
Rachida Guennoun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6807093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progesterone and Allopregnanolone Neuroprotective Effects in the Wobbler Mouse Model of Amyotrophic Lateral Sclerosis. Cellular and Molecular Neurobiology, 2022, 42, 23-40.	1.7	11
2	Neuroprotective Effects of Testosterone in Male Wobbler Mouse, a Model of Amyotrophic Lateral Sclerosis. Molecular Neurobiology, 2021, 58, 2088-2106.	1.9	4
3	Developmental expression of genes involved in progesterone synthesis, metabolism and action during the post-natal cerebellar myelination. Journal of Steroid Biochemistry and Molecular Biology, 2021, 207, 105820.	1.2	4
4	Sex differences in the cerebroprotection by Nestorone intranasal delivery following stroke in mice. Neuropharmacology, 2021, 198, 108760.	2.0	5
5	Sex steroids, neurosteroidogenesis, and inflammation in multiple sclerosis and related animal models. Current Opinion in Endocrine and Metabolic Research, 2021, 21, 100286.	0.6	Ο
6	Progesterone in the Brain: Hormone, Neurosteroid and Neuroprotectant. International Journal of Molecular Sciences, 2020, 21, 5271.	1.8	67
7	Dose-dependent and long-term cerebroprotective effects of intranasal delivery of progesterone after ischemic stroke in male mice. Neuropharmacology, 2020, 170, 108038.	2.0	6
8	Insights into the Therapeutic Potential of Glucocorticoid Receptor Modulators for Neurodegenerative Diseases. International Journal of Molecular Sciences, 2020, 21, 2137.	1.8	16
9	Intranasal administration of progesterone: A potential efficient route of delivery for cerebroprotection after acute brain injuries. Neuropharmacology, 2019, 145, 283-291.	2.0	28
10	Cerebroprotection by progesterone following ischemic stroke: Multiple effects and role of the neural progesterone receptors. Journal of Steroid Biochemistry and Molecular Biology, 2019, 185, 90-102.	1.2	26
11	Sex Differences, Progesterone, and Ischemic Stroke. ISGE Series, 2019, , 209-231.	0.2	О
12	Steroids in Stroke with Special Reference to Progesterone. Cellular and Molecular Neurobiology, 2019, 39, 551-568.	1.7	29
13	Sex differences in brain mitochondrial metabolism: influence of endogenous steroids and stroke. Journal of Neuroendocrinology, 2018, 30, e12497.	1.2	52
14	Neurosteroidogenesis and progesterone antiâ€inflammatory/neuroprotective effects. Journal of Neuroendocrinology, 2018, 30, e12502.	1.2	47
15	Protective effects of the neurosteroid allopregnanolone in a mouse model of spontaneous motoneuron degeneration. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 201-216.	1.2	27
16	A Role of Endogenous Progesterone in Stroke Cerebroprotection Revealed by the Neural-Specific Deletion of Its Intracellular Receptors. Journal of Neuroscience, 2017, 37, 10998-11020.	1.7	57
17	Progesterone treatment modulates mRNA OF neurosteroidogenic enzymes in a murine model of multiple sclerosis. Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 421-429.	1.2	12
18	Role of Sex Hormones on Brain Mitochondrial Function, with Special Reference to Aging and Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 2017, 9, 406.	1.7	82

#	Article	IF	CITATIONS
19	Progesterone: Synthesis, Metabolism, Mechanism of Action, and Effects in the Nervous System. , 2017, , 215-244.		9
20	Steroid Profiling in Male Wobbler Mouse, a Model of Amyotrophic Lateral Sclerosis. Endocrinology, 2016, 157, 4446-4460.	1.4	23
21	Progesterone reduces brain mitochondrial dysfunction after transient focal ischemia in male and female mice. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 562-568.	2.4	29
22	Progesterone neuroprotection: The background of clinical trial failure. Journal of Steroid Biochemistry and Molecular Biology, 2016, 160, 53-66.	1.2	77
23	Intranasal delivery of progesterone after transient ischemic stroke decreases mortality and provides neuroprotection. Neuropharmacology, 2015, 97, 394-403.	2.0	37
24	A functional progesterone receptor is required for immunomodulation, reduction of reactive gliosis and survival of oligodendrocyte precursors in the injured spinal cord. Journal of Steroid Biochemistry and Molecular Biology, 2015, 154, 274-284.	1.2	37
25	Effect of Sex Differences on Brain Mitochondrial Function and Its Suppression by Ovariectomy and in Aged Mice. Endocrinology, 2015, 156, 2893-2904.	1.4	104
26	Analytical challenges for measuring steroid responses to stress, neurodegeneration and injury in the central nervous system. Steroids, 2015, 103, 42-57.	0.8	35
27	The progesterone receptor agonist Nestorone holds back proinflammatory mediators and neuropathology in the wobbler mouse model of motoneuron degeneration. Neuroscience, 2015, 308, 51-63.	1.1	26
28	Progesterone and allopregnanolone in the central nervous system: Response to injury and implication for neuroprotection. Journal of Steroid Biochemistry and Molecular Biology, 2015, 146, 48-61.	1.2	166
29	Revisiting the roles of progesterone and allopregnanolone in the nervous system: Resurgence of the progesterone receptors. Progress in Neurobiology, 2014, 113, 6-39.	2.8	289
30	Efficacy of the selective progesterone receptor agonist Nestorone for chronic experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 276, 89-97.	1.1	28
31	Progesterone Attenuates Several Hippocampal Abnormalities of the Wobbler Mouse. Journal of Neuroendocrinology, 2013, 25, 235-243.	1.2	15
32	Neuroprotection by steroids after neurotrauma in organotypic spinal cord cultures: A key role for progesterone receptors and steroidal modulators of GABAA receptors. Neuropharmacology, 2013, 71, 46-55.	2.0	40
33	Distribution of membrane progesterone receptor alpha in the male mouse and rat brain and its regulation after traumatic brain injury. Neuroscience, 2013, 231, 111-124.	1.1	118
34	Progesterone Protective Effects in Neurodegeneration and Neuroinflammation. Journal of Neuroendocrinology, 2013, 25, 1095-1103.	1.2	47
35	Therapeutic Effects of Progesterone in Animal Models of Neurological Disorders. CNS and Neurological Disorders - Drug Targets, 2013, 999, 9-10.	0.8	13
36	Therapeutic effects of progesterone in animal models of neurological disorders. CNS and Neurological Disorders - Drug Targets, 2013, 12, 1205-18.	0.8	16

#	Article	IF	CITATIONS
37	Progesterone effects on neuronal brain-derived neurotrophic factor and glial cells during progression of Wobbler mouse neurodegeneration. Neuroscience, 2012, 201, 267-279.	1.1	24
38	Progesterone Receptors: A Key for Neuroprotection in Experimental Stroke. Endocrinology, 2012, 153, 3747-3757.	1.4	111
39	Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Experimental Neurology, 2011, 231, 135-146.	2.0	88
40	Experimental and clinical evidence for the protective role of progesterone in motoneuron degeneration and neuroinflammation. Hormone Molecular Biology and Clinical Investigation, 2011, 7, 403-11.	0.3	7
41	Stage Dependent Effects of Progesterone on Motoneurons and Glial Cells of Wobbler Mouse Spinal Cord Degeneration. Cellular and Molecular Neurobiology, 2010, 30, 123-135.	1.7	35
42	Membrane progesterone receptors localization in the mouse spinal cord. Neuroscience, 2010, 166, 94-106.	1.1	83
43	Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Frontiers in Neuroendocrinology, 2009, 30, 173-187.	2.5	139
44	Effects of progesterone on oligodendrocyte progenitors, oligodendrocyte transcription factors, and myelin proteins following spinal cord injury. Glia, 2009, 57, 884-897.	2.5	101
45	Progesterone Effects on Neuronal Ultrastructure and Expression of Microtubule-associated Protein 2 (MAP2) in Rats with Acute Spinal Cord Injury. Cellular and Molecular Neurobiology, 2009, 29, 27-39.	1.7	29
46	Progesterone: Synthesis, Metabolism, Mechanisms of Action, and Effects in the Nervous System. An Overview. , 2009, , 1505-1561.		1
47	The membrane-associated progesterone-binding protein 25-Dx: Expression, cellular localization and up-regulation after brain and spinal cord injuries. Brain Research Reviews, 2008, 57, 493-505.	9.1	80
48	S.24.03 Neuroactive steroids as enhancers of neuroregeneration. European Neuropsychopharmacology, 2008, 18, S191.	0.3	0
49	Progesterone modulates brain-derived neurotrophic factor and choline acetyltransferase in degenerating Wobbler motoneurons. Experimental Neurology, 2007, 203, 406-414.	2.0	67
50	Novel Perspectives for Progesterone in Hormone Replacement Therapy, with Special Reference to the Nervous System. Endocrine Reviews, 2007, 28, 387-439.	8.9	154
51	3β-Hydroxysteroid dehydrogenase/5-ene-4-ene isomerase mRNA expression in rat brain: Effect of pseudopregnancy and traumatic brain injury. Journal of Steroid Biochemistry and Molecular Biology, 2007, 104, 293-300.	1.2	19
52	Steroid Profiling in Brain and Plasma of Male and Pseudopregnant Female Rats after Traumatic Brain Injury: Analysis by Gas Chromatography/Mass Spectrometry. Endocrinology, 2007, 148, 2505-2517.	1.4	122
53	Progesterone: Therapeutic opportunities for neuroprotection and myelin repair. , 2007, 116, 77-106.		221
54	Progesterone Increases the Expression of Myelin Basic Protein and the Number of Cells Showing NG2 Immunostaining in the Lesioned Spinal Cord. Journal of Neurotrauma, 2006, 23, 181-192.	1.7	71

#	Article	IF	CITATIONS
55	Injury Elicited Increase in Spinal Cord Neurosteroid Content Analyzed by Gas Chromatography Mass Spectrometry. Endocrinology, 2006, 147, 1847-1859.	1.4	88
56	Progesterone administration modulates AQP4 expression and edema after traumatic brain injury in male rats. Experimental Neurology, 2006, 198, 469-478.	2.0	190
57	Progesterone Treatment of Spinal Cord Injury: Effects on Receptors, Neurotrophins, and Myelination. Journal of Molecular Neuroscience, 2006, 28, 3-16.	1.1	84
58	The membrane-associated progesterone-binding protein 25-Dx is expressed in brain regions involved in water homeostasis and is up-regulated after traumatic brain injury. Journal of Neurochemistry, 2005, 93, 1314-1326.	2.1	92
59	Progestins and antiprogestins: mechanisms of action, neuroprotection and myelination. , 2005, , 111-154.		2
60	Progesterone neuroprotection in spinal cord trauma involves up-regulation of brain-derived neurotrophic factor in motoneurons. Journal of Steroid Biochemistry and Molecular Biology, 2005, 94, 143-149.	1.2	93
61	Progesterone restores retrograde labeling of cervical motoneurons in Wobbler mouse motoneuron disease. Experimental Neurology, 2005, 195, 518-523.	2.0	40
62	Progesterone treatment reduces NADPH-diaphorase/nitric oxide synthase in Wobbler mouse motoneuron disease. Brain Research, 2004, 1014, 71-79.	1.1	29
63	Effects of injury and progesterone treatment on progesterone receptor and progesterone binding protein 25-Dx expression in the rat spinal cord. Journal of Neurochemistry, 2004, 87, 902-913.	2.1	107
64	Downregulation of steroidogenic acute regulatory protein (StAR) gene expression by cyclic AMP in cultured Schwann cells. Glia, 2004, 45, 213-228.	2.5	29
65	Local synthesis and dual actions of progesterone in the nervous system: neuroprotection and myelination. Growth Hormone and IGF Research, 2004, 14, 18-33.	0.5	190
66	Progesterone up-regulates neuronal brain-derived neurotrophic factor expression in the injured spinal cord. Neuroscience, 2004, 125, 605-614.	1.1	117
67	Steroid Effects on Glial Cells. Annals of the New York Academy of Sciences, 2003, 1007, 317-328.	1.8	39
68	3 Beta-hydroxysteroid dehydrogenase isomerase (3β-HSD) activity in the rat sciatic nerve: kinetic analysis and regulation by steroids. Journal of Steroid Biochemistry and Molecular Biology, 2003, 85, 89-94.	1.2	12
69	Developmental Expression of Genes Involved in Neurosteroidogenesis: 3β-Hydroxysteroid Dehydrogenase/Δ5-Δ4 Isomerase in the Rat Brain. Endocrinology, 2003, 144, 2902-2911.	1.4	54
70	Progesterone Neuroprotection in the Wobbler Mouse, a Genetic Model of Spinal Cord Motor Neuron Disease. Neurobiology of Disease, 2002, 11, 457-468.	2.1	112
71	Cellular Basis for Progesterone Neuroprotection in the Injured Spinal Cord. Journal of Neurotrauma, 2002, 19, 343-355.	1.7	92
72	Basis of progesterone protection in spinal cord neurodegeneration. Journal of Steroid Biochemistry and Molecular Biology, 2002, 83, 199-209.	1.2	77

#	Article	IF	CITATIONS
73	3Ĵ²-Hydroxysteroid dehydrogenase expression in rat spinal cord. Neuroscience, 2002, 113, 883-891.	1.1	57
74	Characterization and regulation of the 3β-hydroxysteroid dehydrogenase isomerase enzyme in the rat sciatic nerve. Journal of Neurochemistry, 2002, 84, 119-126.	2.1	28
75	Expression of Steroidogenic Acute Regulatory Protein in Cultured Schwann Cells and Its Regulation by cAMP. Annals of the New York Academy of Sciences, 2002, 973, 83-87.	1.8	11
76	Progesterone synthesis and myelin formation in peripheral nerves. Brain Research Reviews, 2001, 37, 343-359.	9.1	120
77	Progesterone stimulates Krox-20 gene expression in Schwann cells. Molecular Brain Research, 2001, 90, 75-82.	2.5	57
78	Synthesis of progesterone in Schwann cells: regulation by sensory neurons. European Journal of Neuroscience, 2001, 13, 916-924.	1.2	59
79	Progesterone and the oligodendroglial lineage: Stage-dependent biosynthesis and metabolism. Glia, 2001, 36, 295-308.	2.5	110
80	Steroid synthesis and metabolism in the nervous system: trophic and protective effects. Journal of Neurocytology, 2000, 29, 307-326.	1.6	164
81	Immunocytochemical evidence for a progesterone receptor in neurons and glial cells of the rat spinal cord. Neuroscience Letters, 2000, 288, 29-32.	1.0	64
82	Modulation of NADPH-diaphorase and glial fibrillary acidic protein by progesterone in astrocytes from normal and injured rat spinal cord. Journal of Steroid Biochemistry and Molecular Biology, 2000, 73, 159-169.	1.2	43
83	Genomic and membrane actions of progesterone: implications for reproductive physiology and behavior. Behavioural Brain Research, 1999, 105, 37-52.	1.2	65
84	Neurosteroids in the Hippocampus: Neuronal Plasticity and Memory. Stress, 1997, 2, 65-78.	0.8	37
85	S.01.04 Progesterone synthesized in peripheral nerves promotes myelin repair and axonal regeneration. European Neuropsychopharmacology, 1997, 7, S80.	0.3	Ο
86	Neurosteroids: Expression of Functional 3β-Hydroxysteroid Dehydrogenase by Rat Sensory Neurons and Schwann Cells. European Journal of Neuroscience, 1997, 9, 2236-2247.	1.2	70
87	Progesterone synthesis and myelin formation by Schwann cells. Science, 1995, 268, 1500-1503.	6.0	470
88	A key enzyme in the biosynthesis of neurosteroids, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD), is expressed in rat brain. Molecular Brain Research, 1995, 30, 287-300.	2.5	197
89	Ontogeny of D1 and DARPP-32 gene expression in the rat striatum: an in situ hybridization study. Molecular Brain Research, 1992, 12, 131-139.	2.5	58
90	D2 dopamine receptor gene expression in the rat striatum during ontogeny: an in situ hybridization study. Developmental Brain Research, 1991, 60, 79-87.	2.1	53

#	Article	IF	CITATIONS
91	Estrogen-independent and estrogen-induced progesterone receptors, and their regulation by progestins in the hypothalamus and pituitary of the chick embryo: an immunohistochemical study. Developmental Brain Research, 1990, 55, 151-159.	2.1	8
92	Evidence of a functional aromatase system in the pituitary gland of the chick embryo in vitro. Journal of Endocrinology, 1988, 119, 229-NP.	1.2	1
93	Progesterone receptors in hypothalamus and pituitary during the embryonic development of the chick: regulation by sex steroid hormones. Developmental Brain Research, 1987, 37, 1-9.	2.1	28
94	Progestin action in the brain. Endocrine Abstracts, 0, , .	0.0	0