Hiroshi Shibuya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/680633/publications.pdf

Version: 2024-02-01

33 3,449 22 32 32 papers citations h-index g-index

33 33 4204 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	<i>ccr7</i> affects both morphogenesis and differentiation during early <i>Xenopus</i> embryogenesis. Development Growth and Differentiation, 2022, , .	1.5	3
2	WNK regulates Wnt signalling and \hat{l}^2 -Catenin levels by interfering with the interaction between \hat{l}^2 -Catenin and GID. Communications Biology, 2020, 3, 666.	4.4	16
3	Glycogen synthase kinase 3ß functions as a positive effector in the WNK signaling pathway. PLoS ONE, 2018, 13, e0193204.	2.5	9
4	Chaperone complex <scp>BAG</scp> 2– <scp>HSC</scp> 70 regulates localization of <i>Caenorhabditis elegans</i> leucineâ€rich repeat kinase <scp>LRK</scp> â€1 to the Golgi. Genes To Cells, 2016, 21, 311-324.	1.2	16
5	<scp>WDR</scp> 26 is a new partner of Axin1 in the canonical Wnt signaling pathway. FEBS Letters, 2016, 590, 1291-1303.	2.8	27
6	Selective inhibition of the kinase DYRK1A by targeting its folding process. Nature Communications, 2016, 7, 11391.	12.8	66
7	Hipk2 and PP1c Cooperate to Maintain Dvl Protein Levels Required for Wnt Signal Transduction. Cell Reports, 2014, 8, 1391-1404.	6.4	30
8	IQGAP1 Protein Regulates Nuclear Localization of β-Catenin via Importin-β5 Protein in Wnt Signaling. Journal of Biological Chemistry, 2013, 288, 36351-36360.	3.4	38
9	WNK 4 is an essential effector of anterior formation in FGF signaling. Genes To Cells, 2013, 18, 442-449.	1.2	6
10	WNK Signaling Is Involved in Neural Development via Lhx8/Awh Expression. PLoS ONE, 2013, 8, e55301.	2.5	20
11	IQGAP1 Functions as a Modulator of Dishevelled Nuclear Localization in Wnt Signaling. PLoS ONE, 2013, 8, e60865.	2.5	24
12	<i>Xenopus furry</i> contributes to release of microRNA gene silencing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19344-19349.	7.1	14
13	Nemo-Like Kinase, an Essential Effector of Anterior Formation, Functions Downstream of p38 Mitogen-Activated Protein Kinase. Molecular and Cellular Biology, 2010, 30, 675-683.	2.3	20
14	Development of a novel selective inhibitor of the Down syndrome-related kinase Dyrk1A. Nature Communications, 2010, 1, 86.	12.8	226
15	<i>Caenorhabditis elegans</i> √i> WNK–STE20 pathway regulates tube formation by modulating ClC channel activity. EMBO Reports, 2008, 9, 70-75.	4.5	41
16	Nemo-Like Kinase-Myocyte Enhancer Factor 2A Signaling Regulates Anterior Formation in <i>Xenopus</i> Development. Molecular and Cellular Biology, 2007, 27, 7623-7630.	2.3	21
17	Molecular Pathogenesis of Pseudohypoaldosteronism Type II: Generation and Analysis of a Wnk4D561A/+ Knockin Mouse Model. Cell Metabolism, 2007, 5, 331-344.	16.2	287
18	TMEPAI, a transmembrane TGF- \hat{l}^2 -inducible protein, sequesters Smad proteins in TGF- \hat{l}^2 signaling. Nature Precedings, 2007, , .	0.1	0

#	Article	IF	CITATIONS
19	NARF, an Nemo-like Kinase (NLK)-associated Ring Finger Protein Regulates the Ubiquitylation and Degradation of T Cell Factor/Lymphoid Enhancer Factor (TCF/LEF). Journal of Biological Chemistry, 2006, 281, 20749-20760.	3.4	118
20	WNK1 Regulates Phosphorylation of Cation-Chloride-coupled Cotransporters via the STE20-related Kinases, SPAK and OSR1. Journal of Biological Chemistry, 2005, 280, 42685-42693.	3.4	401
21	Role of the TAK1-NLK-STAT3 pathway in TGF-Â-mediated mesoderm induction. Genes and Development, 2004, 18, 381-386.	5.9	96
22	MFB-1, an F-box-type ubiquitin ligase, regulates TGF- \hat{l}^2 signalling. Genes To Cells, 2004, 9, 1093-1101.	1.2	8
23	Negative regulation of Wnt signalling by HMG2L1, a novel NLK-binding protein. Genes To Cells, 2003, 8, 677-684.	1.2	30
24	The TAK1-NLK Mitogen-Activated Protein Kinase Cascade Functions in the Wnt-5a/Ca ²⁺ Pathway To Antagonize Wnt/β-Catenin Signaling. Molecular and Cellular Biology, 2003, 23, 131-139.	2.3	503
25	Involvement of NLK and Sox11 in neural induction inXenopusdevelopment. Genes To Cells, 2002, 7, 487-496.	1.2	62
26	BIP, a BRAM-interacting protein involved in TGF- \hat{l}^2 signalling, regulates body length inCaenorhabditis elegans. Genes To Cells, 2001, 6, 599-606.	1.2	36
27	Regulation of the activity of the transcription factor Runx2 by two homeobox proteins, Msx2 and Dlx5. Genes To Cells, 2001, 6, 851-856.	1.2	167
28	Inhibition of BMP2-induced, TAK1 kinase-mediated neurite outgrowth by Smad6 and Smad7. Genes To Cells, 2001, 6, 1091-1099.	1.2	45
29	Cloning and Characterization of a Rat Ortholog of MMP-23 (Matrix Metalloproteinase-23), a Unique Type of Membrane-Anchored Matrix Metalloproteinase and Conditioned Switching of Its Expression during the Ovarian Follicular Development. Molecular Endocrinology, 2001, 15, 747-764.	3.7	40
30	Interaction between Wnt and TGF- \hat{l}^2 signalling pathways during formation of Spemann's organizer. Nature, 2000, 403, 781-785.	27.8	439
31	Smad8B, a Smad8 splice variant lacking the SSXS site that inhibits Smad8-mediated signalling. Genes To Cells, 1999, 4, 583-591.	1.2	25
32	The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature, 1999, 399, 798-802.	27.8	569
33	BRAM1, a BMP receptorâ€associated molecule involved in BMP signalling. Genes To Cells, 1998, 3, 257-264.	1.2	46