Volker H W Rudolf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6804483/publications.pdf

Version: 2024-02-01

78 papers 5,893 citations

94433 37 h-index 79698 73 g-index

81 all docs

81 docs citations

81 times ranked 7069 citing authors

#	Article	IF	CITATIONS
1	Temperature and nutrient conditions modify the effects of phenological shifts in predator–prey communities. Ecology, 2022, 103, e3704.	3.2	5
2	Ontogenetic development underlies population response to mortality. Oikos, 2021, 130, 464-475.	2.7	O
3	Broadening the ecology of fear: non-lethal effects arise from diverse responses to predation and parasitism. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202966.	2.6	27
4	Experimental evidence that local interactions select against selfish behaviour. Ecology Letters, 2021, 24, 1187-1192.	6.4	2
5	Ontogenetic diversity buffers communities against consequences of species loss. Journal of Animal Ecology, 2021, 90, 1492-1504.	2.8	4
6	Developmental Change in Predators Drives Different Community Configurations. American Naturalist, 2021, 197, 719-731.	2.1	3
7	Night warming alters mean warming effects on predator–prey interactions by modifying predator demographics and interaction strengths. Functional Ecology, 2021, 35, 2094-2107.	3.6	6
8	Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nature Communications, 2021, 12, 5351.	12.8	69
9	Sex differences in disease avoidance behavior vary across modes of pathogen exposure. Ethology, 2020, 126, 304-312.	1.1	11
10	A multivariate approach reveals diversity of ontogenetic niche shifts across taxonomic and functional groups. Freshwater Biology, 2020, 65, 745-756.	2.4	11
11	Within-host priority effects and epidemic timing determine outbreak severity in co-infected populations. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200046.	2.6	25
12	Shifts in phenological mean and synchrony interact to shape competitive outcomes. Ecology, 2019, 100, e02826.	3.2	33
13	The role of seasonal timing and phenological shifts for species coexistence. Ecology Letters, 2019, 22, 1324-1338.	6.4	97
14	Opportunities for behavioral rescue under rapid environmental change. Global Change Biology, 2019, 25, 3110-3120.	9.5	53
15	Phenotype-Environment Matching Predicts Both Positive and Negative Effects of Intraspecific Variation. American Naturalist, 2019, 194, 47-58.	2.1	8
16	Within-Host Priority Effects Systematically Alter Pathogen Coexistence. American Naturalist, 2019, 193, 187-199.	2.1	44
17	Priority effects within coinfected hosts can drive unexpected populationâ€scale patterns of parasite prevalence. Oikos, 2019, 128, 571-583.	2.7	32
18	Social context alters host behavior and infection risk. Behavioral Ecology, 2018, 29, 869-875.	2.2	7

#	Article	IF	Citations
19	Queen presence mediates the relationship between collective behaviour and disease susceptibility in ant colonies. Journal of Animal Ecology, 2018, 87, 379-387.	2.8	19
20	Resolving biological impacts of multiple heat waves: interaction of hot and recovery days. Oikos, 2018, 127, 622-633.	2.7	52
21	Resource limitation alters effects of phenological shifts on inter-specific competition. Oecologia, 2018, 188, 515-523.	2.0	15
22	Drivers of individual niche variation in coexisting species. Journal of Animal Ecology, 2018, 87, 1452-1464.	2.8	53
23	Shifts in phenological distributions reshape interaction potential in natural communities. Ecology Letters, 2018, 21, 1143-1151.	6.4	64
24	Prey Limitation Drives Variation in Allometric Scaling of Predator-Prey Interactions. American Naturalist, 2018, 192, E139-E149.	2.1	24
25	Nonlinear effects of phenological shifts link interannual variation to species interactions. Journal of Animal Ecology, 2018, 87, 1395-1406.	2.8	25
26	Trophic structure alters consequences of environmental warming. Oikos, 2018, 127, 1646-1656.	2.7	17
27	Legacy effects of developmental stages determine the functional role of predators. Nature Ecology and Evolution, 2017, 1, 38.	7.8	10
28	Cannibalism and Intraguild Predation Community Dynamics: Coexistence, Competitive Exclusion, and the Loss of Alternative Stable States. American Naturalist, 2017, 190, 617-630.	2.1	15
29	Cannibalism and Infectious Disease: Friends or Foes?. American Naturalist, 2017, 190, 299-312.	2.1	24
30	Top predators determine how biodiversity is partitioned across time and space. Ecology Letters, 2017, 20, 1004-1013.	6.4	29
31	Deadly competition and life-saving predation: the potential for alternative stable states in a stage-structured predator–prey system. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161546.	2.6	13
32	Individual and combined effects of two types of phenological shifts on predator–prey interactions. Ecology, 2016, 97, 3414-3421.	3.2	20
33	Giant cannibals drive selection for inducible defence in heterospecific prey. Biological Journal of the Linnean Society, 2016, , .	1.6	2
34	Carryover effects drive competitive dominance in spatially structured environments. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6939-6944.	7.1	25
35	Intraspecific trait variation and colonization sequence alter community assembly and disease epidemics. Oikos, 2016, 125, 229-236.	2.7	8
36	Phenological synchronization drives demographic rates of populations. Ecology, 2015, 96, 1754-1760.	3.2	23

#	Article	IF	Citations
37	Habitatâ€mediated carryâ€over effects lead to contextâ€dependent outcomes of species interactions. Journal of Animal Ecology, 2015, 84, 1646-1656.	2.8	10
38	Stage-specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest. Oecologia, 2015, 179, 947-957.	2.0	76
39	Extreme temperature events alter demographic rates, relative fitness, and community structure. Global Change Biology, 2015, 21, 1794-1808.	9.5	127
40	Linking phenological shifts to species interactions through sizeâ€mediated priority effects. Journal of Animal Ecology, 2014, 83, 1206-1215.	2.8	73
41	Resolving the roles of body size and species identity in driving functional diversity. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133203.	2.6	59
42	Allometric scaling of indirect effects: body size ratios predict nonâ€consumptive effects in multiâ€predator systems. Journal of Animal Ecology, 2014, 83, 1461-1468.	2.8	19
43	Intraspecific priority effects and disease interact to alter population growth. Ecology, 2014, 95, 3354-3363.	3.2	9
44	Disentangling climate change effects on species interactions: effects of temperature, phenological shifts, and body size. Oecologia, 2013, 173, 1043-1052.	2.0	37
45	Population structure determines functional differences among species and ecosystem processes. Nature Communications, 2013, 4, 2318.	12.8	88
46	Ghosts of Habitats Past: Environmental Carry-Over Effects Drive Population Dynamics in Novel Habitat. American Naturalist, 2013, 181, 596-608.	2.1	48
47	Ontogenetic functional diversity: Size structure of a keystone predator drives functioning of a complex ecosystem. Ecology, 2013, 94, 1046-1056.	3.2	103
48	Mating status and kin recognition influence the strength of cannibalism. Animal Behaviour, 2013, 85, 365-369.	1.9	29
49	Trait-mediated indirect interactions in size-structured populations. , 2012, , 69-88.		3
50	Life history predicts risk of species decline in a stochastic world. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2691-2697.	2.6	25
51	Seasonal shifts in predator body size diversity and trophic interactions in sizeâ€structured predator–prey systems. Journal of Animal Ecology, 2012, 81, 524-532.	2.8	45
52	Impact of life stage specific immune priming on invertebrate disease dynamics. Oikos, 2012, 121, 1083-1092.	2.7	53
53	Eco-Evolutionary Dynamics Enable Coexistence via Neighbor-Dependent Selection. American Naturalist, 2011, 178, E96-E109.	2.1	123
54	Why intraspecific trait variation matters in community ecology. Trends in Ecology and Evolution, 2011, 26, 183-192.	8.7	1,809

#	Article	IF	CITATIONS
55	Thinking inside the box: community-level consequences of stage-structured populations. Trends in Ecology and Evolution, 2011, 26, 457-466.	8.7	187
56	Effects of size structure and habitat complexity on predator-prey interactions. Ecological Entomology, 2011, 36, 744-750.	2.2	17
57	Stage structure alters how complexity affects stability of ecological networks. Ecology Letters, 2011, 14, 75-79.	6.4	146
58	Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecology Letters, 2010, 13, 1-10.	6.4	477
59	Cannibals in Space: The Coevolution of Cannibalism and Dispersal in Spatially Structured Populations. American Naturalist, 2010, 175, 513-524.	2.1	46
60	Challenges of metamorphosis in invertebrate hosts: maintaining parasite resistance across lifeâ€history stages. Ecological Entomology, 2010, 35, 200-205.	2.2	51
61	Evolution of sexual size monomorphism: the influence of passive mate guarding. Journal of Evolutionary Biology, 2009, 22, 1376-1386.	1.7	41
62	Emergent impacts of cannibalism and size refuges in prey on intraguild predation systems. Oecologia, 2008, 157, 675-686.	2.0	50
63	THE IMPACT OF CANNIBALISM IN THE PREY ON PREDATOR–PREY SYSTEMS. Ecology, 2008, 89, 3116-3127.	3.2	57
64	Crossing habitat boundaries: coupling dynamics of ecosystems through complex life cycles. Ecology Letters, 2008, 11, 576-587.	6.4	131
65	Consequences of size structure in the prey for predator–prey dynamics: the composite functional response. Journal of Animal Ecology, 2008, 77, 520-528.	2.8	45
66	IMPACT OF CANNIBALISM ON PREDATOR–PREY DYNAMICS: SIZE-STRUCTURED INTERACTIONS AND APPARENT MUTUALISM. Ecology, 2008, 89, 1650-1660.	3.2	67
67	Evolution by Any Other Name: Antibiotic Resistance and Avoidance of the E-Word. PLoS Biology, 2007, 5, e30.	5.6	52
68	Disease transmission by cannibalism: rare event or common occurrence?. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1205-1210.	2.6	72
69	CONSEQUENCES OF STAGE-STRUCTURED PREDATORS: CANNIBALISM, BEHAVIORAL EFFECTS, AND TROPHIC CASCADES. Ecology, 2007, 88, 2991-3003.	3.2	98
70	Responses of larval dragonflies to conspecific and heterospecific predator cues. Ecological Entomology, 2007, 32, 283-288.	2.2	30
71	THE INTERACTION OF CANNIBALISM AND OMNIVORY: CONSEQUENCES FOR COMMUNITY DYNAMICS. Ecology, 2007, 88, 2697-2705.	3.2	136
72	Phenotypic plasticity and optimal timing of metamorphosis under uncertain time constraints. Evolutionary Ecology, 2007, 21, 121-142.	1.2	74

#	Article	IF	CITATIONS
73	Lifeâ€History Evolution in Uncertain Environments: Bet Hedging in Time. American Naturalist, 2006, 168, 398-411.	2.1	124
74	THE INFLUENCE OF SIZE-SPECIFIC INDIRECT INTERACTIONS IN PREDATOR–PREY SYSTEMS. Ecology, 2006, 87, 362-371.	3.2	79
7 5	Life-History Evolution in Uncertain Environments: Bet Hedging in Time. American Naturalist, 2006, 168, 398.	2.1	7
76	Oviposition site selection in a complex and variable environment: the role of habitat quality and conspecific cues. Oecologia, 2005, 142, 316-325.	2.0	131
77	Species Coexistence and Pathogens with Frequencyâ€Dependent Transmission. American Naturalist, 2005, 166, 112-118.	2.1	149
78	A Review of West African Spotted Kassina, Including a Description of Kassina schioetzi sp. nov. (Amphibia: Anura: Hyperoliidae). Copeia, 2002, 2002, 800-814.	1.3	7