
Linda A Sherman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/680579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proautoimmune Allele of Tyrosine Phosphatase, PTPN22, Enhances Tumor Immunity. Journal of Immunology, 2021, 207, 1662-1671.	0.8	9
2	Wendy Havran 1955–2020. Nature Immunology, 2020, 21, 357-357.	14.5	0
3	Type 1 diabetes pathogenesis is modulated by spontaneous autoimmune responses to endogenous retrovirus antigens in NOD mice. European Journal of Immunology, 2017, 47, 575-584.	2.9	26
4	Finding order in chaos. Nature Reviews Immunology, 2017, 17, 280-280.	22.7	2
5	Peripheral Deletion of CD8 T Cells Requires p38 MAPK in Cross-Presenting Dendritic Cells. Journal of Immunology, 2017, 199, 2713-2720.	0.8	Ο
6	CRISPR-Cas9–Mediated Modification of the NOD Mouse Genome With <i>Ptpn22R619W</i> Mutation Increases Autoimmune Diabetes. Diabetes, 2016, 65, 2134-2138.	0.6	37
7	PTPN22 contributes to exhaustion of T lymphocytes during chronic viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7231-E7239.	7.1	38
8	The adaptor protein TRAF3 inhibits interleukin-6 receptor signaling in B cells to limit plasma cell development. Science Signaling, 2015, 8, ra88.	3.6	39
9	Using Autoimmunity To Inform Tumor Immunity. Journal of Immunology, 2015, 195, 5091-5095.	0.8	0
10	Ptpn22 and Cd2 Variations Are Associated with Altered Protein Expression and Susceptibility to Type 1 Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2015, 195, 4841-4852.	0.8	10
11	The effect of the autoimmunity-associated gene, PTPN22, on a BXSB-derived model of lupus. Clinical Immunology, 2015, 156, 65-73.	3.2	12
12	Autoimmunity-Associated LYP-W620 Does Not Impair Thymic Negative Selection of Autoreactive T Cells. PLoS ONE, 2014, 9, e86677.	2.5	20
13	Contribution of TCR Signaling Strength to CD8+ T Cell Peripheral Tolerance Mechanisms. Journal of Immunology, 2014, 193, 3409-3416.	0.8	28
14	PTPN22 Controls the Germinal Center by Influencing the Numbers and Activity of T Follicular Helper Cells. Journal of Immunology, 2014, 192, 1415-1424.	0.8	58
15	Fine mapping of type 1 diabetes regions Idd9.1 and Idd9.2 reveals genetic complexity. Mammalian Genome, 2013, 24, 358-375.	2.2	13
16	Genetic Interactions among <i>Idd3</i> , <i>Idd5.1</i> , <i>Idd5.2</i> , and <i>Idd5.3</i> Protective Loci in the Nonobese Diabetic Mouse Model of Type 1 Diabetes. Journal of Immunology, 2013, 190, 3109-3120.	0.8	16
17	Functional differences between low- and high-affinity CD8 ⁺ T cells in the tumor environment. Oncolmmunology, 2012, 1, 1239-1247.	4.6	68
18	PTPN22 Alters the Development of Regulatory T Cells in the Thymus. Journal of Immunology, 2012, 188, 5267-5275.	0.8	99

#	Article	IF	CITATIONS
19	Cellular Mechanisms of Restored Â-Cell Tolerance Mediated by Protective Alleles of Idd3 and Idd5. Diabetes, 2012, 61, 166-174.	0.6	7
20	Immunologic Effects of an Orally Available BRAFV600E Inhibitor in BRAF Wild-type Murine Models. Journal of Immunotherapy, 2012, 35, 473-477.	2.4	6
21	Immunologic Effects of An Oral BRAF Inhibitor in a BRAF Wild-Type Murine Model. Blood, 2011, 118, 4935-4935.	1.4	3
22	<i>Idd9.2</i> and <i>Idd9.3</i> Protective Alleles Function in CD4+ T-Cells and Nonlymphoid Cells to Prevent Expansion of Pathogenic Islet-Specific CD8+ T-Cells. Diabetes, 2010, 59, 1478-1486.	0.6	24
23	CD4+ T-Cell Help in the Tumor Milieu Is Required for Recruitment and Cytolytic Function of CD8+ T Lymphocytes. Cancer Research, 2010, 70, 8368-8377.	0.9	368
24	Expression of Diabetes-Associated Genes by Dendritic Cells and CD4 T Cells Drives the Loss of Tolerance in Nonobese Diabetic Mice. Journal of Immunology, 2009, 183, 1533-1541.	0.8	33
25	Adjuvants targeting innate and adaptive immunity synergize to enhance tumor immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16683-16688.	7.1	46
26	The Apoptotic Pathway Contributing to the Deletion of Naive CD8 T Cells during the Induction of Peripheral Tolerance to a Cross-Presented Self-Antigen. Journal of Immunology, 2008, 180, 5275-5282.	0.8	20
27	Tumor-Specific CD4+ T Cells Render the Tumor Environment Permissive for Infiltration by Low-Avidity CD8+ T Cells. Journal of Immunology, 2008, 180, 3122-3131.	0.8	124
28	Tumor specific CD4 T cells promote the accumulation of low avidity tumor specific CD8 T cells within the tumor milieu. FASEB Journal, 2008, 22, 1076.6.	0.5	1
29	Nâ€ŧerminal trimer extension of nominal CD8 T cell epitopes is sufficient to promote crossâ€presentation to cognate CD8 T cells in vivo. FASEB Journal, 2008, 22, 1067.16.	0.5	Ο
30	Using gammaâ€cytokine complexes to improve antigen specific CD8 T cell responses in tumorâ€bearing mice. FASEB Journal, 2008, 22, 1076.3.	0.5	0
31	Restoration of CD8 selfâ€ŧolerance in NOD mice by protective Idd9 genes. FASEB Journal, 2008, 22, 667.25.	0.5	Ο
32	N-Terminal Trimer Extension of Nominal CD8 T Cell Epitopes Is Sufficient to Promote Cross-Presentation to Cognate CD8 T Cells In Vivo. Journal of Immunology, 2007, 179, 8280-8286.	0.8	8
33	The Use of Idd Congenic Mice to Identify Checkpoints of Peripheral Tolerance to Islet Antigen. Annals of the New York Academy of Sciences, 2007, 1103, 118-127.	3.8	11
34	To Each (MHC Molecule) Its Own (Binding Motif). Journal of Immunology, 2006, 177, 2739-2740.	0.8	6
35	Tissue-Resident Memory CD8+ T Cells Can Be Deleted by Soluble, but Not Cross-Presented Antigen. Journal of Immunology, 2005, 175, 6615-6623.	0.8	14
36	The Fate of Low Affinity Tumor-Specific CD8+ T Cells in Tumor-Bearing Mice. Journal of Immunology, 2005, 174, 2563-2572.	0.8	51

#	Article	IF	CITATIONS
37	CD8+ T Cell Tolerance in Nonobese Diabetic Mice Is Restored by Insulin-Dependent Diabetes Resistance Alleles. Journal of Immunology, 2005, 175, 1677-1685.	0.8	33
38	Recognition of Fresh Human Tumor by Human Peripheral Blood Lymphocytes Transduced with a Bicistronic Retroviral Vector Encoding a Murine Anti-p53 TCR. Journal of Immunology, 2005, 175, 5799-5808.	0.8	121
39	Distinct Requirements for Deletion versus Anergy during CD8 T Cell Peripheral Tolerance In Vivo. Journal of Immunology, 2005, 174, 2046-2053.	0.8	78
40	Cooperation of Human Tumor-Reactive CD4+ and CD8+ T Cells after Redirection of Their Specificity by a High-Affinity p53A2.1-Specific TCR. Immunity, 2005, 22, 117-129.	14.3	136
41	Peripheral Tolerance of CD8 T Lymphocytes. Immunity, 2005, 22, 275-284.	14.3	211
42	A Spontaneously Arising Pancreatic Tumor Does Not Promote the Differentiation of Naive CD8+T Lymphocytes into Effector CTL. Journal of Immunology, 2004, 172, 6558-6567.	0.8	70
43	In a Transgenic Model of Spontaneous Autoimmune Diabetes, Expression of a Protective Class II MHC Molecule Results in Thymic Deletion of Diabetogenic CD8+ T Cells. Journal of Immunology, 2004, 172, 1000-1008.	0.8	13
44	B7-2 (CD86) Controls the Priming of Autoreactive CD4 T Cell Response against Pancreatic Islets. Journal of Immunology, 2004, 173, 3631-3639.	0.8	31
45	A soluble single-chain T-cell receptor IL-2 fusion protein retains MHC-restricted peptide specificity and IL-2 bioactivity. Cancer Immunology, Immunotherapy, 2004, 53, 345-357.	4.2	37
46	Deletion of Naive CD8 T Cells Requires Persistent Antigen and Is Not Programmed by an Initial Signal from the Tolerogenic APC. Journal of Immunology, 2003, 171, 6349-6354.	0.8	36
47	CD4+ T Cells Pass Through an Effector Phase During the Process of In Vivo Tolerance Induction. Journal of Immunology, 2003, 170, 3945-3953.	0.8	60
48	Uncoupling of Proliferative Potential and Gain of Effector Function by CD8+ T Cells Responding to Self-Antigens. Journal of Experimental Medicine, 2002, 196, 323-333.	8.5	135
49	Memory CD8+ T Cells Undergo Peripheral Tolerance. Immunity, 2002, 17, 73-81.	14.3	75
50	The T-cell repertoire available for recognition of self-antigens. Current Opinion in Immunology, 2001, 13, 639-643.	5.5	30
51	The role of Fas-FasL in CD8+ T-cell-mediated insulin-dependent diabetes mellitus (IDDM). Journal of Clinical Immunology, 2001, 21, 15-18.	3.8	15
52	Phenotypic and Functional Analysis of Cd8+ T Cells Undergoing Peripheral Deletion in Response to Cross-Presentation of Self-Antigen. Journal of Experimental Medicine, 2001, 194, 707-718.	8.5	184
53	CTLA-4 Blockade Enhances the CTL Responses to the p53 Self-Tumor Antigen. Journal of Immunology, 2001, 166, 3908-3914.	0.8	47
54	Defective CD8+ T Cell Peripheral Tolerance in Nonobese Diabetic Mice. Journal of Immunology, 2001, 167, 1112-1117.	0.8	50

#	Article	IF	CITATIONS
55	Altered functional and biochemical response by CD8+ T cells that remain after tolerance. International Immunology, 2001, 13, 1085-1093.	4.0	6
56	Self-Tolerance and the Composition of T Cell Repertoire. Immunologic Research, 2000, 21, 305-314.	2.9	13
57	Characterization of CD8+ T Lymphocytes That Persist After Peripheral Tolerance to a Self Antigen Expressed in the Pancreas. Journal of Immunology, 2000, 164, 191-200.	0.8	61
58	The Use of HLA A2.1/p53 Peptide Tetramers to Visualize the Impact of Self Tolerance on the TCR Repertoire. Journal of Immunology, 2000, 164, 596-602.	0.8	101
59	Ontogeny of T cell tolerance to peripherally expressed antigens. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3854-3858.	7.1	99
60	Cellular immune response to adenoviral vector infected cells does not require <i>de novo</i> viral gene expression: Implications for gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11377-11382.	7.1	252
61	The Sequence Alteration Associated with a Mutational Hotspot in p53 Protects Cells From Lysis by Cytotoxic T Lymphocytes Specific for a Flanking Peptide Epitope. Journal of Experimental Medicine, 1998, 188, 1017-1028.	8.5	120
62	Strategies for Tumor Elimination by Cytotoxic T Lymphocytes. Critical Reviews in Immunology, 1998, 18, 47-54.	0.5	31
63	Tolerance to p53 by A2.1-restricted Cytotoxic T Lymphocytes. Journal of Experimental Medicine, 1997, 185, 833-842.	8.5	252
64	Identification of Her-2/Neu CTL epitopes using double transgenic mice expressing HLA-A2.1 and human CD.8. Human Immunology, 1997, 52, 109-118.	2.4	101
65	Targeting p53 as a general tumor antigen Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 11993-11997.	7.1	271
66	The Molecular Basis of Allorecognition. Annual Review of Immunology, 1993, 11, 385-402.	21.8	375
67	Selecting T cell receptors with high affinity for self-MHC by decreasing the contribution of CD8. Science, 1992, 258, 815-818.	12.6	98
68	Peripheral tolerance to an islet cell-specific hemagglutinin transgene affects both CD4+ and CD8+ T cells. European Journal of Immunology, 1992, 22, 1013-1022.	2.9	228
69	Analysis of the HLA-restricted influenza-specific cytotoxic T lymphocyte response in transgenic mice carrying a chimeric human-mouse class I major histocompatibility complex Journal of Experimental Medicine, 1991, 173, 1007-1015.	8.5	297
70	Peripheral Tolerance in Transgenic Mice: Tolerance to Class II MHC and non-MHC Transgene Antigens. Immunological Reviews, 1991, 122, 87-102.	6.0	34
71	Cell-type-specific recognition of allogeneic cells by alloreactive cytotoxic T cells: A consequence of peptide-dependent allorecognition. European Journal of Immunology, 1991, 21, 153-159.	2.9	62
72	Exogenous β2-microglobulin is required for antigenic peptide binding to isolated class I major histocompatibility complex molecules. European Journal of Immunology, 1991, 21, 2289-2292.	2.9	27

#	Article	IF	CITATIONS
73	The role of beta 2-microglobulin in peptide binding by class I molecules. Science, 1990, 250, 1423-1426.	12.6	185
74	Species-restricted interactions between CD8 and the alpha 3 domain of class I influence the magnitude of the xenogeneic response Journal of Experimental Medicine, 1989, 170, 1091-1101.	8.5	132
75	Cytolytic T-lymphocyte response to isolated class I H–2 proteins and influenza peptides. Nature, 1989, 340, 157-159.	27.8	40
76	Peptide-dependent recognition of H–2Kb by alloreactive cytotoxic T lymphocytes. Nature, 1989, 341, 749-752.	27.8	160
77	Genetic and Environmental Regulation of the Cytolytic T Lymphocyte Receptor Repertoire Specific for Alloantigen. Immunological Reviews, 1988, 101, 115-131.	6.0	15
78	Immunoselection of structural H-2Kb variants: Use of cloned cytolytic T cells to select for loss of a CTL-defined allodeterminant. Immunogenetics, 1986, 23, 52-59.	2.4	11
79	Recognition of conformational determinants on H–2 by cytolytic T lymphocytes. Nature, 1982, 297, 511-513.	27.8	83
80	Monoclonal anti-H-2Kb antibodies detect serological differences betweenH-2K b mutants. Immunogenetics, 1981, 12, 183-186.	2.4	71
81	Studies on the mechanism of enzymatic DNA elongation by Escherichia coli DNA polymerase II. Journal of Molecular Biology, 1976, 103, 61-76.	4.2	88