Marjolein Margaretha van der Krogt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6807085/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison between the Rizzoli and Oxford foot models with independent and clustered tracking markers. Gait and Posture, 2022, 91, 48-51.	1.4	2
2	Muscle actions on crossed and non-crossed joints during upright standing and gait: A comprehensive description based on induced acceleration analysis. Journal of Biomechanics, 2022, 130, 110874.	2.1	4
3	The effect of prolonged walking on muscle fatigue and neuromuscular control in children with cerebral palsy. Gait and Posture, 2022, 93, 7-13.	1.4	3
4	The Amsterdam Foot Model: a clinically informed multiâ€segment foot model developed to minimize measurement errors in foot kinematics. Journal of Foot and Ankle Research, 2022, 15, .	1.9	3
5	Home-Based Measurements of Dystonia in Cerebral Palsy Using Smartphone-Coupled Inertial Sensor Technology and Machine Learning: A Proof-of-Concept Study. Sensors, 2022, 22, 4386.	3.8	8
6	The influence of soft tissue artifacts on multi-segment foot kinematics. Journal of Biomechanics, 2021, 120, 110359.	2.1	20
7	Evaluating cost function criteria in predicting healthy gait. Journal of Biomechanics, 2021, 123, 110530.	2.1	29
8	Torsion Tool: An automated tool for personalising femoral and tibial geometries in OpenSim musculoskeletal models. Journal of Biomechanics, 2021, 125, 110589.	2.1	16
9	Validation of forward simulations to predict the effects of bilateral plantarflexor weakness on gait. Gait and Posture, 2021, 87, 33-42.	1.4	21
10	Marker placement sensitivity of the Oxford and Rizzoli foot models in adults and children. Journal of Biomechanics, 2021, 126, 110629.	2.1	3
11	How does a systematic tuning protocol for ankle foot orthosis–footwear combinations affect gait in children in cerebral palsy?. Disability and Rehabilitation, 2021, , 1-11.	1.8	3
12	A most painful knee does not induce interlimb differences in knee and hip moments during gait in patients with knee osteoarthritis. Clinical Biomechanics, 2021, 89, 105455.	1.2	2
13	Midfoot kinematics of valgus and varus foot types in children with cerebral palsy using the Amsterdam Foot Model. Gait and Posture, 2021, 90, 186-187.	1.4	0
14	Implicit EMG-driven gaming to alter calf muscle activation during gait in children with cerebral palsy. Gait and Posture, 2021, 90, 61-62.	1.4	0
15	Markerless motion tracking to assess upper limb dyskinesia in children and young adults with cerebral palsy. Gait and Posture, 2021, 90, 106-107.	1.4	0
16	Functional assessment of stretch hyperreflexia in children with cerebral palsy using treadmill perturbations. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 151.	4.6	0
17	Quantifying muscle fatigue during walking in people with multiple sclerosis. Clinical Biomechanics, 2020, 72, 94-101.	1.2	16
18	Comparing the kinematic output of the Oxford and Rizzoli Foot Models during normal gait and voluntary pathological gait in healthy adults. Gait and Posture, 2020, 82, 126-132.	1.4	19

Marjolein Margaretha van

#	Article	IF	CITATIONS
19	Biofeedback-driven gaming to improve EMG patterns during gait in children with cerebral palsy. Gait and Posture, 2020, 81, 97-98.	1.4	0
20	Biofeedback-driven gaming to reduce muscle stretch reflexes. Gait and Posture, 2020, 81, 99-100.	1.4	0
21	Feature selection from markerless movement recordings to assess dystonia in children with cerebral palsy. Gait and Posture, 2020, 81, 354-355.	1.4	2
22	Instrumented assessment of motor function in dyskinetic cerebral palsy: a systematic review. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 39.	4.6	31
23	Muscle Synergies During Walking in Children With Cerebral Palsy: A Systematic Review. Frontiers in Physiology, 2020, 11, 632.	2.8	24
24	The Human Body Model versus conventional gait models for kinematic gait analysis in children with cerebral palsy. Human Movement Science, 2020, 70, 102585.	1.4	25
25	The effect of mono- versus multi-segment musculoskeletal models of the foot on simulated triceps surae lengths in pathological and healthy gait. Gait and Posture, 2020, 77, 14-19.	1.4	6
26	Applying Stretch to Evoke Hyperreflexia in Spasticity Testing: Velocity vs. Acceleration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 591004.	4.1	4
27	Automatic video tracking using deep learning in dyskinetic cerebral palsy. Gait and Posture, 2020, 81, 132-133.	1.4	3
28	Intraobserver Reliability and Construct Validity of the Squat Test in Children With Cerebral Palsy. Pediatric Physical Therapy, 2020, 32, 399-403.	0.6	2
29	Inter-laboratory and inter-operator reproducibility in gait analysis measurements in pediatric subjects. International Biomechanics, 2019, 6, 19-33.	1.0	13
30	Editorial: Motor Control of Gait and the Underlying Neural Network in Pediatric Neurology. Frontiers in Human Neuroscience, 2019, 13, 226.	2.0	3
31	Effects of functional power training on gait kinematics in children with cerebral palsy. Gait and Posture, 2019, 73, 168-172.	1.4	9
32	Muscle Synergies in Response to Biofeedback-Driven Gait Adaptations in Children With Cerebral Palsy. Frontiers in Physiology, 2019, 10, 1208.	2.8	27
33	The validity and usability of an eight marker model for avatar-based biofeedback gait training. Clinical Biomechanics, 2019, 70, 146-152.	1.2	5
34	Precision of determining bone pose and marker position in the foot and lower leg from computed tomography scans: How low can we go in radiation dose?. Medical Engineering and Physics, 2019, 69, 147-152.	1.7	5
35	The effects of electromyography-assisted modelling in estimating musculotendon forces during gait in children with cerebral palsy. Journal of Biomechanics, 2019, 92, 45-53.	2.1	39
36	How normal is normal: Consequences of stride to stride variability, treadmill walking and age when using normative paediatric gait data. Gait and Posture, 2019, 70, 289-297.	1.4	15

#	Article	IF	CITATIONS
37	Factors Associated With Long-Term Improvement of Gait After Selective Dorsal Rhizotomy. Archives of Physical Medicine and Rehabilitation, 2019, 100, 474-480.	0.9	18
38	Immediate Effects of Immersive Biofeedback on Gait in Children With Cerebral Palsy. Archives of Physical Medicine and Rehabilitation, 2019, 100, 598-605.	0.9	39
39	The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and metaâ€analysis. Developmental Medicine and Child Neurology, 2018, 60, 866-883.	2.1	113
40	O 105 – The effect of mono- versus multi-segment musculoskeletal models of the foot on simulated triceps surae lengths. Gait and Posture, 2018, 65, 219-220.	1.4	0
41	Evolution of gait in adolescents and young adults with spastic diplegia after selective dorsal rhizotomy in childhood: A 10 year follow-up study. Gait and Posture, 2018, 64, 108-113.	1.4	8
42	European consensus on the concepts and measurement of the pathophysiological neuromuscular responses to passive muscle stretch. European Journal of Neurology, 2017, 24, 981.	3.3	90
43	Motorized versus manual instrumented spasticity assessment in children with cerebral palsy. Developmental Medicine and Child Neurology, 2017, 59, 145-151.	2.1	27
44	Analysis of gait patterns pre- and post- Single Event Multilevel Surgery in children with Cerebral Palsy by means of Offset-Wise Movement Analysis Profile and Linear Fit Method. Human Movement Science, 2017, 55, 145-155.	1.4	22
45	O73: Does real-time feedback on ankle power alter dynamic motor control in children with cerebral palsy?. Gait and Posture, 2017, 57, 126-127.	1.4	1
46	Evolution of the gait pattern in adolescents and young adults with Cerebral Palsy who underwent SDR as children: a 10 year follow-up study. Gait and Posture, 2017, 57, 129-130.	1.4	0
47	Simulation of passive gastrocnemius muscle-tendon properties in cerebral palsy and typically developing children. Gait and Posture, 2017, 57, 194-195.	1.4	0
48	P48: Effect of Botulinum toxin-A treatment on ankle and knee kinematics in spastic CP patients based on combination of treated muscles. Gait and Posture, 2017, 57, 269-270.	1.4	0
49	Real-time feedback to improve gait in children with cerebral palsy. Gait and Posture, 2017, 52, 76-82.	1.4	40
50	Optimal calibration of instrumented treadmills using an instrumented pole. Medical Engineering and Physics, 2016, 38, 785-792.	1.7	0
51	Sensitivity of subject-specific models to Hill muscle–tendon model parameters in simulations of gait. Journal of Biomechanics, 2016, 49, 1953-1960.	2.1	47
52	Neuro-musculoskeletal simulation of instrumented contracture and spasticity assessment in children with cerebral palsy. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 64.	4.6	72
53	TLEM 2.0 – A comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity. Journal of Biomechanics, 2015, 48, 734-741.	2.1	136
54	Driving a musculoskeletal model with inertial and magnetic measurement units. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 1003-1013.	1.6	16

Marjolein Margaretha van

#	Article	IF	CITATIONS
55	The validity and reliability of modelled neural and tissue properties of the ankle muscles in children with cerebral palsy. Gait and Posture, 2015, 42, 7-15.	1.4	30
56	Self-paced versus fixed speed walking and the effect of virtual reality in children with cerebral palsy. Gait and Posture, 2015, 42, 498-504.	1.4	31
57	Kinetic comparison of walking on a treadmill versus over ground in children with cerebral palsy. Journal of Biomechanics, 2015, 48, 3577-3583.	2.1	30
58	Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?. PLoS ONE, 2015, 10, e0144815.	2.5	29
59	Overground versus self-paced treadmill walking in a virtual environment in children with cerebral palsy. Gait and Posture, 2014, 40, 587-593.	1.4	63
60	Effects of adding a virtual reality environment to different modes of treadmill walking. Gait and Posture, 2014, 39, 939-945.	1.4	75
61	Self-paced versus fixed speed treadmill walking. Gait and Posture, 2014, 39, 478-484.	1.4	147
62	Evaluation of a morphing based method to estimate muscle attachment sites of the lower extremity. Journal of Biomechanics, 2014, 47, 1144-1150.	2.1	45
63	Energy exchange between subject and belt during treadmill walking. Journal of Biomechanics, 2014, 47, 1510-1513.	2.1	13
64	Lower body kinematics evaluation based on a multidirectional four-dimensional structured light measurement. Journal of Biomedical Optics, 2013, 18, 056014.	2.6	18
65	Sensitivity of subject-specific models to errors in musculo-skeletal geometry. Journal of Biomechanics, 2012, 45, 2476-2480.	2.1	60
66	How much muscle strength is required to walk in a crouch gait?. Journal of Biomechanics, 2012, 45, 2564-2569.	2.1	118
67	A simple controller for the prediction of three-dimensional gait. Journal of Biomechanics, 2012, 45, 2610-2617.	2.1	12
68	How robust is human gait to muscle weakness?. Gait and Posture, 2012, 36, 113-119.	1.4	217
69	The effect of ankle foot orthosis stiffness on the energy cost of walking: A simulation study. Clinical Biomechanics, 2011, 26, 955-961.	1.2	108
70	Effects of Fatigue of Plantarflexors on Control and Performance in Vertical Jumping. Medicine and Science in Sports and Exercise, 2011, 43, 673-684.	0.4	23
71	Dynamic spasticity of plantar flexor muscles in cerebral palsy gait. Journal of Rehabilitation Medicine, 2010, 42, 656-663.	1.1	40
72	How Crouch Gait Can Dynamically Induce Stiff-Knee Gait. Annals of Biomedical Engineering, 2010, 38, 1593-1606.	2.5	27

#	Article	IF	CITATIONS
73	Reproducibility and validity of video screen measurements of gait in children with spastic cerebral palsy. Gait and Posture, 2010, 31, 489-494.	1.4	38
74	Robust passive dynamics of the musculoskeletal system compensate for unexpected surface changes during human hopping. Journal of Applied Physiology, 2009, 107, 801-808.	2.5	56
75	Walking speed modifies spasticity effects in gastrocnemius and soleus in cerebral palsy gait. Clinical Biomechanics, 2009, 24, 422-428.	1.2	32
76	The effect of walking speed on hamstrings length and lengthening velocity in children with spastic cerebral palsy. Gait and Posture, 2009, 29, 640-644.	1.4	32
77	Validation of hamstrings musculoskeletal modeling by calculating peak hamstrings length at different hip angles. Journal of Biomechanics, 2008, 41, 1022-1028.	2.1	13
78	Muscle length and lengthening velocity in voluntary crouch gait. Gait and Posture, 2007, 26, 532-538.	1.4	43