
Hannes Mikula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6806740/publications.pdf Version: 2024-02-01

HANNES MIKILLA

#	Article	IF	CITATIONS
1	7 Tetrazine-Based Cycloadditions in Click Chemistry. , 2022, , .		1
2	Synergistic Experimental and Computational Investigation of the Bioorthogonal Reactivity of Substituted Aryltetrazines. Bioconjugate Chemistry, 2022, 33, 608-624.	3.6	10
3	Overcoming differential tumor penetration of BRAF inhibitors using computationally guided combination therapy. Science Advances, 2022, 8, eabl6339.	10.3	6
4	Uncovering the Key Role of Distortion in Bioorthogonal Tetrazine Tools That Defy the Reactivity/Stability Trade-Off. Journal of the American Chemical Society, 2022, 144, 8171-8177.	13.7	38
5	Spatiotemporal multiplexed immunofluorescence imaging of living cells and tissues with bioorthogonal cycling of fluorescent probes. Nature Biotechnology, 2022, 40, 1654-1662.	17.5	42
6	Direct Cu-mediated aromatic ¹⁸ F-labeling of highly reactive tetrazines for pretargeted bioorthogonal PET imaging. Chemical Science, 2021, 12, 11668-11675.	7.4	36
7	Lipophilicity and Click Reactivity Determine the Performance of Bioorthogonal Tetrazine Tools in Pretargeted <i>In Vivo</i> Chemistry. ACS Pharmacology and Translational Science, 2021, 4, 824-833.	4.9	45
8	Therapeutically reprogrammed nutrient signalling enhances nanoparticulate albumin bound drug uptake and efficacy in KRAS-mutant cancer. Nature Nanotechnology, 2021, 16, 830-839.	31.5	55
9	Development of the First Aliphatic ¹⁸ F-Labeled Tetrazine Suitable for Pretargeted PET Imaging—Expanding the Bioorthogonal Tool Box. Journal of Medicinal Chemistry, 2021, 64, 15297-15312.	6.4	25
10	<i>Trans</i> -Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging. ACS Nano, 2020, 14, 568-584.	14.6	50
11	Improved Cyclohexanone Vapor Detection via Gravimetric Sensing. Journal of Microelectromechanical Systems, 2020, 29, 1253-1263.	2.5	1
12	A Cleavable C ₂ -Symmetric <i>trans</i> -Cyclooctene Enables Fast and Complete Bioorthogonal Disassembly of Molecular Probes. Journal of the American Chemical Society, 2020, 142, 19132-19141.	13.7	35
13	Fate of free and modified Alternaria mycotoxins during the production of apple concentrates. Food Control, 2020, 118, 107388.	5.5	15
14	Tetrazine- and <i>trans</i> -cyclooctene-functionalised polypept(o)ides for fast bioorthogonal tetrazine ligation. Polymer Chemistry, 2020, 11, 4396-4407.	3.9	25
15	Live Monitoring of Strainâ€Promoted Azide Alkyne Cycloadditions in Complex Reaction Environments by Inline ATRâ€IR Spectroscopy. Chemistry - A European Journal, 2020, 26, 9851-9854.	3.3	5
16	A click-flipped enzyme substrate boosts the performance of the diagnostic screening for Hunter syndrome. Chemical Science, 2020, 11, 12671-12676.	7.4	1
17	HPMA-Based Nanoparticles for Fast, Bioorthogonal iEDDA Ligation. Biomacromolecules, 2019, 20, 3786-3797.	5.4	9
18	Secondary Orbital Interactions Enhance the Reactivity of Alkynes in Diels–Alder Cycloadditions. Journal of the American Chemical Society, 2019, 141, 2224-2227.	13.7	16

HANNES MIKULA

#	Article	IF	CITATIONS
19	Multifunctional Clickable Reagents for Rapid Bioorthogonal Astatination and Radioâ€Crosslinking. ChemPlusChem, 2019, 84, 774-774.	2.8	2
20	Crossâ€Isotopic Bioorthogonal Tools as Molecular Twins for Radiotheranostic Applications. ChemBioChem, 2019, 20, 1530-1535.	2.6	6
21	Multifunctional Clickable Reagents for Rapid Bioorthogonal Astatination and Radioâ€Crosslinking. ChemPlusChem, 2019, 84, 775-778.	2.8	10
22	2- <i>O</i> -Benzyloxycarbonyl protected glycosyl donors: a revival of carbonate-mediated anchimeric assistance for diastereoselective glycosylation. Chemical Communications, 2019, 55, 12543-12546.	4.1	9
23	Convenient Entry to ¹⁸ F‣abeled Amines through the Staudinger Reduction. European Journal of Organic Chemistry, 2019, 2019, 1722-1725.	2.4	6
24	Chemoselectivity of Tertiary Azides in Strainâ€Promoted Alkyneâ€Azide Cycloadditions. Chemistry - A European Journal, 2019, 25, 754-758.	3.3	43
25	Chemical synthesis of culmorin metabolites and their biologic role in culmorin and acetyl-culmorin treated wheat cells. Organic and Biomolecular Chemistry, 2018, 16, 2043-2048.	2.8	18
26	Chemical Glucosylation of Labile Natural Products Using a (2â€Nitrophenyl)acetylâ€Protected Glucosyl Acetimidate Donor. European Journal of Organic Chemistry, 2018, 2018, 2701-2706.	2.4	1
27	Acylation-Mediated â€~Kinetic Turn-On' of 3-Amino-1,2,4,5-tetrazines. Synlett, 2018, 29, 1297-1302.	1.8	13
28	Unraveling Tetrazine-Triggered Bioorthogonal Elimination Enables Chemical Tools for Ultrafast Release and Universal Cleavage. Journal of the American Chemical Society, 2018, 140, 3603-3612.	13.7	128
29	An integrated in silico/in vitro approach to assess the xenoestrogenic potential of Alternaria mycotoxins and metabolites. Food Chemistry, 2018, 248, 253-261.	8.2	57
30	A computational model to predict the Diels–Alder reactivity of aryl/alkyl-substituted tetrazines. Monatshefte Für Chemie, 2018, 149, 833-837.	1.8	14
31	Site occupancy calibration of taxane pharmacology in live cells and tissues. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11406-E11414.	7.1	22
32	Rapid and Modular Assembly of Click Substrates To Assay Enzyme Activity in the Newborn Screening of Lysosomal Storage Disorders. ACS Central Science, 2018, 4, 1688-1696.	11.3	10
33	Modular Nanoparticulate Prodrug Design Enables Efficient Treatment of Solid Tumors Using Bioorthogonal Activation. ACS Nano, 2018, 12, 12814-12826.	14.6	72
34	(2-Benzyloxyphenyl)acetyl (BnPAc): A Participating Relay Protecting Group for Diastereoselective Glycosylation and the Synthesis of 1,2-trans Glycosyl Esters. Synlett, 2018, 29, 2265-2268.	1.8	5
35	Tracking emerging mycotoxins in food: development of an LC-MS/MS method for free and modified Alternaria toxins. Analytical and Bioanalytical Chemistry, 2018, 410, 4481-4494.	3.7	93
36	Synthesis, characterization and printing application of alkylated indolo[3,2-b]carbazoles. Synthetic Metals, 2017, 228, 9-17.	3.9	16

HANNES MIKULA

#	Article	IF	CITATIONS
37	Synthesis of Isotopeâ€Labeled Deoxynivalenolâ€15â€ <i>O</i> â€Glycosides. European Journal of Organic Chemistry, 2017, 2017, 7012-7018.	2.4	2
38	Front Cover: Synthesis of Isotope-Labeled Deoxynivalenol-15-O -Glycosides (Eur. J. Org. Chem. 47/2017). European Journal of Organic Chemistry, 2017, 2017, 7005-7005.	2.4	1
39	Nano-palladium is a cellular catalyst for in vivo chemistry. Nature Communications, 2017, 8, 15906.	12.8	210
40	[18F]Fluoroalkyl azides for rapid radiolabeling and (Re)investigation of their potential towards in vivo click chemistry. Organic and Biomolecular Chemistry, 2017, 15, 5976-5982.	2.8	13
41	Impact of phase I metabolism on uptake, oxidative stress and genotoxicity of the emerging mycotoxin alternariol and its monomethyl ether in esophageal cells. Archives of Toxicology, 2017, 91, 1213-1226.	4.2	27
42	Design and Development of Fluorescent Vemurafenib Analogs for <i>In Vivo</i> Imaging. Theranostics, 2017, 7, 1257-1265.	10.0	16
43	Validated UPLC-MS/MS Methods To Quantitate Free and Conjugated <i>Alternaria</i> Toxins in Commercially Available Tomato Products and Fruit and Vegetable Juices in Belgium. Journal of Agricultural and Food Chemistry, 2016, 64, 5101-5109.	5.2	95
44	Fluorescent vinblastine probes for live cell imaging. Chemical Communications, 2016, 52, 9953-9956.	4.1	10
45	Design, Synthesis, and Evaluation of a Low-Molecular-Weight ¹¹ C-Labeled Tetrazine for Pretargeted PET Imaging Applying Bioorthogonal in Vivo Click Chemistry. Bioconjugate Chemistry, 2016, 27, 1707-1712.	3.6	73
46	Efficient low-cost preparation ofÂtrans-cyclooctenes using a simplified flow setup for photoisomerization. Monatshefte Für Chemie, 2016, 147, 579-585.	1.8	17
47	Optimized Near-IR Fluorescent Agents for in Vivo Imaging of Btk Expression. Bioconjugate Chemistry, 2015, 26, 1513-1518.	3.6	46
48	Synthesis of zearalenone-16-β,D-glucoside and zearalenone-16-sulfate: A tale of protecting resorcylic acid lactones for regiocontrolled conjugation. Beilstein Journal of Organic Chemistry, 2014, 10, 1129-1134.	2.2	15
49	Methylthiodeoxynivalenol (MTD): insight into the chemistry, structure and toxicity of thia-Michael adducts of trichothecenes. Organic and Biomolecular Chemistry, 2014, 12, 5144.	2.8	20
50	Development of a ¹⁸ F‣abeled Tetrazine with Favorable Pharmacokinetics for Bioorthogonal PET Imaging. Angewandte Chemie - International Edition, 2014, 53, 9655-9659.	13.8	108
51	Isolation and Structure Elucidation of Pentahydroxyscirpene, a Trichothecene Fusarium Mycotoxin. Journal of Natural Products, 2014, 77, 188-192.	3.0	10
52	DFT study of the Lewis acid mediated synthesis of 3-acyltetramic acids. Journal of Molecular Modeling, 2014, 20, 2181.	1.8	1
53	Stereoselective Luche Reduction of Deoxynivalenol and Three of Its Acetylated Derivatives at C8. Toxins, 2014, 6, 325-336.	3.4	11
54	Development and validation of an ultra-high-performance liquid chromatography tandem mass spectrometric method for the simultaneous determination of free and conjugated Alternaria toxins in cereal-based foodstuffs. Journal of Chromatography A, 2014, 1372, 91-101.	3.7	75

HANNES MIKULA

#	Article	IF	CITATIONS
55	Sulfation of deoxynivalenol, its acetylated derivatives, and T2-toxin. Tetrahedron, 2014, 70, 5260-5266.	1.9	16
56	Simultaneous preparation of $\hat{I}\pm/\hat{I}^2$ -zearalenol glucosides and glucuronides. Carbohydrate Research, 2013, 373, 59-63.	2.3	22
57	Improved and large-scale synthesis of different protected d-glucuronals. Carbohydrate Research, 2013, 370, 19-23.	2.3	6
58	Total synthesis of masked Alternaria mycotoxins—sulfates and glucosides of alternariol (AOH) and alternariol-9-methyl ether (AME). Tetrahedron, 2013, 69, 10322-10330.	1.9	36
59	Practical and Efficient Large-Scale Preparation of Dimethyldioxirane. Organic Process Research and Development, 2013, 17, 313-316.	2.7	53
60	Zearalenone Mimics: Synthesis of (E)-6-(1-Alkenyl)-substituted β-Resorcylic Acid Esters. Synthetic Communications, 2013, 43, 1939-1946.	2.1	7
61	Structure and tautomerism of tenuazonic acid – A synergetic computational and spectroscopic approach. Journal of Hazardous Materials, 2013, 250-251, 308-317.	12.4	25
62	Sulfation of β-resorcylic acid esters—first synthesis of zearalenone-14-sulfate. Tetrahedron Letters, 2013, 54, 3290-3293.	1.4	15
63	Gentiobiosylation of \hat{l}^2 -Resorcylic Acid Esters and Lactones: First Synthesis and Characterization of Zearalenone-14- \hat{l}^2 ,d-Gentiobioside. Synlett, 2013, 24, 1830-1834.	1.8	5
64	Fast and reproducible chemical synthesis of zearalenone-14-β,D-glucuronide. World Mycotoxin Journal, 2012, 5, 289-296.	1.4	28
65	Development and validation of a rapid multiâ€biomarker liquid chromatography/tandem mass spectrometry method to assess human exposure to mycotoxins. Rapid Communications in Mass Spectrometry, 2012, 26, 1533-1540.	1.5	121
66	Glucuronidation of zearalenone, zeranol and four metabolites <i>in vitro</i> : Formation of glucuronides by various microsomes and human UDPâ€glucuronosyltransferase isoforms. Molecular Nutrition and Food Research, 2010, 54, 1468-1476.	3.3	67