
Darrell Velegol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6804917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials, 2009, 8, 543-557.	27.5	6,046
2	Chemotaxis of Nonbiological Colloidal Rods. Physical Review Letters, 2007, 99, 178103.	7.8	315
3	Boundaries can steer active Janus spheres. Nature Communications, 2015, 6, 8999.	12.8	290
4	Origins of concentration gradients for diffusiophoresis. Soft Matter, 2016, 12, 4686-4703.	2.7	241
5	Understanding the Efficiency of Autonomous Nano- and Microscale Motors. Journal of the American Chemical Society, 2013, 135, 10557-10565.	13.7	230
6	Biomimetic behavior of synthetic particles: from microscopic randomness to macroscopic control. Physical Chemistry Chemical Physics, 2010, 12, 1423-1435.	2.8	173
7	Enhanced Transport into and out of Dead-End Pores. ACS Nano, 2015, 9, 746-753.	14.6	153
8	Positive and negative chemotaxis of enzyme-coated liposome motors. Nature Nanotechnology, 2019, 14, 1129-1134.	31.5	152
9	Catalytic Micropumps:Â Microscopic Convective Fluid Flow and Pattern Formation. Journal of the American Chemical Society, 2005, 127, 17150-17151.	13.7	150
10	Chemo and phototactic nano/microbots. Faraday Discussions, 2009, 143, 15.	3.2	142
11	Cell Traction Forces on Soft Biomaterials. I. Microrheology of Type I Collagen Gels. Biophysical Journal, 2001, 81, 1786-1792.	0.5	131
12	Shape-directed rotation of homogeneous micromotors via catalytic self-electrophoresis. Nature Communications, 2019, 10, 495.	12.8	108
13	Nanoscale Functionalization and Site-Specific Assembly of Colloids by Particle Lithography. Langmuir, 2005, 21, 4813-4815.	3.5	96
14	AFM Imaging Artifacts due to Bacterial Cell Height and AFM Tip Geometry. Langmuir, 2003, 19, 851-857.	3.5	94
15	Self-Generated Diffusioosmotic Flows from Calcium Carbonate Micropumps. Langmuir, 2012, 28, 15491-15497.	3.5	88
16	Analytical Model for the Effect of Surface Charge Nonuniformity on Colloidal Interactions. Langmuir, 2001, 17, 7687-7693.	3.5	86
17	Measurements of Charge Nonuniformity on Polystyrene Latex Particles. Langmuir, 2002, 18, 3454-3458.	3.5	74
18	Van der Waals Dispersion Forces between Dielectric Nanoclusters. Langmuir, 2007, 23, 1735-1740.	3.5	73

#	Article	IF	CITATIONS
19	Oriented Adhesion of Escherichia coli to Polystyrene Particles. Applied and Environmental Microbiology, 2003, 69, 6515-6519.	3.1	69
20	Altering Surface Charge Nonuniformity on Individual Colloidal Particles. Langmuir, 2004, 20, 3090-3095.	3.5	66
21	Site-Specific Functionalization on Individual Colloids:  Size Control, Stability, and Multilayers. Langmuir, 2007, 23, 9069-9075.	3.5	66
22	Importance of Molecular Details in Predicting Bacterial Adhesion to Hydrophobic Surfaces. Langmuir, 2004, 20, 10625-10629.	3.5	65
23	Transport of Rodlike Colloids through Packed Beds. Environmental Science & Technology, 2006, 40, 6336-6340.	10.0	64
24	Magnetic Enhancement of Phototaxing Catalytic Motors. Langmuir, 2010, 26, 6308-6313.	3.5	60
25	Antimicrobial Sand via Adsorption of Cationic Moringa oleifera Protein. Langmuir, 2012, 28, 2262-2268.	3.5	58
26	van der Waals forces between nanoclusters: Importance of many-body effects. Journal of Chemical Physics, 2006, 124, 074504.	3.0	57
27	Catalytically Driven Colloidal Patterning and Transport. Journal of Physical Chemistry B, 2006, 110, 24513-24521.	2.6	56
28	Motility of Enzyme-Powered Vesicles. Nano Letters, 2019, 19, 6019-6026.	9.1	52
29	Multi-ion diffusiophoresis. Journal of Colloid and Interface Science, 2014, 424, 120-123.	9.4	51
30	A Theory of Enzyme Chemotaxis: From Experiments to Modeling. Biochemistry, 2018, 57, 6256-6263.	2.5	51
31	Nanoscale van der Waals interactions. Molecular Simulation, 2009, 35, 849-866.	2.0	49
32	Fabrication of Colloidal Doublets by a Salting Outâ^'Quenchingâ^'Fusing Technique. Langmuir, 2006, 22, 9135-9141.	3.5	46
33	Electrophoresis of Spheroidal Particles Having a Random Distribution of Zeta Potential. Langmuir, 2000, 16, 10315-10321.	3.5	44
34	Determining the Forces between Polystyrene Latex Spheres Using Differential Electrophoresis. Langmuir, 1996, 12, 4103-4110.	3.5	43
35	Localized Electroosmosis (LEO) Induced by Spherical Colloidal Motors. Langmuir, 2014, 30, 2600-2607.	3.5	41
36	Designing van der Waals Forces between Nanocolloids. Nano Letters, 2005, 5, 169-173.	9.1	40

#	Article	IF	CITATIONS
37	E. coli adhesion to silica in the presence of humic acid. Colloids and Surfaces B: Biointerfaces, 2004, 39, 45-51.	5.0	39
38	Reactive micromixing eliminates fouling and concentration polarization in reverse osmosis membranes. Journal of Membrane Science, 2017, 542, 8-17.	8.2	39
39	Electrophoresis of Spherical Particles with a Random Distribution of Zeta Potential or Surface Charge. Journal of Colloid and Interface Science, 2000, 230, 114-121.	9.4	37
40	Probing the Structure of Colloidal Doublets by Electrophoretic Rotation. Langmuir, 1996, 12, 675-685.	3.5	34
41	In-solution assembly of colloidal water. Soft Matter, 2009, 5, 1263-1268.	2.7	33
42	Diffusiophoresis contributes significantly to colloidal fouling in low salinity reverse osmosis systems. Journal of Membrane Science, 2015, 479, 67-76.	8.2	33
43	Particle Deposition on Microporous Membranes Can Be Enhanced or Reduced by Salt Gradients. Langmuir, 2014, 30, 793-799.	3.5	32
44	Particle Zeta Potentials Remain Finite in Saturated Salt Solutions. Langmuir, 2016, 32, 11837-11844.	3.5	31
45	Assembling colloidal devices by controlling interparticle forces. Journal of Nanophotonics, 2007, 1, 012502.	1.0	29
46	Scalable Manufacturing of Plasmonic Nanodisk Dimers and Cusp Nanostructures Using Salting-out Quenching Method and Colloidal Lithography. ACS Nano, 2011, 5, 5838-5847.	14.6	28
47	Chemotaxis of Molecular Dyes in Polymer Gradients in Solution. Journal of the American Chemical Society, 2017, 139, 15588-15591.	13.7	28
48	Polloidal Chains from Self-Assembly of Flattened Particles. Langmuir, 2013, 29, 10340-10345.	3.5	26
49	Fabrication of stable anisotropic microcapsules. Soft Matter, 2009, 5, 827.	2.7	25
50	Controlled Flats on Spherical Polymer Colloids. Langmuir, 2010, 26, 7644-7649.	3.5	24
51	Collagen Gel Anisotropy Measured by 2-D Laser Trap Microrheometry. Annals of Biomedical Engineering, 2007, 35, 1231-1246.	2.5	21
52	Modulation of Spatiotemporal Particle Patterning in Evaporating Droplets: Applications to Diagnostics and Materials Science. ACS Applied Materials & Interfaces, 2017, 9, 43352-43362.	8.0	21
53	Measuring Colloidal Forces Using Differential Electrophoresis. Langmuir, 2000, 16, 3372-3384.	3.5	20
54	Laser trap studies of end-on E. coli adhesion to glass. Colloids and Surfaces B: Biointerfaces, 2006, 50, 66-71.	5.0	18

#	Article	IF	CITATIONS
55	Simple Fabrication of Metallic Colloidal Doublets Having Electrical Connectivity. Langmuir, 2008, 24, 4335-4339.	3.5	18
56	Maskless Fabrication of Nanowells Using Chemically Reactive Colloids. Nano Letters, 2011, 11, 672-676.	9.1	18
57	Force Measurements between Weakly Attractive Polystyrene Particles. Langmuir, 2002, 18, 7328-7333.	3.5	17
58	Sediments of soft spheres arranged by effectiveÂdensity. Nature Materials, 2011, 10, 716-721.	27.5	17
59	7 Log Virus Removal in a Simple Functionalized Sand Filter. Environmental Science & Technology, 2019, 53, 12706-12714.	10.0	17
60	Localized Functionalization of Individual Colloidal Carriers for Cell Targeting and Imaging. Biomacromolecules, 2007, 8, 1958-1965.	5.4	15
61	Self-Assembly of Doublets from Flattened Polymer Colloids. Langmuir, 2012, 28, 4086-4094.	3.5	15
62	Nonuniform Crowding Enhances Transport. ACS Nano, 2019, 13, 8946-8956.	14.6	15
63	Prolonging Density Gradient Stability. Langmuir, 2010, 26, 4725-4731.	3.5	14
64	Force Measurements between Colloidal Particles of Identical Zeta Potentials Using Differential Electrophoresis. Langmuir, 2003, 19, 4090-4095.	3.5	13
65	Three-body interactions involving clusters and films. Physical Review B, 2003, 68, .	3.2	13
66	Self-Generated Electrokinetic Fluid Flows during Pseudomorphic Mineral Replacement Reactions. Langmuir, 2016, 32, 5233-5240.	3.5	13
67	Charge nonuniformity light scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 267, 79-85.	4.7	12
68	Simple fabrication of snowman-like colloids. Journal of Colloid and Interface Science, 2012, 371, 28-33.	9.4	12
69	<i>Moringa oleifera</i> Seed Protein Adsorption to Silica: Effects of Water Hardness, Fractionation, and Fatty Acid Extraction. Langmuir, 2018, 34, 4852-4860.	3.5	12
70	Electrophoresis of randomly charged particles. Electrophoresis, 2002, 23, 2023.	2.4	11
71	Force Measurements between Sub-100 nm Colloidal Particles. Langmuir, 2007, 23, 1275-1280.	3.5	10
72	Rayleighâ^'Bénard Instability in Sedimentation. Industrial & Engineering Chemistry Research, 2009, 48, 2414-2421.	3.7	10

#	Article	IF	CITATIONS
73	Localized Quorum Sensing in Vibrio fischeri. Colloids and Surfaces B: Biointerfaces, 2008, 62, 180-187.	5.0	9
74	Design and Characterization of Randomly Speckled Spheres. Langmuir, 2008, 24, 7618-7622.	3.5	9
75	Chemical Game Theory. Industrial & amp; Engineering Chemistry Research, 2018, 57, 13593-13607.	3.7	9
76	Differences between Chemisorbed and Physisorbed Biomolecules on Particle Deposition to Hydrophobic Surfacesâ€. Environmental Science & Technology, 2005, 39, 6371-6377.	10.0	7
77	Fully retarded van der Waals interaction between dielectric nanoclusters. Journal of Chemical Physics, 2006, 125, 174303.	3.0	7
78	Van der Waals energy of a 1-dimensional lattice. Molecular Physics, 2008, 106, 1587-1596.	1.7	7
79	Limitations of Differential Electrophoresis for Measuring Colloidal Forces:  A Brownian Dynamics Study. Langmuir, 2005, 21, 10074-10081.	3.5	5
80	Evaluating Randomness of Charge Distribution on Colloidal Particles Using Stationary Electrophoresis Angles. Langmuir, 2003, 19, 4592-4596.	3.5	4
81	Functional colloidal trimers by quenched electrostatic assembly. Physical Chemistry Chemical Physics, 2010, 12, 11930.	2.8	4
82	Digitally Coupled Learning and Innovation Processes. Industrial & Engineering Chemistry Research, 2019, 58, 22445-22455.	3.7	4
83	Measuring Particle Diameter and Particleâ~'Particle Gap with Nanometer Precision Using an Optical Microscope. Industrial & Engineering Chemistry Research, 2001, 40, 3042-3047.	3.7	3
84	Reducing Surface Charge Nonuniformity on Individual Particles through Annealing. Industrial & Engineering Chemistry Research, 2004, 43, 3478-3483.	3.7	3
85	Microfactories for colloidal assemblies. AICHE Journal, 2010, 56, 564-569.	3.6	2
86	Modeling the formation of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the historical manufacture of 2,4,5-trichlorophenol. Environmental Forensics, 2017, 18, 307-317.	2.6	2
87	Gambling on Innovation. Industrial & amp; Engineering Chemistry Research, 2021, 60, 7689-7699.	3.7	2
88	Orientation of irreversible adhesion of spherical particles on prolate spheroidal collectors. Journal of Colloid and Interface Science, 2006, 299, 696-702.	9.4	1
89	Brownian sampling in an unbounded space. Journal of Colloid and Interface Science, 2004, 274, 334-336.	9.4	0
90	The Design and Control of Catalytic Motors: Manipulating Colloids and Fluids with Self-Generated Forces. Materials Research Society Symposia Proceedings, 2006, 944, 1.	0.1	0

#	Article	IF	CITATIONS
91	Sustainable energy corps: Building a global collaboration to accelerate transition to a low carbon world. Chemical Engineering Science: X, 2021, 10, 100099.	1.5	0