 093505.	3.3	81
264	Electrooptic Polymer Ring Resonator Modulation up to 165 GHz. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 104-110.	2.9	81
265	High Performance Optical Modulator Based on Electro-Optic Polymer Filled Silicon Slot Photonic Crystal Waveguide. Journal of Lightwave Technology, 2016, 34, 2941-2951.	4.6	81
266	Silicon-Organic Hybrid (SOH) Mach-Zehnder Modulators for 100 Gbit/s on-off Keying. Scientific Reports, 2018, 8, 2598.	3.3	81
267	Resonance enhanced THz generation in electro-optic polymers near the absorption maximum. Applied Physics Letters, 2004, 85, 5827-5829.	3.3	80
268	High-efficiency light-emitting diodes using neutral surfactants and aluminum cathode. Applied Physics Letters, 2005, 86, 083504.	3.3	80
269	Inâ€situ Crosslinking and nâ€Doping of Semiconducting Polymers and Their Application as Efficient Electronâ€Transporting Materials in Inverted Polymer Solar Cells. Advanced Energy Materials, 2011, 1, 1148-1153.	19.5	80
270	Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability. , 2022, 1, e9120004.		80

#	Article	IF	CITATIONS
271	Systematic development of high bandwidth, low drive voltage organic electro-optic devices and their applications. Optical Materials, 2003, 21, 19-28.	3.6	79
272	A Tetraperylene Diimides Based 3D Nonfullerene Acceptor for Efficient Organic Photovoltaics. Advanced Science, 2015, 2, 1500014.	11.2	79
273	Diâ€Spiroâ€Based Holeâ€Transporting Materials for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800809.	19.5	79
274	Hybrid Perovskiteâ€Organic Flexible Tandem Solar Cell Enabling Highly Efficient Electrocatalysis Overall Water Splitting. Advanced Energy Materials, 2020, 10, 2000361.	19.5	79
275	A Binaphthyl-Based Conjugated Polymer for Light-Emitting Diodes. Chemistry of Materials, 2000, 12, 13-15.	6.7	77
276	Low-voltage organic thin-film transistors with π-σ-phosphonic acid molecular dielectric monolayers. Applied Physics Letters, 2008, 92, .	3.3	77
277	Biofunctionalization of materials for implants using engineered peptides. Acta Biomaterialia, 2010, 6, 4634-4641.	8.3	77
278	Simultaneous Modification of Bottomâ€Contact Electrode and Dielectric Surfaces for Organic Thinâ€Film Transistors Through Singleâ€Component Spinâ€Cast Monolayers. Advanced Functional Materials, 2011, 21, 1476-1488.	14.9	76
279	Push–pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups. Journal of Materials Chemistry, 2012, 22, 16390.	6.7	75
280	Low-temperature electrodeposited crystalline SnO2 as an efficient electron-transporting layer for conventional perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 164, 47-55.	6.2	75
281	Bisâ€Tridentate Iridium(III) Phosphors with Very High Photostability and Fabrication of Blueâ€Emitting OLEDs. Advanced Science, 2018, 5, 1800846.	11.2	75
282	Two-Photon Absorbing Block Copolymer as a Nanocarrier for Porphyrin:Â Energy Transfer and Singlet Oxygen Generation in Micellar Aqueous Solution. Journal of the American Chemical Society, 2007, 129, 7220-7221.	13.7	74
283	Spiroâ€Phenylpyrazoleâ€9,9′â€Thioxanthene Analogues as Holeâ€Transporting Materials for Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700823.	19.5	74
284	Ketene dithioacetal as a π-electron donor in second-order nonlinear optical chromophores. Journal of the Chemical Society Chemical Communications, 1994, , 1689-1690.	2.0	73
285	Red electrophosphorescence from osmium complexes. Applied Physics Letters, 2002, 80, 713-715.	3.3	73
286	Highly Efficient Diels–Alder Crosslinkable Electroâ€Optic Dendrimers for Electricâ€Field Sensors. Advanced Functional Materials, 2007, 17, 2557-2563.	14.9	73
287	Chemically Doped and Cross-linked Hole-Transporting Materials as an Efficient Anode Buffer Layer for Polymer Solar Cells. Chemistry of Materials, 2011, 23, 5006-5015.	6.7	73
288	Improved thin film morphology and bulk-heterojunction solar cell performance through systematic tuning of the surface energy of conjugated polymers. Journal of Materials Chemistry, 2012, 22, 5587.	6.7	73

#	Article	IF	CITATIONS
289	Long-Lived, Non-Geminate, Radiative Recombination of Photogenerated Charges in a Polymer/Small-Molecule Acceptor Photovoltaic Blend. Journal of the American Chemical Society, 2018, 140, 9996-10008.	13.7	73
290	Highly Efficient and Thermally Stable Electro-optic Polymer from a Smartly Controlled Crosslinking Process. Advanced Materials, 2003, 15, 1635-1638.	21.0	72
291	Highly Fluorinated Trifluorovinyl Aryl Ether Monomers and Perfluorocyclobutane Aromatic Ether Polymers for Optical Waveguide Applications. Macromolecules, 2003, 36, 8001-8007.	4.8	72
292	Replica-molded electro-optic polymer Mach–Zehnder modulator. Applied Physics Letters, 2004, 85, 1662-1664.	3.3	72
293	Reinforced Site Isolation Leading to Remarkable Thermal Stability and High Electrooptic Activities in Cross-Linked Nonlinear Optical Dendrimers. Chemistry of Materials, 2008, 20, 6372-6377.	6.7	72
294	Highly Efficient Polymer Tandem Cells and Semitransparent Cells for Solar Energy. Advanced Energy Materials, 2014, 4, 1301645.	19.5	71
295	Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells. Nano Energy, 2016, 30, 417-425.	16.0	71
296	Thick TiO ₂ -Based Top Electron Transport Layer on Perovskite for Highly Efficient and Stable Solar Cells. ACS Energy Letters, 2018, 3, 2891-2898.	17.4	71
297	Synthesis and Characterization of Highly Efficient, Chemically and Thermally Stable Chromophores with Chromone-Containing Electron Acceptors for NLO Applications. Advanced Materials, 1999, 11, 452-455.	21.0	70
298	Highâ€Efficiency and Color Stable Blueâ€Lightâ€Emitting Polymers and Devices. Advanced Functional Materials, 2007, 17, 3808-3815.	14.9	70
299	Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode. Applied Physics Letters, 2010, 96, .	3.3	70
300	Spin ast and Patterned Organophosphonate Selfâ€Assembled Monolayer Dielectrics on Metalâ€Oxideâ€Activated Si. Advanced Materials, 2011, 23, 1899-1902.	21.0	70
301	Side hain Engineering on Dopantâ€Free Holeâ€Transporting Polymers toward Highly Efficient Perovskite Solar Cells (20.19%). Advanced Functional Materials, 2019, 29, 1904856.	14.9	69
302	Determination of first hyperpolarizability of nonlinear optical chromophores by second harmonic scattering using an external reference. Journal of Chemical Physics, 1996, 104, 7821-7829.	3.0	68
303	Allâ€Organic Photopatterned One Diodeâ€One Resistor Cell Array for Advanced Organic Nonvolatile Memory Applications. Advanced Materials, 2012, 24, 828-833.	21.0	68
304	Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance. Journal of Materials Chemistry C, 2013, 1, 101-113.	5.5	68
305	Pyrene and Diketopyrrolopyrrole-Based Oligomers Synthesized via Direct Arylation for OSC Applications. ACS Applied Materials & amp; Interfaces, 2014, 6, 6765-6775.	8.0	68
306	High‣fficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration. Advanced Materials, 2017, 29, 1702547.	21.0	68

#	Article	IF	CITATIONS
307	Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics. Nano Energy, 2020, 78, 105377.	16.0	68
308	Dopant-free dicyanofluoranthene-based hole transporting material with low cost enables efficient flexible perovskite solar cells. Nano Energy, 2021, 82, 105701.	16.0	68
309	A Hyperbranched Aromatic Fluoropolyester for Photonic Applications. Macromolecules, 2003, 36, 4355-4359.	4.8	67
310	Self-Assembled Monolayers of Aromatic Thiols Stabilized by Parallel-Displaced Ï€â^'Ï€ Stacking Interactions. Langmuir, 2006, 22, 3049-3056.	3.5	67
311	Hydrophobic Chromophores in Aqueous Micellar Solution Showing Large Two-Photon Absorption Cross Sections. Advanced Functional Materials, 2007, 17, 1691-1697.	14.9	67
312	Electro-optic polymer cladding ring resonator modulators. Optics Express, 2008, 16, 18326.	3.4	67
313	Improved Efficiency and Stability of Pb/Sn Binary Perovskite Solar Cells Fabricated by Galvanic Displacement Reaction. Advanced Energy Materials, 2019, 9, 1802774.	19.5	67
314	Two-Photon Absorption in Quadrupolar Bis(acceptor)-Terminated Chromophores with Electron-Rich Bis(heterocycle)vinylene Bridges. Chemistry of Materials, 2007, 19, 432-442.	6.7	66
315	Synergistical Dipole–Dipole Interaction Induced Selfâ€Assembly of Phenoxazineâ€Based Holeâ€Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 20437-20442.	13.8	66
316	Coâ€assembled Monolayers as Holeâ€Selective Contact for Highâ€Performance Inverted Perovskite Solar Cells with Optimized Recombination Loss and Longâ€Term Stability. Angewandte Chemie - International Edition, 2022, 61, .	13.8	66
317	Longâ€Lifetime Polymer Lightâ€Emitting Electrochemical Cells Fabricated with Crosslinked Holeâ€Transport Layers. Advanced Materials, 2009, 21, 1972-1975.	21.0	65
318	Steric Stabilization Effects in Nickel-Catalyzed Regioregular Poly(3-hexylthiophene) Synthesis. Macromolecules, 2009, 42, 9387-9389.	4.8	65
319	40 GHz electro-optic modulation in hybrid silicon–organic slotted photonic crystal waveguides. Optics Letters, 2010, 35, 2753.	3.3	65
320	Enhanced Moisture Stability of Cesium ontaining Compositional Perovskites by a Feasible Interfacial Engineering. Advanced Materials Interfaces, 2017, 4, 1700598.	3.7	65
321	Nonhalogen Solventâ€Processed Asymmetric Wideâ€Bandgap Polymers for Nonfullerene Organic Solar Cells with Over 10% Efficiency. Advanced Functional Materials, 2018, 28, 1706517.	14.9	65
322	Near-infrared absorbing polymer acceptors enabled by selenophene-fused core and halogenated end-group for binary all-polymer solar cells with efficiency over 16%. Nano Energy, 2022, 92, 106718.	16.0	65
323	Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells. Nanoscale, 2015, 7, 17343-17349.	5.6	64
324	Large Grained Perovskite Solar Cells Derived from Single-Crystal Perovskite Powders with Enhanced Ambient Stability. ACS Applied Materials & Interfaces, 2016, 8, 14513-14520.	8.0	64

#	Article	IF	CITATIONS
325	On understanding bandgap bowing and optoelectronic quality in Pb–Sn alloy hybrid perovskites. Journal of Materials Chemistry A, 2019, 7, 16285-16293.	10.3	64
326	Strong Photocurrent Enhancements in Highly Efficient Flexible Organic Solar Cells by Adopting a Microcavity Configuration. Advanced Materials, 2014, 26, 3349-3354.	21.0	63
327	Facile Thiolâ€Ene Thermal Crosslinking Reaction Facilitated Holeâ€Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1601165.	19.5	62
328	Unexpectedly Slow Yet Efficient Picosecond to Nanosecond Photoinduced Hole-Transfer Occurs in a Polymer/Nonfullerene Acceptor Organic Photovoltaic Blend. ACS Energy Letters, 2018, 3, 2396-2403.	17.4	62
329	Modifying Surface Termination of CsPbl ₃ Grain Boundaries by 2D Perovskite Layer for Efficient and Stable Photovoltaics. Advanced Functional Materials, 2021, 31, 2009515.	14.9	62
330	Red-emitting electroluminescent devices based on osmium-complexes-doped blend of poly(vinylnaphthalene) and 1,3,4-oxadiazole derivative. Applied Physics Letters, 2002, 81, 3125-3127.	3.3	61
331	Organic electro-optic modulator using transparent conducting oxides as electrodes. Optics Express, 2005, 13, 7380.	3.4	61
332	Polymer Triplet Energy Levels Need Not Limit Photocurrent Collection in Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 19661-19668.	13.7	61
333	Enhanced Performance of Organic Solar Cells with Increased End Group Dipole Moment in Indacenodithieno[3,2â€b]thiopheneâ€Based Molecules. Advanced Functional Materials, 2015, 25, 4889-4897.	14.9	61
334	Fullerene-Anchored Core-Shell ZnO Nanoparticles for Efficient and Stable Dual-Sensitized Perovskite Solar Cells. Joule, 2019, 3, 417-431.	24.0	61
335	Enabling High Efficiency of Hydrocarbonâ€Solvent Processed Organic Solar Cells through Balanced Charge Generation and Nonâ€Radiative Loss. Advanced Energy Materials, 2021, 11, 2101768.	19.5	61
336	Theoretical and experimental studies of the molecular second order nonlinear optical responses of heteroaromatic compounds. Journal of Chemical Physics, 1994, 100, 6818-6825.	3.0	60
337	Thermally stable poled polyquinoline thin film with very large electroâ€optic response. Applied Physics Letters, 1995, 67, 299-301.	3.3	60
338	Directed Assembly of Single-Walled Carbon Nanotubes via Drop-Casting onto a UV-Patterned Photosensitive Monolayer. Journal of the American Chemical Society, 2008, 130, 7226-7227.	13.7	60
339	Steric Effects of the Initiator Substituent Position on the Externally Initiated Polymerization of 2-Bromo-5-iodo-3-hexylthiophene. Macromolecules, 2011, 44, 512-520.	4.8	60
340	n-Doping of thermally polymerizable fullerenes as an electron transporting layer for inverted polymer solar cells. Journal of Materials Chemistry, 2011, 21, 6956.	6.7	60
341	Regio-Specific Selenium Substitution in Non-Fullerene Acceptors for Efficient Organic Solar Cells. Chemistry of Materials, 2019, 31, 6770-6778.	6.7	60
342	Technical Challenges and Perspectives for the Commercialization of Solutionâ€Processable Solar Cells. Advanced Materials Technologies, 2021, 6, .	5.8	60

#	Article	IF	CITATIONS
343	Surface-Initiated Synthesis of Poly(3-methylthiophene) from Indium Tin Oxide and its Electrochemical Properties. Langmuir, 2012, 28, 1900-1908.	3.5	59
344	Highly Stable and Efficient Perovskite Solar Cells with 22.0% Efficiency Based on Inorganic–Organic Dopantâ€Free Double Hole Transporting Layers. Advanced Functional Materials, 2020, 30, 1908462.	14.9	59
345	Synthesis and Characterization of a Bipolar Light-Emitting Copolymer Consisting of Tetraphenyldiaminobiphenyl and Bis-Quinoline Units. Chemistry of Materials, 1999, 11, 27-29.	6.7	58
346	Highâ€Performance Inverted Polymer Solar Cells: Device Characterization, Optical Modeling, and Holeâ€Transporting Modifications. Advanced Functional Materials, 2012, 22, 2804-2811.	14.9	58
347	Design of Superhydrophobic Surfaces for Stable Perovskite Solar Cells with Reducing Lead Leakage. Advanced Energy Materials, 2021, 11, 2102281.	19.5	58
348	Boosting Efficiency of Nearâ€Infrared Organic Lightâ€Emitting Diodes with Os(II)â€Based Pyrazinyl Azolate Emitters. Advanced Functional Materials, 2020, 30, 1906738.	14.9	57
349	Optimization of thermal stability and second-order nonlinear optical properties of thiophene derived chromophores. Journal of the Chemical Society Chemical Communications, 1994, , 2057.	2.0	56
350	Highly Sensitive Builtâ€In Strain Sensors for Polymer Composites: Fluorescence Turnâ€On Response through Mechanochemical Activation. Advanced Materials, 2016, 28, 6592-6597.	21.0	56
351	Solutionâ€Processed Lowâ€Bandgap Culn(S,Se) ₂ Absorbers for Highâ€Efficiency Singleâ€Junction and Monolithic Chalcopyriteâ€Perovskite Tandem Solar Cells. Advanced Energy Materials, 2018, 8, 1801254.	19.5	56
352	Functional Pyrimidinyl Pyrazolate Pt(II) Complexes: Role of Nitrogen Atom in Tuning the Solidâ€State Stacking and Photophysics. Advanced Functional Materials, 2019, 29, 1900923.	14.9	56
353	Coordination Engineering of Singleâ€Crystal Precursor for Phase Control in Ruddlesden–Popper Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1904050.	19.5	56
354	High-Performance Polyquinolines with Pendent High-Temperature Chromophores for Second-Order Nonlinear Optics. Chemistry of Materials, 1998, 10, 471-473.	6.7	55
355	Patterning of Robust Self-Assembled n-type Hexaazatrinaphthylene-Based Nanorods and Nanowires by Microcontact Printing. Journal of the American Chemical Society, 2006, 128, 13042-13043.	13.7	55
356	Dopantâ€Free Crossconjugated Holeâ€Transporting Polymers for Highly Efficient Perovskite Solar Cells. Advanced Science, 2020, 7, 1903331.	11.2	55
357	A Novel Class of High-Performance Perfluorocyclobutane-Containing Polymers for Second-Order Nonlinear Optics. Chemistry of Materials, 2000, 12, 1187-1189.	6.7	54
358	Study on the Formation of Self-Assembled Monolayers on Solâ^'Gel Processed Hafnium Oxide as Dielectric Layers. Langmuir, 2009, 25, 2140-2147.	3.5	54
359	Hybrid Quantum Dot/Organic Heterojunction: A Route to Improve Open-Circuit Voltage in PbS Colloidal Quantum Dot Solar Cells. ACS Energy Letters, 2020, 5, 2335-2342.	17.4	54
360	16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone. Science China Chemistry, 2022, 65, 309-317.	8.2	54

#	Article	IF	CITATIONS
361	Solvent-Dependent Assembly of Terphenyl- and Quaterphenyldithiol on Gold and Gallium Arsenide. Langmuir, 2005, 21, 5887-5893.	3.5	53
362	Synthesis, Nanostructure, Functionality, and Application of Polyfluorene- <i>block</i> -poly(<i>N</i> -isopropylacrylamide)s. Macromolecules, 2010, 43, 282-291.	4.8	53
363	Supramolecular Assembly of Complementary Cyanine Salt J-Aggregates. Journal of the American Chemical Society, 2015, 137, 11920-11923.	13.7	53
364	Highly efficient and stable perovskite solar cells enabled by low-dimensional perovskitoids. Science Advances, 2022, 8, eabk2722.	10.3	53
365	Functionalized Fused Thiophenes: A New Class of Thermally Stable and Efficient Second-Order Nonlinear Optical Chromophores. Chemistry of Materials, 1994, 6, 2210-2212.	6.7	52
366	Mesoscale Dynamics and Cooperativity of Networking Dendronized Nonlinear Optical Molecular Glasses. Nano Letters, 2008, 8, 754-759.	9.1	52
367	Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches. Applied Physics Letters, 2009, 94, .	3.3	52
368	Facile structure and property tuning through alteration of ring structures in conformationally locked phenyltetraene nonlinear optical chromophores. Journal of Materials Chemistry, 2011, 21, 4437.	6.7	52
369	High-performance hole-transporting layer-free conventional perovskite/fullerene heterojunction thin-film solar cells. Journal of Materials Chemistry A, 2015, 3, 9128-9132.	10.3	52
370	Optical Enhancement via Electrode Designs for Highâ€Performance Polymer Solar Cells. Advanced Functional Materials, 2016, 26, 321-340.	14.9	52
371	Efficient Cyano-Containing Electron-Transporting Polymers for Light-Emitting Diodes. Chemistry of Materials, 2001, 13, 3820-3822.	6.7	51
372	Trends in Optical Nonlinearity and Thermal Stability in Electrooptic Chromophores Based upon the 3-(Dicyanomethylene)-2,3-dihydrobenzothiophene-1, 1-dioxide Acceptorâ€. Journal of Physical Chemistry B, 2004, 108, 8626-8630.	2.6	51
373	Effect of Molecular Orientation of Donor Polymers on Charge Generation and Photovoltaic Properties in Bulk Heterojunction Allâ€Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1601365.	19.5	51
374	Boosting the Performance of Environmentally Friendly Quantum Dot‣ensitized Solar Cells over 13% Efficiency by Dual Sensitizers with Cascade Energy Structure. Advanced Materials, 2019, 31, e1903696.	21.0	51
375	Synthesis of second-order nonlinear optical chromophores with enhanced thermal stability and nonlinearity: a conformation-locked trans-polyene approach. Chemical Communications, 1996, , 2279.	4.1	50
376	Improved stability and efficiency of perovskite/organic tandem solar cells with an all-inorganic perovskite layer. Journal of Materials Chemistry A, 2021, 9, 19778-19787.	10.3	50
377	A new synthetic approach for nonlinear optical chromophores possessing enhanced thermal stability. Tetrahedron Letters, 1996, 37, 7055-7058.	1.4	49
378	A Convenient Modular Approach of Functionalizing Aromatic Polyquinolines for Electrooptic Devices. Chemistry of Materials, 1999, 11, 2218-2225.	6.7	49

#	Article	IF	CITATIONS
379	Highly Efficient Red-Electrophosphorescent Devices Based on Polyfluorene Copolymers Containing Charge-Transporting Pendant Units. Journal of Physical Chemistry B, 2005, 109, 14000-14005.	2.6	49
380	Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells. Advanced Functional Materials, 2012, 22, 2160-2166.	14.9	49
381	Navigating Organoâ€Lead Halide Perovskite Phase Space via Nucleation Kinetics toward a Deeper Understanding of Perovskite Phase Transformations and Structure–Property Relationships. Small, 2015, 11, 3088-3096.	10.0	49
382	Ultra-efficient and stable electro-optic dendrimers containing supramolecular homodimers of semifluorinated dipolar aromatics. Materials Chemistry Frontiers, 2018, 2, 901-909.	5.9	49
383	An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics. Nano Energy, 2022, 93, 106853.	16.0	49
384	A Novel Class of Nonlinear Optical Side-Chain Polymer:Â Polyquinolines with Large Second-Order Nonlinearity and Thermal Stability. Chemistry of Materials, 1996, 8, 607-609.	6.7	48
385	Nonlinear Optical Chromophores with Configuration-Locked Polyenes Possessing Enhanced Thermal Stability and Chemical Stability. Chemistry of Materials, 1998, 10, 3284-3286.	6.7	48
386	Pockel's coefficient enhancement of poled electro-optic polymers with a hybrid organic-inorganic sol-gel cladding layer. Applied Physics Letters, 2006, 89, 131102.	3.3	48
387	Dually fluorescent sensing of pH and dissolved oxygen using a membrane made from polymerizable sensing monomers. Sensors and Actuators B: Chemical, 2010, 147, 714-722.	7.8	48
388	Evaluation of structure–property relationships of solution-processible fullerene acceptors and their n-channel field-effect transistor performance. Journal of Materials Chemistry, 2012, 22, 14976.	6.7	48
389	Room temperature formation of organic–inorganic lead halide perovskites: design of nanostructured and highly reactive intermediates. Journal of Materials Chemistry A, 2017, 5, 3599-3608.	10.3	48
390	Synthesis and Characterization of Nonlinear Optical Chromophores with Conformationally Locked Polyenes Possessing Enhanced Thermal Stability. Chemistry of Materials, 1999, 11, 1628-1632.	6.7	47
391	A highly electroluminescent molecular square. Chemical Communications, 2005, , 1002.	4.1	47
392	Achieving excellent electro-optic activity and thermal stability in poled polymers through an expeditious crosslinking process. Journal of Materials Chemistry, 2012, 22, 951-959.	6.7	47
393	Allâ€Inorganic Heteroâ€Structured Cesium Tin Halide Perovskite Lightâ€Emitting Diodes With Current Density Over 900 A cm ^{â^'2} and Its Amplified Spontaneous Emission Behaviors. Physica Sta Solidi - Rapid Research Letters, 2018, 12, 1800090.	tu 2. 4	47
394	Enhancing efficiency of perovskite solar cells by reducing defects through imidazolium cation incorporation. Materials Today Energy, 2018, 7, 161-168.	4.7	47
395	Mapping Nonfullerene Acceptors with a Novel Wide Bandgap Polymer for High Performance Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1801214.	19.5	47
396	Biomimetic Electrodes for Flexible Organic Solar Cells with Efficiencies over 16%. Advanced Optical Materials, 2020, 8, 2000669.	7.3	47

#	Article	IF	CITATIONS
397	Efficient light-emitting diodes based on a binaphthalene-containing polymer. Applied Physics Letters, 1999, 75, 3745-3747.	3.3	46
398	Highly efficient red electrophosphorescent devices based on an iridium complex with trifluoromethyl-substituted pyrimidine ligand. Applied Physics Letters, 2004, 85, 1619-1621.	3.3	46
399	Ultrafast Spectroscopic Study of Photoinduced Electron Transfer in an Oligo(thienylenevinylene):Fullerene Composite. Advanced Functional Materials, 2007, 17, 563-568.	14.9	46
400	The Effects of Binding Ligand Variation on the Nickel Catalyzed Externally Initiated Polymerization of 2â€Bromoâ€3â€hexylâ€5â€iodothiophene. Macromolecular Chemistry and Physics, 2009, 210, 1966-1972.	2.2	46
401	Tuning the Kinetics and Energetics of Dielsâ~'Alder Cycloaddition Reactions to Improve Poling Efficiency and Thermal Stability of High-Temperature Cross-Linked Electro-Optic Polymers. Chemistry of Materials, 2010, 22, 5601-5608.	6.7	46
402	In situ doping and crosslinking of fullerenes to form efficient and robust electron-transporting layers for polymer solar cells. Energy and Environmental Science, 2014, 7, 638-643.	30.8	46
403	A regioregular conjugated polymer for high performance thick-film organic solar cells without processing additive. Journal of Materials Chemistry A, 2017, 5, 10517-10525.	10.3	46
404	Asymmetric Isomer Effects in Benzo[<i>c</i>][1,2,5]thiadiazoleâ€Fused Nonacyclic Acceptors: Dielectric Constant and Molecular Crystallinity Control for Significant Photovoltaic Performance Enhancement. Advanced Functional Materials, 2021, 31, 2104369.	14.9	46
405	Sulfonated Graphene Aerogels Enable Safeâ€toâ€Use Flexible Perovskite Solar Modules. Advanced Energy Materials, 2022, 12, .	19.5	46
406	Controlled Assembly of Conducting Monomers for Molecular Electronics. Nano Letters, 2003, 3, 139-142.	9.1	45
407	Linear and Nonlinear Optical Properties of a Macrocyclic Trichromophore Bundle with Parallel-Aligned Dipole Moments. Journal of Physical Chemistry B, 2006, 110, 5434-5438.	2.6	45
408	Systematic Doping Control of CVD Graphene Transistors with Functionalized Aromatic Selfâ€Assembled Monolayers. Advanced Functional Materials, 2014, 24, 3464-3470.	14.9	45
409	Modulate Organicâ€Metal Oxide Heterojunction via [1,6] Azafulleroid for Highly Efficient Organic Solar Cells. Advanced Materials, 2016, 28, 7269-7275.	21.0	45
410	Efficient and stable Cs2AgBiBr6 double perovskite solar cells through in-situ surface modulation. Chemical Engineering Journal, 2022, 446, 137144.	12.7	45
411	Organic light-emitting diodes using an in situ thermally polymerized hole transporting layer. Applied Physics Letters, 2000, 76, 2985-2987.	3.3	44
412	Highly Efficient UVâ^'Violet Light-Emitting Polymers Derived from Fluorene and Tetraphenylsilane Derivatives:Â Molecular Design toward Enhanced Electroluminescent Performance. Macromolecules, 2007, 40, 3015-3020.	4.8	44
413	Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers. Nanotechnology, 2009, 20, 015305.	2.6	44
414	Solution processed inverted tandem polymer solar cells with self-assembled monolayer modified interfacial layers. Applied Physics Letters, 2010, 97, .	3.3	44

#	Article	IF	CITATIONS
415	Sensitivity of titania(B) nanowires to nitroaromatic and nitroamino explosives at room temperature via surface hydroxyl groups. Journal of Materials Chemistry, 2011, 21, 7269.	6.7	44
416	Enhanced Lightâ€Harvesting by Integrating Synergetic Microcavity and Plasmonic Effects for Highâ€Performance ITOâ€Free Flexible Polymer Solar Cells. Advanced Functional Materials, 2015, 25, 567-574.	14.9	44
417	Phenyl- and Pyrazolyl-Functionalized Pyrimidine: Versatile Chromophore of Bis-Tridentate Ir(III) Phosphors for Organic Light-Emitting Diodes. Chemistry of Materials, 2019, 31, 6453-6464.	6.7	44
418	New environmentally responsive fluorescentN-isopropylacrylamide copolymer and its application to DNA sensing. Journal of Polymer Science Part A, 2006, 44, 5495-5504.	2.3	43
419	Highly efficient indacenodithiophene-based polymeric solar cells in conventional and inverted device configurations. Organic Electronics, 2011, 12, 794-801.	2.6	43
420	Asâ€Cast Ternary Organic Solar Cells Based on an Asymmetric Sideâ€Chains Featured Acceptor with Reduced Voltage Loss and 14.0% Efficiency. Advanced Functional Materials, 2020, 30, 1909535.	14.9	43
421	Interfacial Engineering of Wideâ€Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells. Advanced Functional Materials, 2022, 32, 2107359.	14.9	43
422	The Molecular Ordering and Doubleâ€Channel Carrier Generation of Nonfullerene Photovoltaics within Multi‣engthâ€Scale Morphology. Advanced Materials, 2022, 34, e2108317.	21.0	43
423	A Novel Benzoxazole-Containing Poly(N-isopropylacrylamide) Copolymer as a Multifunctional Sensing Material. Macromolecular Rapid Communications, 2007, 28, 894-899.	3.9	42
424	Sub-Volt Silicon-Organic Electro-optic Modulator With 500 MHz Bandwidth. Journal of Lightwave Technology, 2011, 29, 1112-1117.	4.6	42
425	Indacenodithieno[3,2-b]thiophene-based broad bandgap polymers for high efficiency polymer solar cells. Polymer Chemistry, 2013, 4, 5220.	3.9	42
426	Open-Circuit Voltage Losses in Selenium-Substituted Organic Photovoltaic Devices from Increased Density of Charge-Transfer States. Chemistry of Materials, 2015, 27, 6583-6591.	6.7	42
427	Fused selenophene-thieno[3,2- <i>b</i>]thiophene–selenophene (ST)-based narrow-bandgap electron acceptor for efficient organic solar cells with small voltage loss. Chemical Communications, 2019, 55, 8258-8261.	4.1	42
428	Regiospecific <i>N</i> -alkyl substitution tunes the molecular packing of high-performance non-fullerene acceptors. Materials Horizons, 2022, 9, 403-410.	12.2	42
429	Homogeneous Grain Boundary Passivation in Wideâ€Bandgap Perovskite Films Enables Fabrication of Monolithic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency. Advanced Functional Materials, 2022, 32, .	14.9	42
430	Hybrid electro-optic polymer and selectively buried sol-gel waveguides. Applied Physics Letters, 2003, 82, 490-492.	3.3	41
431	Trimming of high-Q-factor silicon ring resonators by electron beam bleaching. Optics Letters, 2012, 37, 3114.	3.3	41
432	Development of Selfâ€Doped Conjugated Polyelectrolytes with Controlled Work Functions and Application to Hole Transport Layer Materials for Highâ€Performance Organic Solar Cells. Advanced Materials Interfaces, 2016, 3, 1500703.	3.7	41

#	Article	IF	CITATIONS
433	Abnormal Current–Voltage Hysteresis Induced by Reverse Bias in Organic–Inorganic Hybrid Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2016, 7, 995-1003.	4.6	41
434	Design rules for the broad application of fast (<1 s) methylamine vapor based, hybrid perovskite post deposition treatments. RSC Advances, 2016, 6, 27475-27484.	3.6	41
435	Low half-wave voltage and high electro-optic effect in hybrid polymer/sol-gel waveguide modulators. Applied Physics Letters, 2006, 89, 143506.	3.3	40
436	Surface-Enhanced Raman Spectroscopy To Probe Photoreaction Pathways and Kinetics of Isolated Reactants on Surfaces: Flat versus Curved Substrates. Nano Letters, 2012, 12, 5362-5368.	9.1	40
437	PCBM-doped electro-optic materials: investigation of dielectric, optical and electro-optic properties for highly efficient poling. Journal of Materials Chemistry C, 2016, 4, 10286-10292.	5.5	40
438	Silicon-organic hybrid (SOH) modulators for intensity-modulation / direct-detection links with line rates of up to 120 Gbit/s. Optics Express, 2017, 25, 23784.	3.4	40
439	Theoretical and Experimental Studies on the Surface Structures of Conjugated Rodâ^'Coil Block Copolymer Brushes. Langmuir, 2007, 23, 2805-2814.	3.5	39
440	Controlled Dielsâ^'Alder Reactions Used To Incorporate Highly Efficient Polyenic Chromophores into Maleimide-Containing Side-Chain Polymers for Electro-Optics. Macromolecules, 2009, 42, 2438-2445.	4.8	39
441	Boosting performance of inverted organic solar cells by using a planar coronene based electron-transporting layer. Nano Energy, 2017, 39, 454-460.	16.0	39
442	Assembly of Gold Nanoparticles Using Genetically Engineered Polypeptides. Small, 2005, 1, 698-702.	10.0	38
443	Threshold voltage control in organic thin film transistors with dielectric layer modified by a genetically engineered polypeptide. Applied Physics Letters, 2010, 97, .	3.3	38
444	Surface Characterization of Polythiophene:Fullerene Blends on Different Electrodes Using Near Edge X-ray Absorption Fine Structure. ACS Applied Materials & Interfaces, 2011, 3, 726-732.	8.0	38
445	The effect of thieno[3,2-b]thiophene on the absorption, charge mobility and photovoltaic performance of diketopyrrolopyrrole-based low bandgap conjugated polymers. Journal of Materials Chemistry C, 2013, 1, 7526.	5.5	38
446	Realization of a Highly Oriented MAPbBr ₃ Perovskite Thin Film via Ion Exchange for Ultrahigh Color Purity Green Light Emission. ACS Energy Letters, 2018, 3, 1662-1669.	17.4	38
447	Interfacial Modification through a Multifunctional Molecule for Inorganic Perovskite Solar Cells with over 18% Efficiency. Solar Rrl, 2020, 4, 2000205.	5.8	38
448	Highly Fluorinated and Crosslinkable Dendritic Polymer for Photonic Applications. Macromolecular Rapid Communications, 2004, 25, 1667-1673.	3.9	37
449	Highly Efficient Photocurrent Generation from a Self-Assembled Monolayer Film of a Novel C60-Tethered 2,5-Dithienylpyrrole Triad. Chemistry of Materials, 2004, 16, 5058-5062.	6.7	37
450	Efficient acceptor groups for NLO chromophores: competing inductive and resonance contributions in heterocyclic acceptors derived from 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran. Journal of Materials Chemistry, 2007, 17, 2944-2949.	6.7	37

#	Article	IF	CITATIONS
451	Cross-Conjugated Polymers with Large Two-Photon Absorption Cross-Sections for Metal Ion Sensing. Journal of Physical Chemistry C, 2007, 111, 10673-10681.	3.1	37
452	A Silicon-Polymer Hybrid Modulator—Design, Simulation and Proof of Principle. Journal of Lightwave Technology, 2013, 31, 4067-4072.	4.6	37
453	Efficient all polymer solar cells from layer-evolved processing of a bilayer inverted structure. Journal of Materials Chemistry C, 2014, 2, 416-420.	5.5	37
454	Colloidal CdSe quantum dot electroluminescence: ligands and light-emitting diodes. Mikrochimica Acta, 2008, 160, 345-350.	5.0	36
455	Enhanced performance of polymer solar cells using solution-processed tetra-n-alkyl ammonium bromides as electron extraction layers. Journal of Materials Chemistry A, 2013, 1, 2582.	10.3	36
456	Poling efficiency enhancement of tethered binary nonlinear optical chromophores for achieving an ultrahigh n ³ r ₃₃ figure-of-merit of 2601 pm V ^{â^'1} . Journal of Materials Chemistry C, 2015, 3, 6737-6744.	5.5	36
457	Thermally stable poled polyimides using heteroaromatic chromophores. Journal of Applied Physics, 1994, 75, 3308-3310.	2.5	35
458	Doping Versatile n-Type Organic Semiconductors via Room Temperature Solution-Processable Anionic Dopants. ACS Applied Materials & Interfaces, 2017, 9, 1136-1144.	8.0	35
459	Asymmetrical side-chain engineering of small-molecule acceptors enable high-performance nonfullerene organic solar cells. Nano Energy, 2020, 67, 104209.	16.0	35
460	The evolution and future of metal halide perovskite-based optoelectronic devices. Matter, 2021, 4, 3814-3834.	10.0	35
461	Hyperâ€Rayleigh scattering studies of first order hyperpolarizability of tricyanovinylthiophene derivatives in solution. Journal of Chemical Physics, 1995, 102, 6400-6405.	3.0	34
462	The effect of ligand conjugation length on europium complex performance in light-emitting diodes. Synthetic Metals, 2001, 125, 331-336.	3.9	34
463	Time resolved photoluminescence spectroscopy of surface-plasmon-enhanced light emission from conjugate polymers. Applied Physics Letters, 2006, 89, 221106.	3.3	34
464	Solution-processed cross-linkable hole selective layer for polymer solar cells in the inverted structure. Applied Physics Letters, 2010, 97, .	3.3	34
465	Silica/Electro-Optic Polymer Optical Modulator With Integrated Antenna for Microwave Receiving. Journal of Lightwave Technology, 2014, 32, 3861-3867.	4.6	34
466	Trihydrazine Dihydriodideâ€Assisted Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900285.	5.8	34
467	Tuning self-healing properties of stiff, ion-conductive polymers. Journal of Materials Chemistry A, 2019, 7, 6773-6783.	10.3	34
468	Bioinspired Controllable Electro hemomechanical Coloration Films. Advanced Functional Materials, 2019, 29, 1806383.	14.9	34

#	Article	IF	CITATIONS
469	Narrow Bandpass and Efficient Semitransparent Organic Solar Cells Based on Bioinspired Spectrally Selective Electrodes. ACS Nano, 2020, 14, 5998-6006.	14.6	34
470	Development and Challenges of Metal Halide Perovskite Solar Modules. Solar Rrl, 2022, 6, 2100545.	5.8	34
471	Non-Fullerene Acceptor Doped Block Copolymer for Efficient and Stable Organic Solar Cells. ACS Energy Letters, 2022, 7, 2196-2202.	17.4	34
472	High-efficiency and solution processible multilayer white polymer light-emitting diodes using neutral conjugated surfactant as an electron injection layer. Applied Physics Letters, 2008, 92, 063303.	3.3	33
473	High Δn strip-loaded electro-optic polymer waveguide modulator with low insertion loss. Optics Express, 2009, 17, 3316.	3.4	33
474	π-σ-Phosphonic acid organic monolayer–amorphous sol–gel hafnium oxide hybrid dielectric for Iow-voltage organic transistors on plastic. Journal of Materials Chemistry, 2009, 19, 7929.	6.7	33
475	Highly Efficient Organic Electrooptic Materials and Their Hybrid Systems for Advanced Photonic Devices. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 42-53.	2.9	33
476	Conjugated Polycyanines: A New Class of Materials with Large Thirdâ€Order Optical Nonlinearities. Advanced Optical Materials, 2015, 3, 900-906.	7.3	33
477	Three-dimensional molecular donors combined with polymeric acceptors for high performance fullerene-free organic photovoltaic devices. Journal of Materials Chemistry A, 2015, 3, 22162-22169.	10.3	33
478	Realization of Highly Efficient Red Phosphorescence from Bis-Tridentate Iridium(III) Phosphors. Inorganic Chemistry, 2019, 58, 10944-10954.	4.0	33
479	Versatile Synthetic Approach to Nonlinear Optical Side-Chain Aromatic Polyquinolines with Large Second-Order Nonlinearity and Thermal Stability. Macromolecules, 1998, 31, 4049-4052.	4.8	32
480	All-Dielectric Electrooptic Sensor Based on a Polymer Microresonator Coupled Side-Polished Optical Fiber. IEEE Sensors Journal, 2007, 7, 515-524.	4.7	32
481	A cellular isolation system for real-time single-cell oxygen consumption monitoring. Journal of the Royal Society Interface, 2008, 5, S151-9.	3.4	32
482	Spin cast self-assembled monolayer field effect transistors. Organic Electronics, 2012, 13, 464-468.	2.6	32
483	Reducing cross-sensitivity of TiO2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection. Physical Chemistry Chemical Physics, 2013, 15, 5017.	2.8	32
484	Mechanochromic fluorescence in epoxy as a detection method for barely visible impact damage in CFRP composites. Composites Science and Technology, 2017, 139, 74-82.	7.8	32
485	Achieving excellent tradeoffs among optical, chemical and thermal properties in second-order nonlinear optical chromophores. Chemical Communications, 1996, , 1237.	4.1	31
486	Lithium salt doped conjugated polymers as electron transporting materials for highly efficient blue polymer light-emitting diodes. Applied Physics Letters, 2008, 93, .	3.3	31

#	Article	IF	CITATIONS
487	Phosphonic acid self-assembled monolayer and amorphous hafnium oxide hybrid dielectric for high performance polymer thin film transistors on plastic substrates. Applied Physics Letters, 2009, 95, 113305.	3.3	31
488	Tuning H- and J-Aggregate Behavior in π-Conjugated Polymers via Noncovalent Interactions. Journal of Physical Chemistry C, 2018, 122, 18860-18869.	3.1	31
489	Random copolymerization realized high efficient polymer solar cells with a record fill factor near 80%. Nano Energy, 2019, 61, 228-235.	16.0	31
490	Roles of Ancillary Chelates and Overall Charges of Bis-tridentate Ir(III) Phosphors for OLED Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 1084-1093.	8.0	31
491	Thermally stable nonlinear optical polyimides: synthesis and electro-optic properties. Journal of the Chemical Society Chemical Communications, 1994, , 965.	2.0	30
492	Design and synthesis of thermally stable side-chain polyimides for second-order nonlinear optical applications. Journal of the Chemical Society Chemical Communications, 1994, , 2711.	2.0	30
493	Synthesis and characterization of polyquinolines for light-emitting diodes. Journal of Materials Chemistry, 1999, 9, 2201-2204.	6.7	30
494	Dispersion of the first molecular hyperpolarizability of charge-transfer chromophores studied by hyper-Rayleigh scattering. Chemical Physics, 2001, 271, 137-143.	1.9	30
495	Perfluorocyclobutane-Based Polyester(arylene ether)s for Applications in Integrated Optics. Macromolecules, 2004, 37, 5578-5585.	4.8	30
496	Peptide-mediated surface-immobilized quantum dot hybrid nanoassemblies with controlled photoluminescence. Journal of Materials Chemistry, 2007, 17, 866-872.	6.7	30
497	Nanostructured Functional Block Copolymers for Electrooptic Devices. Macromolecules, 2007, 40, 97-104.	4.8	30
498	Atomic Force Microscopy Study of the Mechanical and Electrical Properties of Monolayer Films of Molecules with Aromatic End Groups. Langmuir, 2007, 23, 11522-11525.	3.5	30
499	Electroâ€Optic (Eâ€O) Molecular Classes. Chemistry - an Asian Journal, 2009, 4, 20-31.	3.3	30
500	2,1,3-Benzothiadiazole (BTD)-moiety-containing red emitter conjugated amphiphilic poly(ethylene) Tj ETQq0 0 0 i 1728.	rgBT /Ovei 6.7	lock 10 Tf 5 30
501	Plasmon-induced trap filling at grain boundaries in perovskite solar cells. Light: Science and Applications, 2021, 10, 219.	16.6	30
502	Bright and efficient exciplex emission from light-emitting diodes based on hole-transporting amine derivatives and electron-transporting polyfluorenes. Journal of Applied Physics, 2002, 91, 10147.	2.5	29
503	Two-Dimensional Self-Assembly of 1-Pyrylphosphonic Acid:Â Transfer of Stacks on Structured Surface. Journal of the American Chemical Society, 2006, 128, 5672-5679.	13.7	29
504	Low-voltage high-performance C60 thin film transistors via low-surface-energy phosphonic acid monolayer/hafnium oxide hybrid dielectric. Applied Physics Letters, 2008, 93, 083302.	3.3	29

#	Article	IF	CITATIONS
505	Using End Groups to Tune the Linear and Nonlinear Optical Properties of Bis(dioxaborine)â€Terminated Polymethine Dyes. ChemPhysChem, 2010, 11, 130-138.	2.1	29
506	Effect of the phenyl ring orientation in the polystyrene buffer layer on the performance of pentacene thin-film transistors. Organic Electronics, 2010, 11, 1066-1073.	2.6	29
507	Effects of Counterions with Multiple Charges on the Linear and Nonlinear Optical Properties of Polymethine Salts. Chemistry of Materials, 2016, 28, 3115-3121.	6.7	29
508	Facile Incorporation of Pd(PPh ₃) ₂ Hal Substituents into Polymethines, Merocyanines, and Perylene Diimides as a Means of Suppressing Intermolecular Interactions. Journal of the American Chemical Society, 2016, 138, 10112-10115.	13.7	29
509	Intramolecular Chloro–Sulfur Interaction and Asymmetric Sideâ€Chain Isomerization to Balance Crystallinity and Miscibility in Allâ€Smallâ€Molecule Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
510	Optimization of Active Layer and Anode Electrode for High-Performance Inverted Bulk-Heterojunction Solar Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1665-1675.	2.9	28
511	Cooperative Nearâ€Field Surface Plasmon Enhanced Quantum Dot Nanoarrays. Advanced Functional Materials, 2010, 20, 2675-2682.	14.9	28
512	Chemiresistive response of silicon nanowires to trace vapor of nitro explosives. Nanoscale, 2012, 4, 2628.	5.6	28
513	Highâ€Opticalâ€Quality Blends of Anionic Polymethine Salts and Polycarbonate with Enhanced Thirdâ€Order Nonâ€linearities for Siliconâ€Organic Hybrid Devices. Advanced Materials, 2012, 24, OP326-30.	21.0	28
514	Efficient Poling of Electroâ€Optic Polymers in Thin Films and Silicon Slot Waveguides by Detachable Pyroelectric Crystals. Advanced Materials, 2012, 24, OP42-7.	21.0	28
515	Surface-normal plasmonic modulator using sub-wavelength metal grating on electro-optic polymer thin film. Optics Communications, 2015, 352, 116-120.	2.1	28
516	Regulating the Aggregation of Unfused Nonâ€Fullerene Acceptors via Molecular Engineering towards Efficient Polymer Solar Cells. ChemSusChem, 2021, 14, 3579-3589.	6.8	28
517	Direct surface functionalization of indium tin oxide via electrochemically induced assembly. Journal of Materials Chemistry, 2007, 17, 3489.	6.7	27
518	Charge Carrier Dynamics in Metalated Polymers Investigated by Optical-Pump Terahertz-Probe Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 15427-15432.	2.6	27
519	Tracking bacterial infection of macrophages using a novel red-emission pH sensor. Analytical and Bioanalytical Chemistry, 2010, 398, 1375-1384.	3.7	27
520	A Roomâ€Temperature Processable PDIâ€Based Electronâ€Transporting Layer for Enhanced Performance in PDIâ€Based Nonâ€Fullerene Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600476.	3.7	27
521	Formation of Vitrified Solid Solution Enables Simultaneously Efficient and Stable Organic Solar Cells. ACS Energy Letters, 2021, 6, 3522-3529.	17.4	27
522	Interface Engineering in Solution-Processed Thin-Film Solar Cells. Accounts of Materials Research, 2022, 3, 272-282.	11.7	27

#	Article	IF	CITATIONS
523	Rhodanine-methine as ï€-electron acceptor in second-order nonlinear optical chromophores. Tetrahedron Letters, 1994, 35, 3849-3852.	1.4	26
524	Ordered Self-Assembly and Electronic Behavior of C60–Anthrylphenylacetylene Hybrid. Angewandte Chemie - International Edition, 2004, 43, 1512-1516.	13.8	26
525	Low-voltage high-performance organic thin film transistors with a thermally annealed polystyrene/hafnium oxide dielectric. Applied Physics Letters, 2009, 95, .	3.3	26
526	Interfaceâ€ŧailored and nanoengineered polymeric materials for (opto)electronic devices. Polymer International, 2009, 58, 594-619.	3.1	26
527	Single-Cell Patterning and Adhesion on Chemically Engineered Poly(dimethylsiloxane) Surface. Langmuir, 2009, 25, 4615-4620.	3.5	26
528	Solvent-Dispersed Benzothiadiazole-Tetrathiafulvalene Single-Crystal Nanowires and Their Application in Field-Effect Transistors. ACS Applied Materials & Interfaces, 2013, 5, 2320-2324.	8.0	26
529	Improved Ambientâ€5table Perovskite Solar Cells Enabled by a Hybrid Polymeric Electronâ€Transporting Layer. ChemSusChem, 2016, 9, 2586-2591.	6.8	26
530	New push–pull polyene chromophores containing a Michler's base donor and a tricyanofuran acceptor: multicomponent condensation, allopolar isomerism and large optical nonlinearity. Journal of Materials Chemistry C, 2017, 5, 2230-2234.	5.5	26
531	Design, synthesis, and properties of nonlinear optical chromophores based on a verbenone bridge with a novel dendritic acceptor. Journal of Materials Chemistry C, 2018, 6, 2840-2847.	5.5	26
532	Synthesis and characterization of a novel bipolar polymer for light-emitting diodes. Chemical Communications, 1998, , 2747-2748.	4.1	25
533	Hybrid electro-optic polymer/sol–gel waveguide modulator fabricated by all-wet etching process. Applied Physics Letters, 2003, 83, 4692-4694.	3.3	25
534	Efficient ultraviolet-blue polymer light-emitting diodes based on a fluorene-based non-conjugated polymer. Applied Physics Letters, 2006, 89, 081104.	3.3	25
535	Mach–Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films. Applied Physics Letters, 2010, 97, .	3.3	25
536	Dipolar Chromophore Facilitated Huisgen Cross-Linking Reactions for Highly Efficient and Thermally Stable Electrooptic Polymers. ACS Macro Letters, 2012, 1, 793-796.	4.8	25
537	Organic Semiconductors at the University of Washington: Advancements in Materials Design and Synthesis and toward Industrial Scale Production. Advanced Materials, 2021, 33, e1904239.	21.0	25
538	Highly efficient, thermally and chemically stable nonlinear optical chromophores based on the α-perfluoroaryldicyanovinyl electron acceptors. Chemical Communications, 1999, , 2391-2392.	4.1	24
539	Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators. Applied Physics Letters, 2000, 76, 1086-1088.	3.3	24
540	Efficient emission from a europium complex containing dendron-substituted diketone ligands. Thin Solid Films, 2002, 416, 212-217.	1.8	24

#	Article	IF	CITATIONS
541	Efficient and stable blue light-emitting diodes based on an anthracene derivative doped poly(N-vinylcarbazole). Applied Physics Letters, 2004, 85, 5433-5435.	3.3	24
542	Microring resonators on side-polished optical fiber. IEEE Photonics Technology Letters, 2005, 17, 2107-2109.	2.5	24
543	Modeling Photobleaching of Optical Chromophores: Light-Intensity Effects in Precise Trimming of Integrated Polymer Devices. Journal of Physical Chemistry C, 2008, 112, 8051-8060.	3.1	24
544	Chromophore-Containing Polymers for Trace Explosive Sensors. Journal of Physical Chemistry C, 2008, 112, 8072-8078.	3.1	24
545	Rational Design Using Dewar's Rules for Enhancing the First Hyperpolarizability of Nonlinear Optical Chromophores. Journal of Physical Chemistry C, 2010, 114, 22284-22288.	3.1	24
546	Modulation of hybrid organic–perovskite photovoltaic performance by controlling the excited dynamics of fullerenes. Materials Horizons, 2015, 2, 414-419.	12.2	24
547	A siliconâ€organic hybrid platform for quantum microwave-to-optical transduction. Quantum Science and Technology, 2020, 5, 034004.	5.8	24
548	High-Efficiency Polymer Light-Emitting Diodes Using Neutral Surfactant Modified Aluminum Cathode. Journal of Physical Chemistry B, 2006, 110, 6010-6014.	2.6	23
549	Low drive voltage Fabry-Pérot étalon device tunable filters using poled hybrid sol-gel materials. Applied Physics Letters, 2006, 89, 041127.	3.3	23
550	A Triptycene-Containing Chromophore for Improved Temporal Stability of Highly Efficient Guestâ^'Host Electrooptic Polymers. Macromolecules, 2011, 44, 1261-1265.	4.8	23
551	Enhanced temporal stability of a highly efficient guest–host electro-optic polymer through a barrier layer assisted poling process. Journal of Materials Chemistry, 2012, 22, 20353.	6.7	23
552	Crystalline Co-Assemblies of Functional Fullerenes in Methanol with Enhanced Charge Transport. Journal of the American Chemical Society, 2015, 137, 2167-2170.	13.7	23
553	Solution-processed chalcopyrite–perovskite tandem solar cells in bandgap-matched two- and four-terminal architectures. Journal of Materials Chemistry A, 2017, 5, 3214-3220.	10.3	23
554	Tailoring Phase Purity in the 2D/3D Perovskite Heterostructures Using Lattice Mismatch. ACS Energy Letters, 2022, 7, 550-559.	17.4	23
555	Measurements of the first hyperpolarizabilities of thiophene-based charge-transfer chromophores with hyper-Rayleigh scattering at 1064 and 1907 nm. Chemical Physics, 2000, 262, 475-487.	1.9	22
556	Modeling the Optical Behavior of Complex Organic Media: From Molecules to Materials. Journal of Physical Chemistry B, 2009, 113, 15581-15588.	2.6	22
557	Quasi-three-level model applied to measured spectra of nonlinear absorption and refraction in organic molecules. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 780.	2.1	22
558	Enhanced stability and photovoltage for inverted perovskite solar cells <i>via</i> precursor engineering. Journal of Materials Chemistry A, 2019, 7, 15880-15886.	10.3	22

#	Article	IF	CITATIONS
559	The role of dipole moment in two fused-ring electron acceptor and one polymer donor based ternary organic solar cells. Materials Chemistry Frontiers, 2020, 4, 1507-1518.	5.9	22
560	A new synthetic approach for the incorporation of highly efficient second-order nonlinear optical chromophores containing tricyanovinyl electron acceptors into methacrylate polymers. Journal of the Chemical Society Chemical Communications, 1994, , 369.	2.0	21
561	Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab. Applied Optics, 2011, 50, 3505.	2.1	21
562	Iridium(III) Complexes Bearing Tridentate Chromophoric Chelate: Phosphorescence Fine-Tuned by Phosphine and Hydride Ancillary. Inorganic Chemistry, 2018, 57, 8287-8298.	4.0	21
563	Highly efficient and stable perovskite solar cells enabled by a fluoro-functionalized TiO2 inorganic interlayer. Matter, 2021, 4, 3301-3312.	10.0	21
564	Very large electro-optic coefficients from in situ generated side-chain nonlinear optical polymers. Applied Physics Letters, 2005, 87, 071109.	3.3	20
565	Using micro-patterned sensors and cell self-assembly for measuring the oxygen consumption rate of single cells. Journal of Micromechanics and Microengineering, 2010, 20, 095017.	2.6	20
566	Side chain structure affects the molecular packing and photovoltaic performance of oligothiophene-based solution-processable small molecules. RSC Advances, 2015, 5, 67718-67726.	3.6	20
567	Blue-emitting bis-tridentate Ir(<scp>iii</scp>) phosphors: OLED performances <i>vs.</i> substituent effects. Journal of Materials Chemistry C, 2018, 6, 10486-10496.	5.5	20
568	Experimental studies of the length dependence of second-order nonlinear optical responses of conjugated molecules. Physical Review A, 1994, 49, 3077-3080.	2.5	19
569	Wavelength dependence of first molecular hyperpolarizability of a dendrimer in solution. Journal of Chemical Physics, 2004, 121, 6086-6092.	3.0	19
570	Electro-optic coefficients of 500 pm/V and beyond for organic materials. , 2005, , .		19
571	Bonding and Molecular Environment Effects on Near-Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophoreâ^Polymer Materials. Macromolecules, 2006, 39, 7566-7577.	4.8	19
572	Selenium: A Unique Member in the Chalcogen Family for Conjugated Materials Used in Perovskite and Organic Solar Cells. Solar Rrl, 2022, 6, .	5.8	19
573	A Novel Bipolar Electroluminescent Poly(arylene ethynylene) Consisting of Carbazole and Diethynylthiophene Units. Macromolecular Chemistry and Physics, 2001, 202, 2341-2345.	2.2	18
574	Polarization-insensitive transition between sol-gel waveguide and electrooptic polymer and intensity modulation for all-optical networks. Journal of Lightwave Technology, 2003, 21, 2053-2060.	4.6	18
575	Photobleaching Fabrication of Microring Resonator in a Chromophore-Containing Polymer. IEEE Photonics Technology Letters, 2006, 18, 2221-2223.	2.5	18
576	Assembly of Nanomaterials Through Highly Ordered Self-Assembled Monolayers and Peptide-Organic Hybrid Conjugates as Templates. Journal of Nanoscience and Nanotechnology, 2007, 7, 2549-2566.	0.9	18

#	Article	IF	CITATIONS
577	Tunable lightâ€harvesting polymers containing embedded dipolar chromophores for polymer solar cell applications. Journal of Polymer Science Part A, 2012, 50, 1362-1373.	2.3	18
578	Performance limits of plasmon-enhanced organic photovoltaics. Applied Physics Letters, 2014, 105, 033304.	3.3	18
579	A new type of solid-state luminescent 2-phenylbenzo[<i>g</i>]furo[2,3- <i>b</i>]quinoxaline derivative: synthesis, photophysical characterization and transporting properties. Journal of Materials Chemistry C, 2019, 7, 9690-9697.	5.5	18
580	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie, 2021, 133, 7303-7309.	2.0	18
581	Interface Engineering for Allâ€Inorganic CsPbIBr ₂ Perovskite Solar Cells with Enhanced Power Conversion Efficiency over 11%. Energy Technology, 2021, 9, 2100562.	3.8	18
582	Plasmonic Local Heating Induced Strain Modulation for Enhanced Efficiency and Stability of Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	18
583	Hybrid Fabry-Pérot étalon using an electro-optic polymer for optical modulation. Applied Physics Letters, 2006, 89, 141113.	3.3	17
584	Electrooptic Polymer Modulator With Single-Mode to Multimode Waveguide Transitions. IEEE Photonics Technology Letters, 2008, 20, 1051-1053.	2.5	17
585	Transversely tapered hybrid electro-optic polymer/sol-gel Mach–Zehnder waveguide modulators. Applied Physics Letters, 2008, 92, 193508.	3.3	17
586	Utilization of micelles formed from poly(ethylene glycol)â€ <i>block</i> â€poly(ϵâ€caprolactone) block copolymers as nanocarriers to enable hydrophobic red twoâ€photon absorbing emitters for cells imaging. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1068-1079.	4.0	17
587	Optical and electrical effects of plasmonic nanoparticles in high-efficiency hybrid solar cells. Physical Chemistry Chemical Physics, 2013, 15, 17105-17111.	2.8	17
588	Enhanced conductivity of sol-gel silica cladding for efficient poling in electro-optic polymer/TiO_2 vertical slot waveguide modulators. Optics Express, 2014, 22, 30191.	3.4	17
589	Tetrathienodibenzocarbazole Based Donor–Acceptor Type Wide Band-Gap Copolymers for Polymer Solar Cell Applications. Macromolecules, 2014, 47, 7407-7415.	4.8	17
590	Zwitterionic Cyanine–Cyanine Salt: Structure and Optical Properties. Journal of Physical Chemistry C, 2016, 120, 15378-15384.	3.1	17
591	RF photonic downconversion of vector modulated signals based on a millimeter-wave coupled electrooptic nonlinear polymer phase-modulator. Optics Express, 2017, 25, 29885.	3.4	17
592	Bandwidth Optimization for Mach–Zehnder Polymer/Sol–Gel Modulators. Journal of Lightwave Technology, 2018, 36, 4181-4189.	4.6	17
593	Photoluminescence and Photoconductivity to Assess Maximum Open-Circuit Voltage and Carrier Transport in Hybrid Perovskites and Other Photovoltaic Materials. Journal of Physical Chemistry Letters, 2018, 9, 3779-3792.	4.6	17
594	A multi-functional interface derived from thiol-modified mesoporous carbon in lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13372-13381.	10.3	17

#	Article	IF	CITATIONS
595	Multifunctional Molecular Design of a New Fulleropyrrolidine Electron Transport Material Family Engenders High Performance of Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2107695.	14.9	17
596	A Binaphthyl-Bithiophene Copolymer for Light-Emitting Devices. Macromolecular Chemistry and Physics, 2002, 203, 37-40.	2.2	16
597	Molecular mobility and transitions in complex organic systems studied by shear force microscopy. Nanotechnology, 2007, 18, 044009.	2.6	16
598	Deprotecting Thioacetyl-Terminated Terphenyldithiol for Assembly on Gallium Arsenide. Langmuir, 2008, 24, 851-856.	3.5	16
599	Bias-free electro-optic polymer-based two-section Y-branch waveguide modulator with 22 dB linearity enhancement. Optics Letters, 2009, 34, 3277.	3.3	16
600	Bottom-contact small-molecule n-type organic field effect transistors achieved via simultaneous modification of electrode and dielectric surfaces. Organic Electronics, 2012, 13, 3226-3233.	2.6	16
601	Fully visible-light-harvesting conjugated polymers with pendant donor-ï€-acceptor chromophores for photovoltaic applications. Solar Energy Materials and Solar Cells, 2012, 97, 50-58.	6.2	16
602	Manipulation of optical field distribution in ITO-free micro-cavity polymer tandem solar cells via the out-of-cell capping layer for high photovoltaic performance. Journal of Materials Chemistry A, 2016, 4, 961-968.	10.3	16
603	Nearâ€Infrared Absorbing Nonfullerene Acceptors for Organic Solar Cells. Solar Rrl, 2022, 6, 2100868.	5.8	16
604	Nanorheological approach for characterization of electroluminescent polymer thin films. Applied Physics Letters, 2003, 83, 2563-2565.	3.3	15
605	Electro-optic properties of hybrid solgel doped with a nonlinear chromophore with large hyperpolarizability. Optics Letters, 2005, 30, 117.	3.3	15
606	Plasmon resonant structures with unique topographic characteristics and tunable optical properties for surface-enhanced Raman scattering. Nanotechnology, 2007, 18, 455301.	2.6	15
607	Molecular Mobility in Self-Assembled Dendritic Chromophore Glasses. Journal of Physical Chemistry B, 2009, 113, 14180-14188.	2.6	15
608	A 1 â€A 2 Type Wide Bandgap Polymers for Highâ€Performance Polymer Solar Cells: Energy Loss and Morphology. Solar Rrl, 2019, 3, 1800291.	5.8	15
609	The use of sodium salts as nucleation agents for polyethylene terephthalate with minimal molecular weight reduction. Polymer Engineering and Science, 1995, 35, 1407-1412.	3.1	14
610	Hyper-Rayleigh scattering and frequency dependence of the first molecular hyperpolarizability of a strong charge-transfer chromophore. Journal of Chemical Physics, 2003, 119, 6237-6244.	3.0	14
611	Thiol-Linked Anthraquinone Anthryl Acetylene Molecule:Â Synthesis, Self-assembly, and Photoelectrochemical Properties. Chemistry of Materials, 2005, 17, 2896-2903.	6.7	14
612	Surface Plasmon Enhanced Fluorescence of Cationic Conjugated Polymer on Periodic Nanoarrays. ACS Applied Materials & Interfaces, 2010, 2, 3153-3159.	8.0	14

#	Article	IF	CITATIONS
613	Solid-state densification of spun-cast self-assembled monolayers for use in ultra-thin hybrid dielectrics. Applied Surface Science, 2012, 261, 908-915.	6.1	14
614	Spontaneous thermal crosslinking of a sydnone-containing side-chain polymer with maleimides through a convergent [3 + 2] dual cycloaddition/cycloreversion process for electro-optics. Polymer Chemistry, 2013, 4, 5760.	3.9	14
615	A conductive liquid crystal via facile doping of an n-type benzodifurandione derivative. Journal of Materials Chemistry A, 2015, 3, 6929-6934.	10.3	14
616	Highly sensitive thermal damage sensors for polymer composites: time temperature indicator based on thermochromic fluorescence turn-on response. Smart Materials and Structures, 2017, 26, 085039.	3.5	14
617	Achieving Fully Blade-Coated Ambient-Processed Perovskite Solar Cells by Controlling the Blade-Coater Temperature. IEEE Journal of Photovoltaics, 2018, 8, 1662-1669.	2.5	14
618	Methoxy-substituted bis-tridentate iridium(<scp>iii</scp>) phosphors and fabrication of blue organic light emitting diodes. Journal of Materials Chemistry C, 2020, 8, 13590-13602.	5.5	14
619	The synergistic effects of central core size and end group engineering on performance of narrow bandgap nonfullerene acceptors. Chemical Engineering Journal, 2022, 435, 135020.	12.7	14
620	Thermally stable poled polymers: Highly efficient heteroaromatic chromophores in high temperature polymides. Journal of Electronic Materials, 1994, 23, 653-657.	2.2	13
621	Poling Dynamics and Effects of Trapped Charge in Poled Polymer Films for Nonlinear Optical Applications. Macromolecules, 1996, 29, 7064-7074.	4.8	13
622	Exceptional electro-optic properties through molecular design and controlled self-assembly. , 2005, 5935, 49.		13
623	Low temperature relaxations and effects on poling efficiencies of dendronized nonlinear optical side-chain polymers. Applied Physics Letters, 2005, 86, 211908.	3.3	13
624	Arrays of Covalently Bonded Single Gold Nanoparticles on Thiolated Molecular Assemblies. Langmuir, 2006, 22, 6346-6351.	3.5	13
625	Material and Interface Engineering for Highly Efficient Polymer Light Emitting Diodes. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2006, 46, 7-26.	2.2	13
626	Experimental Demonstration of a Linearized Polymeric Directional Coupler Modulator. IEEE Photonics Technology Letters, 2007, 19, 1762-1764.	2.5	13
627	Photo-Stability Measurement of Electro-Optic Polymer Waveguides With High Intensity at 1550-nm Wavelength. Journal of Lightwave Technology, 2009, 27, 1045-1050.	4.6	13
628	Electro-optic modulator with exceptional power-size performance enabled by transparent conducting electrodes. Optics Express, 2010, 18, 6779.	3.4	13
629	UV-Sensitive Self-Assembled Monolayer Photoresist for the Selective Deposition of Carbon Nanotubes. Chemistry of Materials, 2012, 24, 2017-2021.	6.7	13
630	Low operational voltage and high performance organic field effect memory transistor with solution processed graphene oxide charge storage media. Organic Electronics, 2014, 15, 2775-2782.	2.6	13

#	Article	IF	CITATIONS
631	Influence of self-assembled monolayer binding group on graphene transistors. Applied Physics Letters, 2015, 106, 021603.	3.3	13
632	Panchromatic quasi-solid-state squaraine dye sensitized solar cells enhanced by Förster resonance energy transfer of DCM-pyran. Dyes and Pigments, 2015, 113, 675-681.	3.7	13
633	Over 16% Efficiency of Thickâ€Film Organic Photovoltaics with Symmetric and Asymmetric Nonâ€Fullerene Materials as Alloyed Acceptor. Solar Rrl, 2021, 5, 2100365.	5.8	13
634	Efficient, Stable, and Scalable Push–Pull Heptamethines for Electro-Optics. Chemistry of Materials, 2022, 34, 3683-3693.	6.7	13
635	<title>Functionalized heteroaromatics for second-order nonlinear optical applications</title> . , 1993, , .		12
636	<title>Recent development of highly efficient chromophores and polymers for electro-optic device applications</title> ., 1999, 3623, 112.		12
637	Synthesis and characterization of quinoline-based copolymers for light emitting diodes. Journal of Materials Chemistry, 2001, 11, 1800-1804.	6.7	12
638	Controlled assembly of large π-conjugated aromatic thiols on Au(111). Nanotechnology, 2008, 19, 135605.	2.6	12
639	Alignment-free fabrication of a hybrid electro-optic polymer/ion-exchange glass coplanar modulator. Optics Express, 2010, 18, 21038.	3.4	12
640	Photo-induced denitrogenation of triazoline moieties for efficient photo-assisted poling of electro-optic polymers. Polymer Chemistry, 2013, 4, 4434.	3.9	12
641	Designing solvate ionogel electrolytes with very high room-temperature conductivity and lithium transference number. Journal of Materials Chemistry A, 2018, 6, 24100-24106.	10.3	12
642	Cationic Polyelectrolyte for Anionic Cyanines: An Efficient Way To Translate Molecular Properties into Material Properties. Journal of the American Chemical Society, 2019, 141, 17331-17336.	13.7	12
643	Sideâ€Chain Substituents on Benzotriazoleâ€Based Polymer Acceptors Affecting the Performance of Allâ€Polymer Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2200062.	3.9	12
644	Controlled assembly of large π-conjugated n-type molecules on Au(111). Nanotechnology, 2007, 18, 335302.	2.6	11
645	Mechanochemical changes in absorption and fluorescence of DDM-containing epoxies. Polymer, 2018, 142, 132-143.	3.8	11
646	Synergistical Dipole–Dipole Interaction Induced Selfâ€Assembly of Phenoxazineâ€Based Holeâ€Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 20600-20605.	2.0	11
647	Thermally Stable Poled Polymers: Highly Efficient Heteroaromatic Chromophores In High Temperature Polyimides. Materials Research Society Symposia Proceedings, 1993, 328, 413.	0.1	10
648	One-, two-, and three-photon absorption induced fluorescence of a novel chromophore in chloroform solution. Journal of Chemical Physics, 2004, 121, 7901.	3.0	10

#	Article	IF	CITATIONS
649	Electro-optic polymer spatial light modulator based on a Fabry–Perot interferometer configuration. Optics Express, 2011, 19, 12750.	3.4	10
650	Solvent-vapor annealing-induced growth, alignment, and patterning of π-conjugated supramolecular nanowires. Journal of Materials Research, 2011, 26, 311-321.	2.6	10
651	Simplified Reflection Fabry-Perot Method for Determination of Electro-Optic Coefficients of Poled Polymer Thin Films. Polymers, 2011, 3, 1310-1324.	4.5	10
652	Morphology evolution by controlling solvent-solute interactions using a binary solvent in bulk heterojunction solar cells. Applied Physics Letters, 2013, 102, .	3.3	10
653	Cascading Retro-Diels–Alder Cycloreversion and Sydnone-Maleimide Based Double 1,3-Dipolar Cycloaddition for Quantitative Thermal Cross-Linking of an Amorphous Polymer Solid. ACS Macro Letters, 2013, 2, 256-259.	4.8	10
654	Mesoporous sol-gel silica cladding for hybrid TiO_2/electro-optic polymer waveguide modulators. Optics Express, 2014, 22, 16418.	3.4	10
655	Enhanced Performance of Selfâ€Assembled Monolayer Fieldâ€Effect Transistors with Topâ€Contact Geometry through Molecular Tailoring, Heated Assembly, and Thermal Annealing. Advanced Functional Materials, 2015, 25, 5376-5383.	14.9	10
656	Enhanced crystalline morphology of a ladder-type polymer bulk-heterojunction device by blade-coating. Nanoscale, 2015, 7, 10936-10939.	5.6	10
657	Enhanced crystallization and performance of formamidinium lead triiodide perovskite solar cells through PbI2-SrCl2 modulation. Materials Today Energy, 2018, 7, 239-245.	4.7	10
658	Vinylene-Inserted Asymmetric Polymer Acceptor with Absorption Approaching 1000 nm for Versatile Applications in All-Polymer Solar Cells and Photomultiplication-Type Polymeric Photodetectors. ACS Applied Materials & Interfaces, 2022, 14, 26970-26977.	8.0	10
659	Efficient photocurrent generation through a self-assembled monolayer of C60-mercaptophenylanthrylacetylene. Journal of Power Sources, 2006, 160, 711-715.	7.8	9
660	Microring Resonators Made in Poled and Unpoled Chromophore-Containing Polymers for Optical Communication and Sensors. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1281-1288.	2.9	9
661	Enhancing the hole injection ability of indium tin oxide viaammonium salts in polymer light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 531-535.	5.5	9
662	Mechanism that governs the electro-optic response of second-order nonlinear polymers on silicon substrates. Optical Materials Express, 2015, 5, 1653.	3.0	9
663	Photoinduced Charge Transfer in Single-Molecule <i>p–n</i> Junctions. Journal of Physical Chemistry Letters, 2019, 10, 2175-2181.	4.6	9
664	Highâ€Efficiency Quasiâ€⊋D Perovskite Solar Cells Incorporating 2,2′â€Biimidazolium Cation. Solar Rrl, 2021, 5, 2000700.	5.8	9
665	Quantitative Determination of the Chromophore Alignment Induced by Electrode Contact Poling in Self-Assembled NLO Materials. Bulletin of the Korean Chemical Society, 2009, 30, 882-886.	1.9	9
666	Experimental studies of the second-order nonlinear optical response of a novel class of tricyanovinylated thiophene compounds. Applied Physics B: Lasers and Optics, 1995, 61, 191-194.	2.2	8

#	Article	IF	CITATIONS
667	Novel fluorine-containing second-order NLO polymers with high glass transition temperature. Optical Materials, 2003, 21, 61-65.	3.6	8
668	High-Sensitivity Transmission IR Spectroscopy for the Chemical Identification and Structural Analysis of Conjugated Molecules on Gallium Arsenide Surfaces. Langmuir, 2006, 22, 9491-9494.	3.5	8
669	Metal-slotted polymer optical waveguide device. Applied Physics Letters, 2007, 90, 243507.	3.3	8
670	Order of Magnitude Effects of Thiazole Regioisomerism on the Nearâ€IR Twoâ€Photon Crossâ€Sections of Dipolar Chromophores. Advanced Functional Materials, 2008, 18, 794-801.	14.9	8
671	Optical Transmission Stability of Hybrid Sol–Gel Silica/Electrooptic Polymer Waveguide Modulators. IEEE Photonics Technology Letters, 2011, 23, 1508-1510.	2.5	8
672	Significance of ions with an ordered arrangement for enhancing the electron injection/extraction in polymer optoelectronic devices. Journal of Materials Chemistry C, 2014, 2, 4805-4811.	5.5	8
673	Photochemical changes in absorption and fluorescence of DDM-containing epoxies. Polymer, 2018, 142, 11-22.	3.8	8
674	Heteroaromatics: Exceptional Materials for Second Order Nonlinear Optical Applications. Materials Research Society Symposia Proceedings, 1992, 247, 59.	0.1	7
675	Highly Active and Thermally Stable Ctlromophores and Polymers for Electro-Optic Applications. Materials Research Society Symposia Proceedings, 1995, 392, 33.	0.1	7
676	Novel europium and osmium complexes for pure red light emitting diode applications. Macromolecular Symposia, 2002, 186, 171-176.	0.7	7
677	Nanostructured functional dendrimers and polymers for photonics. Comptes Rendus Chimie, 2003, 6, 895-902.	0.5	7
678	Organic Electro-Optic Materials. ACS Symposium Series, 2010, , 13-33.	0.5	7
679	Role of self-assembled tetraoctylammonium bromide on various conjugated polymers in polymer light-emitting diodes. Journal of Materials Chemistry C, 2014, 2, 272-276.	5.5	7
680	Photovoltaic performance of ladder-type indacenodithieno[3,2-b]thiophene-based polymers with alkoxyphenyl side chains. RSC Advances, 2015, 5, 26680-26685.	3.6	7
681	Efficient wafer-scale poling of electro-optic polymer thin films on soda-lime glass substrates: large second-order nonlinear coefficients and exceptional homogeneity of optical birefringence. Optical Materials Express, 2017, 7, 1909.	3.0	7
682	Flexibility of Room-Temperature-Synthesized Amorphous CdO-In ₂ O ₃ Alloy Films and Their Application as Transparent Conductors in Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 43795-43805.	8.0	7
683	Nonlinear refraction and absorption measurements of thin films by the dual-arm Z-scan method. Applied Optics, 2019, 58, D28.	1.8	7
684	Synthesis and characterization of processible electroluminescent poly[(2,7-diethynyl-9,9-di-2-ethylhexylfluorene)- alt - co -(2,5-thienylene)]. Synthetic Metals, 2001, 124, 323-327.	3.9	6

#	Article	IF	CITATIONS
685	Broadband Low-power Optical Modulator Based on Electro-optic Polymer Infiltrated Silicon Slot Photonic Crystal Waveguide. , 2014, , .		6
686	Spontaneously poling of electro-optic polymer thin films across a 1.1-mm thick glass substrate by pyroelectric crystals. Applied Physics Letters, 2014, 105, .	3.3	6
687	Multiâ€Selenopheneâ€Containing Narrow Bandgap Polymer Acceptors for Allâ€Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. Angewandte Chemie, 2021, 133, 16071-16079.	2.0	6
688	Efficient green polymer light-emitting diodes with microcavity effect in electroluminescence spectrum but constant quantum efficiency. Journal of Applied Physics, 2004, 96, 3553-3555.	2.5	5
689	Optical micro-resonator chemical sensor. , 2007, 6556, 308.		5
690	Direct nanofabrication and transmission electron microscopy on a suite of easy-to-prepare ultrathin film substrates. Thin Solid Films, 2007, 515, 5341-5347.	1.8	5
691	Interface engineering of organic electronics. Journal of Materials Chemistry, 2010, 20, 2491.	6.7	5
692	The effect of dipole moment and electron deficiency of analytes on the chemiresistive response of TiO2(B) nanowires. Analyst, The, 2011, 136, 4179.	3.5	5
693	High speed electro-optic polymer phase modulator using an in-plane slotline RF waveguide. Proceedings of SPIE, 2011, , .	0.8	5
694	Hybrid silicon-electro-optic-polymer integrated high-performance optical modulator. , 2014, , .		5
695	Perovskite Photovoltaics: Pseudohalideâ€Induced Recrystallization Engineering for CH ₃ NH ₃ Pbl ₃ Film and Its Application in Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells (Adv. Funct. Mater. 2/2018). Advanced Functional Materials 2018 28 1870013	14.9	5
696	Magnetic Field Modulation of Recombination Processes in Organic Photovoltaics. IEEE Journal of Photovoltaics, 2019, 9, 460-463.	2.5	5
697	Synthesis of a side-chain hole transporting polymer through Mitsunobu post-functionalization for efficient inverted perovskite solar cells. Polymer Chemistry, 2020, 11, 2883-2888.	3.9	5
698	<title>Experimental and theoretical studies of heterocyclic nonlinear optical materials</title> . , 1993, , .		4
699	Second-Order Nonlinear Optical Properties Of Thiophene Containing Chromophores With Extended Conjugation. Materials Research Society Symposia Proceedings, 1993, 328, 485.	0.1	4
700	Two-Photon Lithography of Platinum-Porphyrin Oxygen Sensors. IEEE Sensors Journal, 2007, 7, 931-936.	4.7	4
701	Polarization selective electro-optic polymer waveguide devices by direct electron beam writing. Optics Express, 2008, 16, 8472.	3.4	4
702	Field-induced guiding optical devices made from electro-optic polymers. Applied Optics, 2010, 49, 892.	2.1	4

#	Article	IF	CITATIONS
703	Electroâ€optical Materials: Efficient Poling of Electroâ€Optic Polymers in Thin Films and Silicon Slot Waveguides by Detachable Pyroelectric Crystals (Adv. Mater. 10/2012). Advanced Materials, 2012, 24, OP1.	21.0	4
704	Enhanced third harmonic generation by organic materials on high-Q plasmonic photonic crystals. Optics Express, 2014, 22, 20292.	3.4	4
705	Modification of a Teng-Man technique to measure both r33 and r13 electro-optic coefficients. Applied Physics Letters, 2014, 105, .	3.3	4
706	Perovskites: Navigating Organo-Lead Halide Perovskite Phase Space via Nucleation Kinetics toward a Deeper Understanding of Perovskite Phase Transformations and Structure-Property Relationships (Small 26/2015). Small, 2015, 11, 3087-3087.	10.0	4
707	Perovskite Films: Toward All Roomâ€Temperature, Solutionâ€Processed, Highâ€Performance Planar Perovskite Solar Cells: A New Scheme of Pyridineâ€Promoted Perovskite Formation (Adv. Mater. 13/2017). Advanced Materials, 2017, 29, .	21.0	4
708	Thermochromic Polymer Film Sensors for Detection of Incipient Thermal Damage in Carbon Fiber–Epoxy Composites. Sensors, 2018, 18, 1362.	3.8	4
709	Demonstration of Effective In-device r33 over 1000 pm/V in Electro-optic Polymer Refilled Silicon Slot Photonic Crystal Waveguide Modulator. , 2013, , .		4
710	Enabling high-performance, centimeter-scale organic solar cells through three-dimensional charge transport. Cell Reports Physical Science, 2022, , 100761.	5.6	4
711	Coâ€assembled Monolayers as Holeâ€Selective Contact for Highâ€Performance Inverted Perovskite Solar Cells with Optimized Recombination Loss and Longâ€Term Stability. Angewandte Chemie, 2022, 134, .	2.0	4
712	New Developments in Thermally and Chemically Stable Nonlinear Optical Chromophores for E-O Device Applications. Materials Research Society Symposia Proceedings, 1995, 413, 185.	0.1	3
713	Techniques of Ultrastructure Synthesis Relevant to the Fabrication of Electrooptic Modulators. ACS Symposium Series, 1995, , 158-171.	0.5	3
714	Surface-EnhancedRaman Spectroscopic Studies of Tricyanovinylthiophene in Silver Colloid Solution. Journal of Raman Spectroscopy, 1996, 27, 685-690.	2.5	3
715	Acentric lattice electro-optic materials by rational design. , 2005, , .		3
716	Feasibility study of integration of electro-optic polymer waveguide device with MOSFET circuitry on silicon. , 2005, , .		3
717	Low-voltage electro-optic polymer modulators. , 2006, , .		3
718	Third-order nonlinearity contribution to electro-optic activity in polymer materials in a constant bias field. Applied Physics Letters, 2006, 88, 041115.	3.3	3
719	Demonstration of Polymer-based Directional Coupler Modulator with High Linearity. , 2007, , .		3
720	Molecular Design and Supramolecular Organization of Highly Efficient Nonlinear Optical Chromophores for Exceptional Electro-Optic Properties. ACS Symposium Series, 2010, , 51-66.	0.5	3

#	Article	IF	CITATIONS
721	Ultra-compact silicon nanophotonic modulator based on electro-optic polymer infiltrated slot photonic crystal waveguide. Proceedings of SPIE, 2010, , .	0.8	3
722	Possible interfacial ion/charge accumulation in thin-film perovskite/fullerene surfactant planar heterojunction solar cells. Journal Physics D: Applied Physics, 2018, 51, 504001.	2.8	3
723	Special topic on organic and perovskite photovoltaics. Science China Chemistry, 2019, 62, 797-799.	8.2	3
724	Electric Field Detection Using an Electro-optic Polymer Refilled Silicon Slot Photonic Crystal Waveguide. , 2014, , .		3
725	Harvesting the Triplet Excitons of Quasi-Two-Dimensional Perovskite toward Highly Efficient White Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 3674-3681.	4.6	3
726	Optimization of second-order nonlinear optical properties of push-pull conjugated chromophores using heteroaromatics. Proceedings of SPIE, 1993, , .	0.8	2
727	Poly(fluorene- co -benzothiadiazole)s: Effect of structure, molecular weight and polydispersity on their performance in polymer light-emitting diodes. , 2003, 4800, 138.		2
728	Novel Divalent Osmium Complexes: Synthesis, Characterization, Tuning of Emission, and use in Organic Light Emitting Diodes. Materials Research Society Symposia Proceedings, 2003, 771, 10341.	0.1	2
729	Optimizing electro-optic activity in chromophore/polymer composites and in organic chromophore glasses. , 2005, , .		2
730	Broadband electric field sensor with electro-optic polymer micro-ring resonator on side-polished optical fiber. , 2006, , .		2
731	Interfacial-shear strength of the perfluorocyclobutane films on silicon. Journal of Materials Research, 2006, 21, 1759-1769.	2.6	2
732	Stability and flexibility of self-assembled monolayers of thiols consisting of a horizontal large Ĩ€-system and a vertical spacer. Journal of Physics Condensed Matter, 2008, 20, 315012.	1.8	2
733	Optimization of organic NLO materials for integration with silicon photonic, plasmonic (metal) Tj ETQq1 1 0.784	314 rgBT 0.8	Oyerlock 10
734	All-Organic Photopatterned One Diode-One Resistor Cell Array for Advanced Organic Nonvolatile Memory Applications (Adv. Mater. 6/2012). Advanced Materials, 2012, 24, 827-827.	21.0	2
735	Configurable silicon photonic crystal waveguides. Applied Physics Letters, 2013, 103, .	3.3	2
736	Feature issue introduction: organic and polymeric materials for photonic applications. Optical Materials Express, 2017, 7, 2691.	3.0	2
737	Synthesis and Characterization of Highly Efficient, Chemically and Thermally Stable Chromophores with Chromone-Containing Electron Acceptors for NLO Applications. Advanced Materials, 1999, 11, 452-455.	21.0	2
738	Ultra-Broadband Mach-Zehnder Hybrid Electro-Optic Polymer/Sol-Gel Silica Waveguide Modulators. , 2017, , .		2

#	Article	IF	CITATIONS
739	Recent Progress of Electro-optic Polymers for Device Applications. Materials Research Society Symposia Proceedings, 1997, 488, 193.	0.1	1
740	Charge transfer interactions in polymers and the fabrication of high frequency electro-optic modulators. Macromolecular Symposia, 1997, 116, 135-142.	0.7	1
741	Realization of Polymeric Electro-Optic Modulators with Less Than One Volt Drive Voltage Requirement. Materials Research Society Symposia Proceedings, 1999, 598, 378.	0.1	1
742	High Performance Side-Chain Polyquinolines and Perfluorocyclobutane-Containing Thermoset Polymers for Electro-Optic Applications. Materials Research Society Symposia Proceedings, 1999, 598, 399.	0.1	1
743	Rational Design of Organic Electro-Optic Materials. Materials Research Society Symposia Proceedings, 2001, 708, 411.	0.1	1
744	Efficient Two-Photon Absorbing Chromophores with Fine-Tuned л-Bridges. Materials Research Society Symposia Proceedings, 2002, 725, 1.	0.1	1
745	Development of efficient electron-transporting polymers for light-emitting diodes. , 2003, 4800, 130.		1
746	Absorption and Luminescence Properties of Sequentially Random- and Defined Copolymers Based on Poly(fluorene-benzothiadiazole). Materials Research Society Symposia Proceedings, 2003, 771, 10311.	0.1	1
747	Micro Resonators on Side-Polished Fiber - A Potential Fiber Optic Sensor Platform. , 0, , .		1
748	Millimeter-wave ring resonator based electro-optic polymer modulator. , 2006, , .		1
749	Gated lateral charge transport in self-assembled 1-pyrylphosphonic acid molecular multilayers. Applied Physics Letters, 2006, 88, 223112.	3.3	1
750	Electro-optic polymer microring resonators made by photobleaching. , 2007, , .		1
751	Electro-optic polymer prism beam deflector. Optical Engineering, 2009, 48, 114601.	1.0	1
752	Hybrid silicon-organic racetrack resonator designs for electro-optical modulation. Proceedings of SPIE, 2010, , .	0.8	1
753	A low V <inf>π</inf> L modulator with GHz bandwidth based on an electro-optic polymer-clad silicon slot waveguide. , 2010, , .		1
754	Towards a low-loss, ultra-low drive voltage silicon-polymer hybrid electro-optic modulator. , 2011, , .		1
755	Electro-optic Polymer Infiltrated Silicon Slot Photonic Crystal Waveguide for Broadband Electromagnetic Field Sensing. , 2014, , .		1
756	Long-Pulsed Luminescence for the Measurement of Dissolved Oxygen. Applied Spectroscopy, 2014, 68, 315-323.	2.2	1

#	Article	IF	CITATIONS
757	Photovoltaics: A Tetraperylene Diimides Based 3D Nonfullerene Acceptor for Efficient Organic Photovoltaics (Adv. Sci. 4/2015). Advanced Science, 2015, 2, .	11.2	1
758	Towards a fully packaged high-performance RF sensor featuring slotted photonic crystal waveguides. , 2016, , .		1
759	2D Perovskites: Coordination Engineering of Singleâ€Crystal Precursor for Phase Control in Ruddlesden–Popper Perovskite Solar Cells (Adv. Energy Mater. 16/2020). Advanced Energy Materials, 2020, 10, 2070072.	19.5	1
760	Ultra-efficient and stable EO dendrimers containing supramolecular homodimers of dipolar semifluorinated aromatics. , 2018, , .		1
761	Slow Light Enhanced E-O Polymer Nano-Photonic Modulator with Ultra-High Effective In-Device r33. , 2011, , .		1
762	Materials for Loss-Based Switching in Silicon-Organic Hybrid Devices. , 2012, , .		1
763	Wideband Electromagnetic Wave Sensing Using Electro-optic Polymer Infiltrated Silicon Slot Photonic Crystal Waveguide. , 2014, , .		1
764	High-performance electro-optic polymers and their applications in high-speed electro-optic switches and modulators. , 1997, , .		0
765	Polyquinolines: Multifunctional Polymers for Electro-Optic and Light-Emitting Applications. Materials Research Society Symposia Proceedings, 1999, 558, 469.	0.1	0
766	Design and Synthesis of Highly Efficient Nonlinear Optical Chromophores. Materials Research Society Symposia Proceedings, 1999, 598, 60.	0.1	0
767	Poly(Binaphthalenevinylene-alt-Phenylenevinylene) Derivatives: Novel Luminescent Polymers for Light-Emitting Devices. Materials Research Society Symposia Proceedings, 1999, 598, 125.	0.1	0
768	Synthesis and Characterization of Novel Conjugated Light-Emitting Polymers. Materials Research Society Symposia Proceedings, 2002, 725, 1.	0.1	0
769	Focused Microwave-assisted Synthesis of 2,5-Dihydrofuran Derivatives as Electron Acceptors for Highly Efficient Nonlinear Optical Chromophores. Materials Research Society Symposia Proceedings, 2003, 771, 10481.	0.1	0
770	Platinum-Functionalized Chiral Molecular Squares as Light-Emitting Materials. Materials Research Society Symposia Proceedings, 2004, 846, DD3.6.1.	0.1	0
771	Highly Ordered Pseudo-Discotic Chromophore Systems for Electro-Optic Materials and Devices. Materials Research Society Symposia Proceedings, 2004, 846, DD6.2.1.	0.1	0
772	Synthesis of Dendridic NLO Chromophores for the Improvement of Order in Electro-optics. Materials Research Society Symposia Proceedings, 2004, 846, DD6.3.1.	0.1	0
773	Organic electro-optic glasses for WDM applications. , 2005, , .		0
774	Second- and Third- Order Nonlinear Optical Materials. , 2006, , 7-1-7-126.		0

#	Article	IF	CITATIONS
775	P-187: Crosslinkable Hole-Transporting Polymers for High Efficiency Blue and White Phosphorescent Light-Emitting Diodes. Digest of Technical Papers SID International Symposium, 2006, 37, 931.	0.3	0
776	Tunable Fabry-Perot Filters using Electro-Optic Hybrid Sol-Gel. , 2006, , .		0
777	Millimeter-wave Electrooptic Polymer-based Ring Resonator Modulation. , 2007, , .		0
778	Transparent Conducting Oxide (TCO) Electrode Based High-speed Organic Electro-optic (EO) Modulator. , 2007, , .		0
779	Electro-optic polymer prism beam deflector. , 2008, , .		0
780	Electro-optic modulation in hybrid SOI and polymer slotted resonant photonic crystal heterostructures. , 2009, , .		0
781	Nanoarrays: Cooperative Near-Field Surface Plasmon Enhanced Quantum Dot Nanoarrays (Adv. Funct.) Tj ETQq1	1 0,7843 14.9	14 rgBT /Ove
782	High speed electro-optic modulation in hybrid silicon on insulator slotted photonic crystal. , 2010, , .		0
783	Ultrathin Self-Assembled Organophosphonic Acid Monolayers/Metal Oxides Hybrid Dielectrics for Low-Voltage Field-Effect Transistors. ACS Symposium Series, 2010, , 229-239.	0.5	0
784	Organic Materials for Zeno-Based Optical Switching. , 2011, , .		0
785	Fabrication of high Q-cavities with functional polymer cladding. , 2013, , .		Ο
786	Electro-Optic Polymer/TiO2 Multilayer Slot Waveguide Modulators for Optical Interconnections. , 2013, , .		0
787	Electro-optic polymer/TiO <inf>2</inf> multilayer slot waveguide modulators. , 2014, , .		Ο
788	High-performance Optical Modulator Based on Electro-optic Polymer Infiltrated Silicon Slot Photonic Crystal Waveguide. , 2014, , .		0
789	Ultralow Power Consumption of 1.5nW Over Wide Optical Spectrum Range in Silicon Organic Hybrid Modulator. , 2014, , .		0
790	Ultraperformance nanophotonic modulator based on silicon organic hybrid technology. , 2014, , .		0
791	Corrections to "A Silicon-Polymer Hybrid Modulator—Design, Simulation, and Proof of Principle― [Dec 13 4067-4072]. Journal of Lightwave Technology, 2015, 33, 3358-3358.	4.6	0
792	A surface-normal plasmonic modulator with electro-optic polymer in metallic slits. , 2016, , .		0

#	Article	IF	CITATIONS
793	Hybrid plasmonic/electro-optic polymer modulator. , 2016, , .		0
794	Increased electro-optic effect in a guest–host electro-optic polymer by adding PEDOT:PSS as an interfacial barrier layer. Journal of Optics (United Kingdom), 2017, 19, 045503.	2.2	0
795	Highly Efficient Electron-Transporting Polymers for Light-Emitting Diodes. , 2002, , .		0
796	Electro-Optic Waveguide Based on Hybrid Sol-Gel Doped with Organic Chromophore. , 2005, , .		0
797	Materials and Interface Engineering in Organic Light-Emitting Diodes. , 2009, , 243-261.		0
798	Charge Transfer Dynamics in Donor-Ï€-Bridge-Acceptor Side-Chain Polymers for Solar Cells. , 2010, , .		0
799	Metal Nanoparticle Enhanced Organic Solar Cells: A Numerical Study of Structure Property Relationships. , 2011, , .		0
800	Plasmon-Enhanced Third-Order Harmonic Generation in Plasmonic-Organic Photonic Crystals. , 2014, ,		0
801	Rational Material, Interface, and Device Engineering for High-Performance and Stable Perovskite Solar Cells. , 0, , .		0
802	Development of Highly Efficient, Stable, and Environmentally Stable Perovskite Solar Cells and Their Integration with OPV. , 0, , .		0
803	Analysis and Demonstration of Ultra-Broadband Mach-Zehnder Hybrid Polymer/Sol-Gel Waveguide Modulators. , 2020, , .		0
804	A radically different path to high-performance Sn perovskite solar cells. Science China Chemistry, 0, , 1.	8.2	0