Yang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6806063/publications.pdf

Version: 2024-02-01

430442 454577 1,779 35 18 30 h-index citations g-index papers 38 38 38 2772 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Single Nucleus Transcriptomics: Apical Resection in Newborn Pigs Extends the Time Window of Cardiomyocyte Proliferation and Myocardial Regeneration. Circulation, 2022, 145, 1744-1747.	1.6	11
2	Changes in Cardiomyocyte Cell Cycle and Hypertrophic Growth During Fetal to Adult in Mammals. Journal of the American Heart Association, 2021, 10, e017839.	1.6	26
3	Cardiac Fibroblasts and Myocardial Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 599928.	2.0	26
4	Inhibition of EZH2 primes the cardiac gene activation via removal of epigenetic repression during human direct cardiac reprogramming. Stem Cell Research, 2021, 53, 102365.	0.3	18
5	miR-199a Overexpression Enhances the Potency of Human Induced-Pluripotent Stem-Cell–Derived Cardiomyocytes for Myocardial Repair. Frontiers in Pharmacology, 2021, 12, 673621.	1.6	12
6	Cyclin D2 Overexpression Enhances the Efficacy of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes for Myocardial Repair in a Swine Model of Myocardial Infarction. Circulation, 2021, 144, 210-228.	1.6	61
7	Transcription factor MEF2D is required for the maintenance of MLL-rearranged acute myeloid leukemia. Blood Advances, 2021, 5, 4727-4740.	2.5	12
8	TT-10–loaded nanoparticles promote cardiomyocyte proliferation and cardiac repair in a mouse model of myocardial infarction. JCl Insight, 2021, 6, .	2.3	8
9	Down-regulation of Beclin1 promotes direct cardiac reprogramming. Science Translational Medicine, 2020, 12, .	5.8	41
10	An Optimized Protocol for Human Direct Cardiac Reprogramming. STAR Protocols, 2020, 1, 100010.	0.5	11
11	Apical Resection Prolongs the Cell Cycle Activity and Promotes Myocardial Regeneration After Left Ventricular Injury in Neonatal Pig. Circulation, 2020, 142, 913-916.	1.6	21
12	Single-Cell Transcriptomics. Circulation, 2020, 141, 1720-1723.	1.6	6
13	Abstract 103: TBX20 Activates Cardiac Maturation Gene Programs Promoting Direct Human Cardiac Reprogramming. Circulation Research, 2020, 127, .	2.0	1
14	Functional interrogation of HOXA9 regulome in MLLr leukemia via reporter-based CRISPR/Cas9 screen. ELife, 2020, 9, .	2.8	25
15	Abstract 442: Epigenetic Regulation of Ezh2 in Direct Human Cardiac Reprogramming. Circulation Research, 2020, 127, .	2.0	0
16	Single-Cell Transcriptomic Analyses of Cell Fate Transitions during Human Cardiac Reprogramming. Cell Stem Cell, 2019, 25, 149-164.e9.	5.2	87
17	Epigenomic Reprogramming in Cardiovascular Disease. , 2019, , 149-163.		1
18	Deciphering Role of Wnt Signalling in Cardiac Mesoderm and Cardiomyocyte Differentiation from Human iPSCs: Four-dimensional control of Wnt pathway for hiPSC-CMs differentiation. Scientific Reports, 2019, 9, 19389.	1.6	49

#	Article	IF	CITATIONS
19	SOX21 Ensures Rostral Forebrain Identity by Suppression of WNT8B during Neural Regionalization of Human Embryonic Stem Cells. Stem Cell Reports, 2019, 13, 1038-1052.	2.3	13
20	A Loss of Function Screen of Epigenetic Modifiers and Splicing Factors during Early Stage of Cardiac Reprogramming. Stem Cells International, 2018, 2018, 1-14.	1.2	25
21	Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature, 2017, 551, 100-104.	13.7	168
22	Comparative Gene Expression Analyses Reveal Distinct Molecular Signatures between Differentially Reprogrammed Cardiomyocytes. Cell Reports, 2017, 20, 3014-3024.	2.9	54
23	Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Scientific Reports, 2017, 7, 2193.	1.6	426
24	The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. ELife, 2016, 5, .	2.8	126
25	Bmi1 Is a Key Epigenetic Barrier to Direct Cardiac Reprogramming. Cell Stem Cell, 2016, 18, 382-395.	5.2	186
26	Advanced Technologies Lead iNto New Reprogramming Routes. Cell Stem Cell, 2016, 19, 286-288.	5.2	0
27	Generation of an inducible fibroblast cell line for studying direct cardiac reprogramming. Genesis, 2016, 54, 398-406.	0.8	18
28	Epigenetic Perturbations by Arg882-Mutated DNMT3A Potentiate Aberrant Stem Cell Gene-Expression Program and Acute Leukemia Development. Cancer Cell, 2016, 30, 92-107.	7.7	130
29	Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes. Stem Cell Research, 2016, 16, 507-518.	0.3	99
30	Abstract 35: Enhanced Reprogramming of Human Fibroblasts into Cardiomyocytes Using Minimal Transcription Factors. Circulation Research, 2016, 119, .	2.0	0
31	Improved Generation of Induced Cardiomyocytes Using a Polycistronic Construct Expressing Optimal Ratio of Gata4, Mef2c and Tbx5. Journal of Visualized Experiments, 2015, , .	0.2	29
32	MicroRNA-195 targets ADP-ribosylation factor-like protein 2 to induce apoptosis in human embryonic stem cell-derived neural progenitor cells. Cell Death and Disease, 2013, 4, e695-e695.	2.7	41
33	Differentiation of Human Embryonic Stem Cells into Neural Lineage Cells. Stem Cells and Cancer Stem Cells, 2012, , 229-239.	0.1	1
34	Ly-1 Antibody Reactive Clone Is an Important Nucleolar Protein for Control of Self-Renewal and Differentiation in Embryonic Stem Cells. Stem Cells, 2009, 27, 1244-1254.	1.4	41
35	Cardiomyocyte Cell-Cycle Regulation in Neonatal Large Mammals: Single Nucleus RNA-Sequencing Data Analysis via an Artificial-Intelligence–Based Pipeline. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5