Kassim Al-Khatib

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6804708/publications.pdf

Version: 2024-02-01

		172457	175258
115	3,233	29	52
papers	citations	h-index	g-index
115	115	115	2077
113	113	113	2077
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Toward understanding the impact of nuisance algae bloom on the reduction of rice seedling emergence and establishment. Weed Science, 2022, 70, 95-102.	1.5	O
2	Flooding depths and burial effects on seedling emergence of five California weedy rice (<i>Oryza) Tj ETQq0 0 0 r</i>	gBŢ <i>Ĺ</i> Ovei	lock 10 Tf 50 i
3	The stale-drill establishment method for rice: Weed community, rice stand development, and yield components of two vigorous japonica cultivars. Field Crops Research, 2022, 276, 108369.	5.1	2
4	Grapevine Injury and Fruit Yield Response to Simulated Auxin Herbicide Drift. Hortscience: A Publication of the American Society for Hortcultural Science, 2022, 57, 384-388.	1.0	5
5	Weed control and rice response from clomazone applied at different timings in a water-seeded system. Weed Technology, 2022, 36, 414-418.	0.9	2
6	Seeding depth effects on elongation, emergence, and early development of California rice cultivars. Crop Science, 2021, 61, 2012-2022.	1.8	3
7	Mechanism of clomazone resistance in Leptochloa fusca spp. fasicularis to clomazone. Pesticide Biochemistry and Physiology, 2020, 162, 1-5.	3.6	4
8	Bearded sprangletop (<i>Diplachne fusca</i> ssp. <i>fascicularis</i>) flooding tolerance in California rice. Weed Technology, 2020, 34, 193-196.	0.9	13
9	Effects of competition from California weedy rice (<i>Oryza sativa</i> f. <i>spontanea</i>) biotypes on a cultivated rice variety. Weed Technology, 2020, 34, 666-674.	0.9	9
10	Survey of bearded sprangletop (<i>Leptochloa fusca</i> spp. <i>fasicularis</i>) response to clomazone in California rice. Weed Technology, 2020, 34, 661-665.	0.9	4
11	Phenotypic diversity of weedy rice (<i>Oryza sativa</i> f. <i>spontanea</i>) biotypes found in California and implications for management. Weed Science, 2020, 68, 485-495.	1.5	2
12	Modeling germination of smallflower umbrella sedge (<i>Cyperus difformis</i> L.) seeds from rice fields in California across suboptimal temperatures. Weed Technology, 2019, 33, 733-738.	0.9	6
13	Genetic variation and possible origins of weedy rice found in California. Ecology and Evolution, 2019, 9, 5835-5848.	1.9	18
14	Sumatran Fleabane (Conyza sumatrensis) Resistance to Glyphosate in Peach Orchards in Turkey. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 873-879.	1.0	6
15	Soil Mobility of Allyl Isothiocyanate and Chloropicrin as Influenced by Surfactants and Soil Texture. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 706-714.	1.0	1
16	Detection of Bispyribac-sodium Residues in Walnut Leaves after Simulated Drift. HortTechnology, 2019, 29, 25-29.	0.9	1
17	Walnut Response to Multiple Exposures to Simulated Drift of Bispyribac-Sodium. Weed Technology, 2018, 32, 618-622.	0.9	0
18	Response of Walnuts to Simulated Drift Rates of Bispyribac-Sodium, Bensulfuron-Methyl, and Propanil. Weed Technology, 2018, 32, 410-415.	0.9	1

#	Article	IF	CITATIONS
19	Predicting Yield Losses in Rice Mixed-Weed Species Infestations in California. Weed Science, 2017, 65, 61-72.	1.5	22
20	A high-throughput, modified ALS activity assay for Cyperus difformis and Schoenoplectus mucronatus seedlings. Pesticide Biochemistry and Physiology, 2017, 135, 78-81.	3.6	3
21	Weed Community Dynamics and System Productivity in Alternative Irrigation Systems in California Rice. Weed Science, 2017, 65, 177-188.	1.5	15
22	A <i>psbA</i> mutation (Val ₂₁₉ to Ile) causes resistance to propanil and increased susceptibility to bentazon in <i>Cyperus difformis</i> . Pest Management Science, 2016, 72, 1673-1680.	3.4	23
23	Resistance to Propanil in Ricefield Bulrush (<i>Schoenoplectus mucronatus</i>) Is Conferred by a <i>psbA</i> Mutation, Val ₂₁₉ to Ile. Weed Science, 2016, 64, 562-569.	1.5	5
24	Herbicide-resistant weeds challenge some signature cropping systems. California Agriculture, 2014, 68, 142-152.	0.8	15
25	Metabolism of quizalofop and rimsulfuron in herbicide resistant grain sorghum. Pesticide Biochemistry and Physiology, 2013, 105, 24-27.	3.6	9
26	Differential Kochia (Kochia scoparia) Populations Response to Glyphosate. Weed Science, 2013, 61, 193-200.	1.5	42
27	Genetic Resistance to Acetylâ€Coenzyme A Carboxylaseâ€Inhibiting Herbicides in Grain Sorghum. Crop Science, 2012, 52, 64-73.	1.8	16
28	Response of Aryloxyphenoxypropionate-Resistant Grain Sorghum to Quizalofop at Various Rates and Application Timings. Weed Technology, 2012, 26, 14-18.	0.9	4
29	Preemergence Herbicides for Potential Use in Potato Production. Weed Technology, 2012, 26, 731-739.	0.9	10
30	Wide Distribution of the Waterhemp (<i>Amaranthus tuberculatus</i>) î"G210 <i>PPX2</i> Mutation, which Confers Resistance to PPO-Inhibiting Herbicides. Weed Science, 2011, 59, 22-27.	1.5	38
31	Efficacy of postemergence herbicides tankmixes in aryloxyphenoxypropionate-resistant grain sorghum. Crop Protection, 2011, 30, 1623-1628.	2.1	14
32	Saflufenacil absorption and translocation in winter wheat (Triticum aestivum L.). Pesticide Biochemistry and Physiology, 2010, 98, 243-247.	3.6	9
33	Weed control with selected herbicides in acetolactate synthase-resistant sorghum. Crop Protection, 2010, 29, 879-883.	2.1	9
34	Response of Barnyardgrass (<i>Echinochloa crus-galli</i>), Green Foxtail (<i>Setaria virdis</i>), Longspine Sandbur (<i>Cenchrus longispinus</i>), and Large Crabgrass (<i>Digitaria sanguinalis</i>) to Nicosulfuron and Rimsulfuron. Weed Science, 2010, 58, 189-194.	1.5	5
35	Postemergence Weed Control in Acetolactate Synthase–Resistant Grain Sorghum. Weed Technology, 2010, 24, 219-225.	0.9	21
36	Response of Acetolactate Synthase–Resistant Grain Sorghum to Nicosulfuron Plus Rimsulfuron. Weed Technology, 2010, 24, 411-415.	0.9	8

#	Article	IF	CITATIONS
37	Effect of Postemergence Mesotrione Application Timing on Grain Sorghum. Weed Technology, 2010, 24, 85-90.	0.9	3
38	Efficacy of Herbicide Seed Treatments for Controlling <i>Striga</i> Infestation of Sorghum. Crop Science, 2009, 49, 923-929.	1.8	29
39	Relative Competitiveness of Protoporphyrinogen Oxidase-Resistant Common Waterhemp (<i>Amaranthus Rudis</i>). Weed Science, 2009, 57, 169-174.	1.5	15
40	Absorption, Translocation, and Metabolism of Mesotrione in Grain Sorghum. Weed Science, 2009, 57, 563-566.	1.5	23
41	Differential Response of Grain Sorghum Hybrids to Foliar-Applied Mesotrione. Weed Technology, 2009, 23, 28-33.	0.9	43
42	Inheritance of resistance of common waterhemp (Amaranthus rudis) to protoporphyrinogen oxidase-inhibiting herbicide. Transactions of the Kansas Academy of Science, 2008, 111, 283-291.	0.1	2
43	Efficacy of preemergence application of $\langle i \rangle S \langle i \rangle$ -Metolachlor plus Fomesafen or Metribuzin as an element in the control of common waterhemp (Amaranthus rudis Sauer) in soybeans. Transactions of the Kansas Academy of Science, 2008, 111, 230-238.	0.1	3
44	Exudation of Mesotrione from Potato Roots Injures Neighboring Plants. Weed Science, 2008, 56, 852-855.	1.5	5
45	Efficacy of Sulfonylurea Herbicides when Tank Mixed with Mesotrione. Weed Technology, 2008, 22, 222-230.	0.9	21
46	Cotton Injury and Yield as Affected by Simulated Drift of 2,4-D and Dicamba. Weed Technology, 2008, 22, 609-614.	0.9	32
47	Fluroxypyr Efficacy is Affected by Relative Humidity and Soil Moisture. Weed Science, 2007, 55, 260-263.	1.5	14
48	Response of Common Lambsquarters (Chenopodium album) to Glyphosate as Affected by Growth Stage. Weed Science, 2007, 55, 147-151.	1.5	33
49	Cotton Response to Simulated Drift of Seven Hormonal-Type Herbicides. Weed Technology, 2007, 21, 987-992.	0.9	32
50	Mechanism of Antagonism of Mesotrione on Sulfonylurea Herbicides. Weed Science, 2007, 55, 429-434.	1.5	26
51	Photochemical Efficiency and Recovery of Photosystem II in Grapes After Exposure to Sudden and Gradual Heat Stress. Journal of the American Society for Horticultural Science, 2007, 132, 764-769.	1.0	50
52	Protox-resistant common waterhemp (Amaranthus rudis) response to herbicides applied at different growth stages. Weed Science, 2006, 54, 793-799.	1.5	29
53	Wheat Response to Simulated Drift of Glyphosate and Imazamox Applied at Two Growth Stages. Weed Technology, 2006, 20, 23-31.	0.9	26
54	Weed Control in Grape After Fall and Spring Application of Selected Herbicides. Weed Technology, 2006, 20, 74-80.	0.9	6

#	Article	IF	CITATIONS
55	Rapid Assay Evaluation of Plant Response to Protoporphyrinogen Oxidase (Protox)-Inhibiting Herbicides. Weed Technology, 2006, 20, 104-112.	0.9	6
56	Strawberry (Fragaria \tilde{A} —ananassa Duch.) Growth and Productivity as Affected by Temperature. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 1423-1430.	1.0	79
57	Survey of Common Waterhemp (Amaranthus rudis) Response to Protox- and ALS-Inhibiting Herbicides in Northeast Kansas1. Weed Technology, 2005, 19, 838-846.	0.9	17
58	Fate of acifluorfen and lactofen in common waterhemp (Amaranthus rudis) resistant to protoporphyrinogen oxidase–inhibiting herbicides. Weed Science, 2005, 53, 284-289.	1.5	8
59	Soil microbial and nematode communities as affected by glyphosate and tillage practices in a glyphosate-resistant cropping system. Weed Science, 2005, 53, 536-545.	1.5	67
60	Relative fitness of imazamox-resistant common sunflower and prairie sunflower. Weed Science, 2005, 53, 166-174.	1.5	26
61	Prairie cupgrass (Eriochloa contract) and windmillgrass (Chloris verticillata) response to glyphosate and acetyl-CoA carboxylase–inhibiting herbicides. Weed Science, 2005, 53, 315-322.	1.5	6
62	(343) Weed Controlin Vineyard Following Fall and Spring Application of Selected Herbicide Combinations. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1024E-1025.	1.0	0
63	Potential for Plant-Based Remediation of Pesticide-Contaminated Soil and Water using Nontarget Plants such as Trees, Shrubs, and Grasses. Critical Reviews in Plant Sciences, 2004, 23, 91-101.	5.7	47
64	Safening grain sorghum injury from metsulfuron with growth regulator herbicides. Weed Science, 2004, 52, 319-325.	1.5	21
65	Control of Protoporphyrinogen Oxidase Inhibitor–Resistant Common Waterhemp (Amaranthus rudis) in Corn and Soybean. Weed Technology, 2004, 18, 332-340.	0.9	18
66	Temperature effects on germination and growth of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis). Weed Science, 2003, 51, 869-875.	1.5	124
67	Efficacy of glyphosate, glufosinate, and imazethapyr on selected weed species. Weed Science, 2003, 51, 110-117.	1.5	63
68	Grain Sorghum Response to Simulated Drift from Glufosinate, Glyphosate, Imazethapyr, and Sethoxydim1. Weed Technology, 2003, 17, 261-265.	0.9	39
69	Gene flow from imidazolinone-resistant domesticated sunflower to wild relatives. Weed Science, 2003, 51, 854-862.	1.5	61
70	Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Science, 2003, 51, 145-150.	1.5	118
71	Alachlor and metolachlor transformation pattern in corn and soil. Weed Science, 2002, 50, 581-586.	1.5	11
72	Glufosinate Efficacy on Amaranthus Species in Glufosinate-Resistant Soybean (Glycine max)1. Weed Technology, 2002, 16, 326-331.	0.9	59

#	Article	IF	Citations
73	Interspecific hybridization and gene flow of ALS resistance inAmaranthusspecies. Weed Science, 2001, 49, 598-606.	1.5	95
74	Glufosinate efficacy, absorption, and translocation in amaranth as affected by relative humidity and temperature. Weed Science, 2001, 49, 8-13.	1.5	83
75	Pollen morphological differences inAmaranthusspecies and interspecific hybrids. Weed Science, 2001, 49, 732-737.	1.5	51
76	Gene flow, growth, and competitiveness of imazethapyr-resistant common sunflower. Weed Science, 2001, 49, 14-21.	1.5	36
77	Photosynthetic inhibition and ammonium accumulation in Palmer amaranth after glufosinate application. Weed Science, 2001, 49, 454-459.	1.5	46
78	MON 37500 Efficacy as Affected by Rate, Adjuvants, and Carriers1. Weed Technology, 2000, 14, 750-754.	0.9	12
79	Efficacy and metabolism of MON 37500 inTriticum aestivumand weedy grass species as affected by temperature and soil moisture. Weed Science, 2000, 48, 541-548.	1.5	67
80	Control of Imazethapyr-Resistant Common Sunflower (Helianthus annuus) in Soybean (Glycine max) and Corn (Zea mays)1. Weed Technology, 2000, 14, 133-139.	0.9	12
81	Highâ€Temperature Effects on Photosynthetic Processes in Temperate and Tropical Cereals. Crop Science, 1999, 39, 119-125.	1.8	127
82	Survey of Common Sunflower ($\langle i \rangle$ Helianthus annuus $\langle i \rangle$) Resistance to Imazethapyr and Chlorimuron in Northeast Kansas. Weed Technology, 1999, 13, 510-514.	0.9	12
83	Cross-Resistance of Imazethapyr-Resistant Common Sunflower (<i>Helianthus annuus</i>) to Selected Imidazolinone, Sulfonylurea, and Triazolopyrimidine Herbicides. Weed Technology, 1999, 13, 489-493.	0.9	26
84	Dry Pea (<i>Pisum sativum</i> L.) Response to Low Rates of Selected Foliar- and Soil-Applied Sulfonylurea and Growth Regulator Herbicides. Weed Technology, 1999, 13, 753-758.	0.9	19
85	Absorption and translocation of MON 37500 in wheat and other grass species. Weed Science, 1999, 47, 37-40.	1.5	19
86	Soybean (<i>Glycine max</i>) Response to Simulated Drift from Selected Sulfonylurea Herbicides, Dicamba, Glyphosate, and Glufosinate. Weed Technology, 1999, 13, 264-270.	0.9	109
87	Interactions between imazamox and diphenylethers. Weed Science, 1999, 47, 462-466.	1.5	17
88	Imazethapyr resistance in common sunflower (<i>Helianthus annuus</i>). Weed Science, 1998, 46, 403-407.	1.5	117
89	Weed suppression with <i>Brassica </i> green manure crops in green pea. Weed Science, 1997, 45, 439-445.	1.5	131
90	Wine Grape (<i>Vitis vinifera</i>) Response to Fall Exposure of Simulated Drift from Selected Herbicides. Weed Technology, 1997, 11, 532-536.	0.9	17

#	Article	IF	CITATIONS
91	Differential Varietal Response of Green Pea (<i>Pisum sativum</i>) to Metribuzin. Weed Technology, 1997, 11, 775-781.	0.9	11
92	Wine Grape (<i>Vitis vinifera</i>) Response to Repeated Exposure of Selected Sulfonylurea Herbicides and 2,4-D. Weed Technology, 1996, 10, 951-956.	0.9	17
93	Effect of Adjuvants on Bentazon Efficacy in Green Pea (<i>Pisum sativum</i>). Weed Technology, 1995, 9, 426-431.	0.9	7
94	Broadleaf Weed Control with Clomazone in Pickling Cucumber (<i>Cucumis sativus</i>). Weed Technology, 1995, 9, 166-172.	0.9	15
95	Broadleaf Weed Control and Cabbage Seed Yield following Herbicide Application. Hortscience: A Publication of the American Society for Hortcultural Science, 1995, 30, 1211-1214.	1.0	7
96	DC X2-5309 Organosilicone Adjuvant Improves Control of Kochia (Kochia scoparia) with Bentazon and Bromoxynil. Weed Technology, 1994, 8, 99-104.	0.9	8
97	Effect of Thifensulfuron Concentration and Droplet Size on Phytotoxicity, Absorption, and Translocation in Pea (Pisum sativum). Weed Science, 1994, 42, 482-486.	1.5	10
98	Development of a Biologically-Based System for Detection and Tracking of Airborne Herbicides. Weed Technology, 1993, 7, 404-410.	0.9	23
99	Wine Grape (<i>Vitis vinifera</i> L.) Response to Simulated Herbicide Drift. Weed Technology, 1993, 7, 97-102.	0.9	38
100	Efficacy, Site of Uptake, and Retention of Bromoxynil in Common Lambsquarters with Conventional and Sprinkler Application. Weed Science, 1993, 41, 166-171.	1.5	6
101	Foliar Absorption and Translocation of Dicamba from Aqueous Solution and Dicamba-Treated Soil Deposits. Weed Technology, 1992, 6, 57-61.	0.9	3
102	Alfalfa (<i>Medicago sativa</i>) Response to Simulated Herbicide Spray Drift. Weed Technology, 1992, 6, 956-960.	0.9	24
103	Terbacil and Bromacil Cross-Resistance in Powell Amaranth (Amaranthus powellii). Weed Science, 1992, 40, 513-516.	1.5	6
104	Sweet Cherry (<i>Prunus avium</i>) Response to Simulated Drift from Selected Herbicides. Weed Technology, 1992, 6, 975-979.	0.9	31
105	Distribution and Characteristics of Triazine-Resistant Powell Amaranth (<i>Amaranthus powellii</i>) in Idaho. Weed Science, 1992, 40, 507-512.	1.5	28
106	Foliar Absorption and Translocation of Herbicides from Aqueous Solution and Treated Soil. Weed Science, 1992, 40, 281-287.	1.5	25
107	Atrazine Phytotoxicity to Common Bean and Redroot Pigweed under Different Temperatures. Weed Science, 1992, 40, 364-370.	1.5	8
108	Rose (Rosa dilecta) Response to Simulated Herbicide Drift. HortTechnology, 1992, 2, 394-398.	0.9	5

#	Article	IF	Citations
109	Heat-induced reversible and irreversible alterations in the structure of phaseolus vulgaris thylakoid proteins. Journal of Thermal Biology, 1990, 15, 239-244.	2.5	8
110	Photosynthesis and Productivity during Highâ€Temperature Stress of Wheat Genotypes from Major World Regions. Crop Science, 1990, 30, 1127-1132.	1.8	134
111	Solution Effects on the Thermostability of Bean Chloroplast Thylakoids. Crop Science, 1990, 30, 90-96.	1.8	3
112	Enhancement of Thermal Injury to Photosynthesis in Wheat Plants and Thylakoids by High Light Intensity. Plant Physiology, 1989, 90, 1041-1048.	4.8	94
113	Use of growth regulators to control senescence of wheat at different temperatures during grain development. Journal of Agricultural and Food Chemistry, 1985, 33, 866-870.	5.2	4
114	Mode of high temperature injury to wheat during grain development. Physiologia Plantarum, 1984, 61, 363-368.	5.2	205
115	Combining stale seedbed with deep rice planting: a novel approach to herbicide resistance management?. Weed Technology, 0, , 1-26.	0.9	4