Jian-Ping Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6805431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intragap State Engineering for Tunable Single-Photon Upconversion Photoluminescence of Lead Halide Perovskite. Journal of Physical Chemistry C, 2022, 126, 2447-2453.	1.5	3
2	Lewis Base Plays a Double-Edged-Sword Role in Trap State Engineering of Perovskite Polycrystals. Journal of Physical Chemistry Letters, 2022, 13, 1571-1577.	2.1	11
3	Polarization-Induced Trap States in Perovskite Solar Cells Revealed by Circuit-Switched Transient Photoelectric Technique. Journal of Physical Chemistry C, 2022, 126, 3696-3704.	1.5	7
4	Lipid-Enhanced Photoprotection of LHCII in Membrane Nanodisc by Reducing Chlorophyll Triplet Production. Journal of Physical Chemistry B, 2022, 126, 2669-2676.	1.2	3
5	Peroxyl radical induced membrane instability of giant unilamellar vesicles and anti-lipooxidation protection. Biophysical Chemistry, 2022, 285, 106807.	1.5	0
6	Electron Transport Assisted by Transparent Conductive Oxide Elements in Perovskite Solar Cells. ChemSusChem, 2022, 15, .	3.6	7
7	Carotenoid Single-Molecular Singlet Fission and the Photoprotection of a Bacteriochlorophyll <i>b</i> -Type Core Light-Harvesting Antenna. Journal of Physical Chemistry Letters, 2022, 13, 3534-3541.	2.1	5
8	Complexation Engineering of Electron Transport Layers for Highâ€Performance Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	6
9	Double-Site Binding and Anti-/Pro-oxidation of Luteolin on Bovine Serum Albumin Mediated by Copper(II) Coordination. ACS Omega, 2022, 7, 19521-19534.	1.6	1
10	Influence of the MACI additive on grain boundaries, trap-state properties, and charge dynamics in perovskite solar cells. Physical Chemistry Chemical Physics, 2021, 23, 6162-6170.	1.3	18
11	Promotion effects of flavonoids on browning induced by enzymatic oxidation of tyrosinase: structure–activity relationship. RSC Advances, 2021, 11, 13769-13779.	1.7	13
12	Electrochemiluminescence Based on a Dual Carbon Ultramicroelectrode with Confined Steady-State Annihilation. Analytical Chemistry, 2021, 93, 4528-4535.	3.2	12
13	Simultaneous Transport Promotion and Recombination Suppression in Perovskite Solar Cells by Defect Passivation with Li-Doped Graphitic Carbon Nitride. Journal of Physical Chemistry C, 2021, 125, 5525-5533.	1.5	7
14	Effects of low-molecular-weight polyols on the hydration status of the light-harvesting complex 2 from Rhodobacter sphaeroides 2.4.1. Photochemical and Photobiological Sciences, 2021, 20, 627-637.	1.6	1
15	Lewis Base-Mediated Perovskite Crystallization as Revealed by In Situ, Real-Time Optical Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 5357-5362.	2.1	5
16	Spatial effects of photosensitization on morphology of giant unilamellar vesicles. Biophysical Chemistry, 2021, 275, 106624.	1.5	2
17	Radical Scavenging Efficiency of Flavonoids Increased by Calcium(II) Binding: Structureâ€Activity Relationship. ChemistrySelect, 2021, 6, 8462-8470.	0.7	3
18	Primary reaction intermediates of Type-I photosensitized lipid oxidation as revealed by time-resolved optical spectroscopies. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113376.	2.0	4

#	Article	IF	CITATIONS
19	Effect of excitation mode on the upconversion luminescence of β-NaYF4:Yb/Er nanocrystals. Chemical Physics Letters, 2021, 779, 138880.	1.2	8
20	Precursor Engineering of the Electron Transport Layer for Application in Highâ€Performance Perovskite Solar Cells. Advanced Science, 2021, 8, e2102845.	5.6	62
21	Copper(II) Coordination and Translocation in Luteolin and Effect on Radical Scavenging. Journal of Physical Chemistry B, 2020, 124, 380-388.	1.2	15
22	Enhancement of Openâ€Circuit Voltage of Perovskite Solar Cells by Interfacial Modification with <i>p</i> â€Aminobenzoic Acid. Advanced Materials Interfaces, 2020, 7, 1901584.	1.9	21
23	Bifunctional Chlorosilane Modification for Defect Passivation and Stability Enhancement of High-Efficiency Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 22903-22913.	1.5	8
24	Thermally Activated Delayed Fluorescence from d ¹⁰ â€Metal Carbene Complexes through Intermolecular Charge Transfer and Multicolor Emission with a Monomer–Dimer Equilibrium. Chemistry - A European Journal, 2020, 26, 17222-17229.	1.7	23
25	Conjugation Length Dependence of Free Radical Scavenging Efficiency of Retinal and Retinylisoflavonoid Homologues. ACS Omega, 2020, 5, 13770-13776.	1.6	1
26	Effect of energetic distribution of trap states on fill factor in perovskite solar cells. Journal of Power Sources, 2020, 479, 229077.	4.0	10
27	Alkaline earth metal ion coordination increases the radical scavenging efficiency of kaempferol. RSC Advances, 2020, 10, 30035-30047.	1.7	5
28	Diffusion Dynamics of Mobile Ions Hidden in Transient Optoelectronic Measurement in Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 8330-8337.	2.5	1
29	Efficient modulation of upconversion luminescence in NaErF ₄ -based core–shell nanocrystals. New Journal of Chemistry, 2020, 44, 9153-9157.	1.4	2
30	Excitation dynamics and relaxation in the major antenna of a marine green alga Bryopsis corticulans. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148186.	0.5	5
31	Modification of NiOx hole transport layer for acceleration of charge extraction in inverted perovskite solar cells. RSC Advances, 2020, 10, 12289-12296.	1.7	22
32	Site- and Spatial-Selective Integration of Non-noble Metal Ions into Quantum Dots for Robust Hydrogen Photogeneration. Matter, 2020, 3, 571-585.	5.0	36
33	Effects of interfacial energy level alignment on carrier dynamics and photovoltaic performance of inverted perovskite solar cells. Journal of Power Sources, 2020, 452, 227845.	4.0	19
34	Synergy between plant phenols and carotenoids in stabilizing lipid-bilayer membranes of giant unilamellar vesicles against oxidative destruction. Soft Matter, 2020, 16, 1792-1800.	1.2	6
35	Kinetic Studies on Radical Scavenging Activity of Kaempferol Decreased by Sn(II) Binding. Molecules, 2020, 25, 1975.	1.7	9
36	The influence of fullerene on hysteresis mechanism in planar perovskite solar cells. Chemical Physics Letters, 2020, 750, 137443.	1.2	5

#	Article	IF	CITATIONS
37	Concentration-regulated photon upconversion and quenching in NaYF ₄ :Yb ³⁺ ,Er ³⁺ nanocrystals: nonexponentiality revisited. Nanoscale, 2019, 11, 18150-18158.	2.8	29
38	A facile aqueous synthesis strategy for hexagonal phase NaGdF4 nanorods. New Journal of Chemistry, 2019, 43, 7198-7201.	1.4	4
39	Synthesis and Photophysical Properties of Chalcophenes-Embedded Cycloparaphenylenes. Journal of Organic Chemistry, 2019, 84, 5230-5235.	1.7	14
40	Charge carrier recombination dynamics in a bi-cationic perovskite solar cell. Physical Chemistry Chemical Physics, 2019, 21, 5409-5415.	1.3	20
41	Reduced Defects of MAPbI ₃ Thin Films Treated by FAI for Highâ€Performance Planar Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1805810.	7.8	73
42	Uptake and Translocation of Styrene Maleic Anhydride Nanoparticles in <i>Murraya exotica</i> Plants As Revealed by Noninvasive, Real-Time Optical Bioimaging. Environmental Science & Technology, 2019, 53, 1471-1481.	4.6	40
43	Naturally occurring nanotube with surface modification as biocompatible, target-specific nanocarrier for cancer phototherapy. Biomaterials, 2019, 190-191, 86-96.	5.7	57
44	Noninvasive and real-time pharmacokinetics imaging of polymeric nanoagents in the thoracoepigastric vein networks of living mice. Journal of Biomedical Optics, 2019, 24, 1.	1.4	2
45	Characterization of the influences of morphology on the intrinsic properties of perovskite films by temperature-dependent and time-resolved spectroscopies. Physical Chemistry Chemical Physics, 2018, 20, 6575-6581.	1.3	11
46	Integrity of Membrane Structures in Giant Unilamellar Vesicles as Assay for Antioxidants and Prooxidants. Analytical Chemistry, 2018, 90, 2126-2133.	3.2	11
47	Kaempferol Binding to Zinc(II), Efficient Radical Scavenging through Increased Phenol Acidity. Journal of Physical Chemistry B, 2018, 122, 10108-10117.	1.2	16
48	Energy transfer mechanism dominated by the doping location of activators in rare-earth upconversion nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 17141-17147.	1.3	15
49	Cooperative Photoprotection by Multicompositional Carotenoids in the LH1 Antenna from a Mutant Strain ofRhodobacter sphaeroides. Journal of Physical Chemistry B, 2018, 122, 8028-8036.	1.2	2
50	Appropriate Donor-Acceptor Phase Separation Structure for the Enhancement of Charge Generation and Transport in Polymer Solar Cells. Polymers, 2018, 10, 332.	2.0	14
51	Stable, Ultralow Threshold Amplified Spontaneous Emission from CsPbBr ₃ Nanoparticles Exhibiting Trion Gain. Nano Letters, 2018, 18, 4976-4984.	4.5	103
52	Wide field of view, real time bioimaging apparatus for noninvasive analysis of nanocarrier pharmacokinetics in living model animals. Review of Scientific Instruments, 2018, 89, 085105.	0.6	2
53	New Insights into the Mechanism of Uphill Excitation Energy Transfer from Core Antenna to Reaction Center in Purple Photosynthetic Bacteria. Journal of Physical Chemistry Letters, 2018, 9, 3278-3284.	2.1	12
54	Riboflavin and chlorophyll as photosensitizers in electroformed giant unilamellar vesicles as food models. European Food Research and Technology, 2017, 243, 21-26.	1.6	6

#	Article	IF	CITATIONS
55	Adverse Effects of Excess Residual PbI ₂ on Photovoltaic Performance, Charge Separation, and Trap‣tate Properties in Mesoporous Structured Perovskite Solar Cells. Chemistry - A European Journal, 2017, 23, 3986-3992.	1.7	63
56	Regeneration of β-Carotene from Radical Cation by Eugenol, Isoeugenol, and Clove Oil in the Marcus Theory Inverted Region for Electron Transfer. Journal of Agricultural and Food Chemistry, 2017, 65, 908-912.	2.4	9
57	Self-Assembled Framework Enhances Electronic Communication of Ultrasmall-Sized Nanoparticles for Exceptional Solar Hydrogen Evolution. Journal of the American Chemical Society, 2017, 139, 4789-4796.	6.6	146
58	Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2017, 5, 10365-10373.	5.2	89
59	Highly Efficient NIR-II Photothermal Conversion Based on an Organic Conjugated Polymer. Chemistry of Materials, 2017, 29, 718-725.	3.2	217
60	Dependence of the hydration status of bacterial light-harvesting complex 2 on polyol cosolventsf. Photochemical and Photobiological Sciences, 2017, 16, 795-807.	1.6	6
61	The Influence of Morphology and PbI ₂ on the Intrinsic Trap State Distribution in Perovskite Films Determined by Using Temperatureâ€Dependent Fluorescence Spectroscopy. ChemPhysChem, 2017, 18, 310-317.	1.0	7
62	Multipleâ€Trapping Model for the Charge Recombination Dynamics in Mesoporousâ€Structured Perovskite Solar Cells. ChemSusChem, 2017, 10, 4872-4878.	3.6	11
63	Carotenoid Singlet Fission Reactions in Bacterial Light Harvesting Complexes As Revealed by Triplet Excitation Profiles. Journal of the American Chemical Society, 2017, 139, 15984-15993.	6.6	26
64	Power output and carrier dynamics studies of perovskite solar cells under working conditions. Physical Chemistry Chemical Physics, 2017, 19, 19922-19927.	1.3	4
65	Singlet Fission Reaction of Light-Exposed β-Carotene Bound to Bovine Serum Albumin. A Novel Mechanism in Protection of Light-Exposed Tissue by Dietary Carotenoids. Journal of Agricultural and Food Chemistry, 2017, 65, 6058-6062.	2.4	14
66	Fullerene Multiadducts as Electron Collection Layers for Perovskite Solar Cells. Chemistry Letters, 2017, 46, 101-103.	0.7	11
67	The Influence of Structural Configuration on Charge Accumulation, Transport, Recombination, and Hysteresis in Perovskite Solar Cells. Energy Technology, 2017, 5, 442-451.	1.8	15
68	Acceptor Side-Chain Effects on the Excited State Dynamics of Two-Dimensional-Like Conjugated Copolymers in Solution. Molecules, 2017, 22, 1398.	1.7	0
69	Genistein Binding to Copper(II)—Solvent Dependence and Effects on Radical Scavenging. Molecules, 2017, 22, 1757.	1.7	14
70	Dependence of Excitedâ€State Properties of a Lowâ€Bandgap Photovoltaic Copolymer on Sideâ€Chain Substitution and Solvent. ChemSusChem, 2016, 9, 1623-1633.	3.6	6
71	Challenges facing an understanding of the nature of low-energy excited states in photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1627-1640.	0.5	74
72	Charge-Pattern Indicated Relaxation Dynamics and Glass Transition of Polymer Thin Films Studied by Atomic Force Microscopy. Journal of Physical Chemistry C, 2016, 120, 12157-12162.	1.5	3

#	Article	IF	CITATIONS
73	Mechanism of biphasic charge recombination and accumulation in TiO ₂ mesoporous structured perovskite solar cells. Physical Chemistry Chemical Physics, 2016, 18, 12128-12134.	1.3	28
74	Controlled Growth of Well-Defined Conjugated Polymers from the Surfaces of Multiwalled Carbon Nanotubes: Photoresponse Enhancement via Charge Separation. ACS Nano, 2016, 10, 5189-5198.	7.3	34
75	A femtosecond transient absorption study of charge photogeneration and recombination dynamics in photovoltaic polymers with different side-chain linkages. Nanoscale, 2016, 8, 18390-18399.	2.8	4
76	Binding to Bovine Serum Albumin Protects β-Carotene against Oxidative Degradation. Journal of Agricultural and Food Chemistry, 2016, 64, 5951-5957.	2.4	31
77	Bacterial Light-Harvesting Complexes Showing Giant Second-Order Nonlinear Optical Response as Revealed by Hyper-Rayleigh Light Scattering. Journal of Physical Chemistry B, 2016, 120, 9395-9401.	1.2	4
78	Efficient promotion of charge separation and suppression of charge recombination by blending PCBM and its dimer as electron transport layer in inverted perovskite solar cells. RSC Advances, 2016, 6, 112512-112519.	1.7	15
79	The influence of morphology on charge transport/recombination dynamics in planar perovskite solar cells. Chemical Physics Letters, 2016, 662, 257-262.	1.2	17
80	Nanoprobes for two-photon excitation time-resolved imaging of living animals: In situ analysis of tumor-targeting dynamics of nanocarriers. Biomaterials, 2016, 100, 152-161.	5.7	17
81	Triplet excitation dynamics of two keto-carotenoids in n-hexane and in methanol as studied by ns flash photolysis spectroscopy. Chemical Physics Letters, 2015, 633, 114-119.	1.2	8
82	Thermal Adaptability of the Light-Harvesting Complex 2 from <i>Thermochromatium tepidum</i> : Temperature-Dependent Excitation Transfer Dynamics. Journal of Physical Chemistry B, 2015, 119, 14871-14879.	1.2	14
83	Correlation between Energy and Spatial Distribution of Intragap Trap States in the TiO ₂ Photoanode of Dyeâ€ S ensitized Solar Cells. ChemPhysChem, 2015, 16, 2253-2259.	1.0	28
84	Regeneration of β-Carotene from the Radical Cation by Tyrosine and Tryptophan. Journal of Physical Chemistry B, 2015, 119, 6603-6610.	1.2	8
85	Enhanced Light Absorption in Porous Particles for Ultra-NIR-Sensitive Biomaterials. ACS Macro Letters, 2015, 4, 392-397.	2.3	39
86	The influence of hierarchical TiO2 microspheres on the trap state distribution and charge transport/recombination dynamics in quantum dot sensitized solar cells. RSC Advances, 2015, 5, 32110-32117.	1.7	5
87	New insights into electrolyte-component biased and transfer- and transport-limited charge recombination in dye-sensitized solar cells. RSC Advances, 2015, 5, 84959-84966.	1.7	5
88	Astaxanthin Protecting Membrane Integrity against Photosensitized Oxidation through Synergism with Other Carotenoids. Journal of Agricultural and Food Chemistry, 2015, 63, 9124-9130.	2.4	13
89	Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates. Food and Function, 2014, 5, 291-294.	2.1	4
90	Nutritional aspects of Î ² -carotene and resveratrol antioxidant synergism in giant unilamellar vesicles. Food and Function, 2014, 5, 1573-1578.	2.1	11

#	Article	IF	CITATIONS
91	Electron Transfer from Plant Phenolates to Carotenoid Radical Cations. Antioxidant Interaction Entering the Marcus Theory Inverted Region. Journal of Agricultural and Food Chemistry, 2014, 62, 942-949.	2.4	14
92	Charge Photogeneration Dynamics of Poly(3-hexylthiophene) Blend with Covalently-Linked Fullerene Derivative in Low Fraction. Journal of Physical Chemistry C, 2014, 118, 21377-21384.	1.5	9
93	All-atom structures and calcium binding sites of the bacterial photosynthetic LH1-RC core complex from Thermochromatium tepidum. Journal of Molecular Modeling, 2014, 20, 2287.	0.8	7
94	Density of state determination of two types of intra-gap traps in dye-sensitized solar cells and its influence on device performance. Physical Chemistry Chemical Physics, 2014, 16, 11626-11632.	1.3	26
95	Influence of Fullerene Multiadducts on the Morphology and Charge Photogeneration of Their Photovoltaic Blends with Poly(3-hexylthiophene). Journal of Physical Chemistry C, 2013, 117, 25898-25907.	1.5	13
96	Development of Solar Cells Based on Synthetic Near-Infrared Absorbing Purpurins 2: Use of Fullerene and Its Derivative As Electron Acceptors for Favorable Charge Separation. Journal of Physical Chemistry C, 2012, 116, 21244-21254.	1.5	18
97	Antioxidants and Physical Integrity of Lipid Bilayers under Oxidative Stress. Journal of Agricultural and Food Chemistry, 2012, 60, 10331-10336.	2.4	15
98	Metal cations modulate the bacteriochlorophyll–protein interaction in the light-harvesting 1 core complex from Thermochromatium tepidum. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1022-1029.	0.5	27
99	Effects of Aggregation on the Excitation Dynamics of LH2 fromThermochromatium tepidumin Aqueous Phase and in Chromatophores. Journal of Physical Chemistry B, 2011, 115, 7906-7913.	1.2	12
100	Photoinduced Electron Transfer and Charge-Recombination in 2-Ureido-4[1H]-Pyrimidinone Quadruple Hydrogen-Bonded Porphyrin–Fullerene Assemblies. Journal of Physical Chemistry C, 2011, 115, 23634-23641.	1.5	33
101	β-Carotene Radical Cation Addition to Green Tea Polyphenols. Mechanism of Antioxidant Antagonism in Peroxidizing Liposomes. Journal of Agricultural and Food Chemistry, 2011, 59, 12643-12651.	2.4	32
102	Chiral crystal of a C _{2v} â€symmetric 1,3â€diazaaulene derivative showing efficient optical second harmonic generation. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 649-656.	2.4	4
103	Retinylisoflavonoid as a Novel Membrane Antioxidant. Journal of Physical Chemistry B, 2010, 114, 13904-13910.	1.2	8
104	Thermodynamic versus Kinetic Control of Antioxidant Synergism between β-Carotene and (Iso)flavonoids and Their Glycosides in Liposomes. Journal of Agricultural and Food Chemistry, 2010, 58, 9221-9227.	2.4	33
105	Fast Regeneration of Carotenoids from Radical Cations by Isoflavonoid Dianions: Importance of the Carotenoid Keto Group for Electron Transfer. Journal of Physical Chemistry A, 2010, 114, 126-132.	1.1	43
106	Specific Ca ²⁺ â€binding motif in the LH1 complex from photosynthetic bacterium <i>Thermochromatium tepidum</i> as revealed by optical spectroscopy and structural modeling. FEBS Journal, 2009, 276, 1739-1749.	2.2	26
107	Antioxidant synergism between carotenoids in membranes. Astaxanthin as a radical transfer bridge. Food Chemistry, 2009, 115, 1437-1442.	4.2	69
108	Comparison of Flavonoids and Isoflavonoids as Antioxidants. Journal of Agricultural and Food Chemistry, 2009, 57, 3780-3785.	2.4	124

#	Article	IF	CITATIONS
109	Excitation Dynamics of Two Spectral Forms of the Core Complexes from Photosynthetic Bacterium Thermochromatium tepidum. Biophysical Journal, 2008, 95, 3349-3357.	0.2	36
110	Effect of polar solvents on <i>l²</i> -carotene radical precursor. Free Radical Research, 2008, 42, 281-286.	1.5	8
111	Syntheses of novel 1,3-diazaazulene derivatives and their nonlinear optical characterization. Journal of Materials Chemistry, 2007, 17, 2101.	6.7	14
112	Puerarin and Conjugate Bases as Radical Scavengers and Antioxidants: Molecular Mechanism and Synergism with β-Carotene. Journal of Agricultural and Food Chemistry, 2007, 55, 2384-2391.	2.4	79
113	Low-lying singlet states of carotenoids having 8–13 conjugated double bonds as determined by electronic absorption spectroscopy. Chemical Physics Letters, 2005, 410, 108-114.	1.2	30
114	Triplet Excitation Transfer between Carotenoids in the LH2 Complex from Photosynthetic Bacterium Rhodopseudomonas palustris. Photosynthesis Research, 2004, 82, 83-94.	1.6	14
115	The role of the newly-found 1Buâ^ state of carotenoid in mediating the 1Bu+-to-2Agâ^ internal conversion and the excited-state dynamics of carotenoid and bacteriochlorophyll in a bacterial antenna complex. Journal of Molecular Structure, 2001, 598, 65-78.	1.8	15
116	Efficient light harvesting through carotenoids. Photosynthesis Research, 2000, 66, 125-144.	1.6	157
117	Mechanism of the Carotenoid-to-Bacteriochlorophyll Energy Transfer via the S1State in the LH2 Complexes from Purple Bacteria. Journal of Physical Chemistry B, 2000, 104, 3683-3691.	1.2	143
118	Generation of Triplet and Cation-Radical Bacteriochlorophyll a in Carotenoidless LH1 and LH2 Antenna Complexes from Rhodobacter sphaeroides. Biochemistry, 1998, 37, 17469-17486.	1.2	36
119	Interpretation of the Biphasic Charge Carrier Recombination Process Observed in Mesoporous-Structured Perovskite Solar Cells. , 0, , .		Ο