List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6804289/publications.pdf

Version: 2024-02-01

KDISHNA RAO

#	Article	IF	CITATIONS
1	Fecal Microbiota Transplant for Treatment of Clostridium difficile Infection in Immunocompromised Patients. American Journal of Gastroenterology, 2014, 109, 1065-1071.	0.2	546
2	Diagnosis and Treatment of <i>Clostridium difficile</i> in Adults. JAMA - Journal of the American Medical Association, 2015, 313, 398.	3.8	395
3	Molecular Epidemiology of Colonizing and Infecting Isolates of Klebsiella pneumoniae. MSphere, 2016, 1, .	1.3	204
4	Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe, 2018, 53, 64-73.	1.0	144
5	Probiotics for prevention of Clostridium difficile infection. Current Opinion in Gastroenterology, 2018, 34, 3-10.	1.0	133
6	<i>Clostridium difficile</i> Ribotype 027: Relationship to Age, Detectability of Toxins A or B in Stool With Rapid Testing, Severe Infection, and Mortality. Clinical Infectious Diseases, 2015, 61, 233-241.	2.9	124
7	A Generalizable, Data-Driven Approach to Predict Daily Risk of <i>Clostridium difficile</i> Infection at Two Large Academic Health Centers. Infection Control and Hospital Epidemiology, 2018, 39, 425-433.	1.0	104
8	Dynamics of the fecal microbiome in patients with recurrent and nonrecurrent Clostridium difficile infection. Genome Medicine, 2016, 8, 47.	3.6	100
9	The Systemic Inflammatory Response to Clostridium difficile Infection. PLoS ONE, 2014, 9, e92578.	1.1	60
10	Poor Functional Status as a Risk Factor for Severe <i>Clostridium difficile</i> Infection in Hospitalized Older Adults. Journal of the American Geriatrics Society, 2013, 61, 1738-1742.	1.3	58
11	Maternal Deaths Due to Sepsis in the State of Michigan, 1999–2006. Obstetrics and Gynecology, 2015, 126, 747-752.	1.2	58
12	Fecal Microbiota Transplantation for the Management of Clostridium difficile Infection. Infectious Disease Clinics of North America, 2015, 29, 109-122.	1.9	58
13	Evaluation of Portability and Cost of a Fluorescent PCR Ribotyping Protocol for Clostridium difficile Epidemiology. Journal of Clinical Microbiology, 2015, 53, 1192-1197.	1.8	46
14	Epidemiology, Diagnosis, and Management of Clostridium difficile Infection in Patients with Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2016, 22, 1744-1754.	0.9	45
15	Using Machine Learning and the Electronic Health Record to Predict Complicated Clostridium difficile Infection. Open Forum Infectious Diseases, 2019, 6, ofz186.	0.4	44
16	Fecal microbiota transplantation for the treatment of <i>Clostridium difficile</i> infection. Journal of Hospital Medicine, 2016, 11, 56-61.	0.7	43
17	Novel therapies and preventative strategies for primary and recurrent <i>Clostridium difficile</i> infections. Annals of the New York Academy of Sciences, 2019, 1435, 110-138.	1.8	40
18	Identification of Pathogenicity-Associated Loci in Klebsiella pneumoniae from Hospitalized Patients. MSystems, 2018, 3, .	1.7	38

#	Article	IF	CITATIONS
19	Procalcitonin Levels Associate with Severity of Clostridium difficile Infection. PLoS ONE, 2013, 8, e58265.	1.1	37
20	The Risk of SARS-CoV-2 in Immunosuppressed IBD Patients. Crohn's & Colitis 360, 2020, 2, otaa026.	0.5	33
21	Presence of multiple Clostridium difficile strains at primary infection is associated with development of recurrent disease. Anaerobe, 2018, 53, 74-81.	1.0	25
22	Elevated fecal calprotectin associates with adverse outcomes from Clostridium difficile infection in older adults. Infectious Diseases, 2016, 48, 663-669.	1.4	24
23	Diagnosis and Treatment of <i>Clostridioides</i> (<i>Clostridium</i>) <i>difficile</i> Infection in Adults in 2020. JAMA - Journal of the American Medical Association, 2020, 323, 1403.	3.8	24
24	An Observational Cohort Study of <i>Clostridium difficile</i> Ribotype 027 and Recurrent Infection. MSphere, 2018, 3, .	1.3	21
25	Systemic Inflammatory Mediators Are Effective Biomarkers for Predicting Adverse Outcomes in Clostridioides difficile Infection. MBio, 2020, 11, .	1.8	19
26	Genetic Determinants of Trehalose Utilization Are Not Associated With Severe Clostridium difficile Infection Outcome. Open Forum Infectious Diseases, 2020, 7, ofz548.	0.4	19
27	Measurement of Klebsiella Intestinal Colonization Density To Assess Infection Risk. MSphere, 2021, 6, e0050021.	1.3	18
28	The role of the humoral immune response to Clostridium difficile toxins A and B in susceptibility to C. difficile infection: A case–control study. Anaerobe, 2014, 27, 82-86.	1.0	17
29	Prevalence and Effect of Intestinal Infections Detected by a PCR-Based Stool Test in Patients with Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2020, 65, 3287-3296.	1.1	16
30	Risk Factors for Klebsiella Infections among Hospitalized Patients with Preexisting Colonization. MSphere, 2021, 6, e0013221.	1.3	16
31	Temporal Gut Microbial Changes Predict Recurrent <i>Clostridiodes Difficile</i> Infection in Patients With and Without Ulcerative Colitis. Inflammatory Bowel Diseases, 2020, 26, 1748-1758.	0.9	15
32	Capsules for Fecal Microbiota Transplantation in Recurrent <i>Clostridium difficile</i> Infection. JAMA - Journal of the American Medical Association, 2017, 318, 1979.	3.8	14
33	Proton Pump Inhibitor-Induced Gut Dysbiosis Increases Mortality Rates for Patients with Clostridioides difficile Infection. Microbiology Spectrum, 2022, 10, .	1.2	14
34	Risk factors for <i>Clostridium difficile</i> infection in HIV-infected patients. SAGE Open Medicine, 2016, 4, 205031211668429.	0.7	12
35	Recurrent Clostridium difficile infection in intensive care unit patients. American Journal of Infection Control, 2016, 44, 36-40.	1.1	12
36	Effect of an antimicrobial stewardship intervention on outcomes for patients with Clostridium difficile infection. American Journal of Infection Control, 2016, 44, 1539-1543.	1.1	10

#	Article	IF	CITATIONS
37	<i>Enterobacterales</i> Infection after Intestinal Dominance in Hospitalized Patients. MSphere, 2020, 5, .	1.3	10
38	Gut Microbiota Features on Nursing Home Admission Are Associated With Subsequent Acquisition of Antibiotic-resistant Organism Colonization. Clinical Infectious Diseases, 2020, 71, 3244-3247.	2.9	10
39	Changes in the Association Between Diagnostic Testing Method, Polymerase Chain Reaction Ribotype, and Clinical Outcomes From <i>Clostridioides difficile</i> Infection: One Institution's Experience. Clinical Infectious Diseases, 2021, 73, e2883-e2889.	2.9	9
40	Aging Dampens the Intestinal Innate Immune Response during Severe Clostridioides difficile Infection and Is Associated with Altered Cytokine Levels and Granulocyte Mobilization. Infection and Immunity, 2020, 88, .	1.0	9
41	External Validation and Comparison of <i>Clostridioides difficile</i> Severity Scoring Systems. Clinical Infectious Diseases, 2022, 74, 2028-2035.	2.9	8
42	The Nose Knows Not: Poor Predictive Value of Stool Sample Odor for Detection of Clostridium difficile. Clinical Infectious Diseases, 2013, 56, 615-616.	2.9	7
43	Fecal Microbiota Therapy: Ready for Prime Time?. Infection Control and Hospital Epidemiology, 2014, 35, 28-30.	1.0	7
44	Differentiating <i>Clostridium difficile</i> Colitis from <i>Clostridium difficile</i> Colonization in Ulcerative Colitis: A Role for Procalcitonin?. Digestion, 2017, 96, 207-212.	1.2	7
45	Medical Versus Interventional Treatment of Intra-Abdominal Abscess in Patients With Crohn Disease. Infectious Diseases: Research and Treatment, 2017, 10, 117991611770173.	0.7	7
46	Expanded Evidence for Frozen Fecal Microbiota Transplantation forClostridium difficileInfection. JAMA - Journal of the American Medical Association, 2016, 315, 137.	3.8	6
47	Probiotics for Prevention of Clostridium difficile Infection in Hospitalized Patients: Is the Jury Still Out?. Gastroenterology, 2017, 152, 1817-1819.	0.6	6
48	Systemic Inflammatory Responses in Ulcerative Colitis Patients and Clostridium difficile Infection. Digestive Diseases and Sciences, 2018, 63, 1801-1810.	1.1	6
49	Incorporating preauthorization into antimicrobial stewardship pharmacist workflow reduces Clostridioides difficile and gastrointestinal panel testing. Infection Control and Hospital Epidemiology, 2020, 41, 1136-1141.	1.0	6
50	Is Clostridium difficile infection a risk factor for subsequent bloodstream infection?. Anaerobe, 2017, 48, 27-33.	1.0	5
51	Anti-toxin antibody is not associated with recurrent Clostridium difficile infection. Anaerobe, 2021, 67, 102299.	1.0	5
52	Measuring the Impact of Clostridium difficile Infection With the NAP1 Strain on Severity and Mortality. Clinical Infectious Diseases, 2014, 59, 1193-1194.	2.9	4
53	Clostridioides difficile Enteritis in Patients Following Total Colectomy—a Rare but Genuine Clinical Entity. Open Forum Infectious Diseases, 2019, 6, ofz409.	0.4	4
54	Introduction of Procalcitonin Testing and Antibiotic Utilization for Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Infectious Diseases: Research and Treatment, 2019, 12, 117863371985262.	0.7	4

#	Article	IF	CITATIONS
55	Challenges in the Diagnosis of Clostridium difficile Infection. Gastroenterology, 2014, 146, 1820-1822.	0.6	3
56	Serum 25-hydroxyvitamin D levels are not associated with adverse outcomes in Clostridium difficile infection. Gastroenterology Insights, 2015, 7, 5979.	0.7	3
57	The Systemic Inflammatory Response to Clostridium Difficile Infection (CDI) in Patients with Ulcerative Colitis. Gastroenterology, 2017, 152, S760.	0.6	3
58	Gender Differences in Non-Toxigenic Colonization and Risk of Subsequent. , 2015, 2, .		3
59	Reply to Planche et al. Clinical Infectious Diseases, 2015, 61, 1211-1212.	2.9	2
60	Defining the black box: a narrative review of factors associated with adverse outcomes from severe <i>Clostridioides difficile</i> infection. Therapeutic Advances in Gastroenterology, 2021, 14, 175628482110481.	1.4	2
61	The Performance of Sepsis-3 Criteria to Predict Mortality among patients with hematologic malignancy and post-transplant who have Suspected Infection. Open Forum Infectious Diseases, 2021, 8, ofab529.	0.4	2
62	Su1206 New Onset Functional GI Disorders Following Fecal Microbiota Transplant for Recurrent Clostridium difficile Infection—Prevalence and Risk Factors. Gastroenterology, 2016, 150, S495.	0.6	1
63	Gastrointestinal Infectious Agents Detected by Biofire Filmarray GI PCR Panel Stool Testing in Active Inflammatory Bowel Disease are Common and are Associated with a More Benign Course of IBD. Gastroenterology, 2017, 152, S606.	0.6	1
64	177. Use of Electronic Best Practice Alert (BPA) to Reduce Inappropriate Testing for Clostridium difficile infection (CDI) at a Tertiary Care Center. Open Forum Infectious Diseases, 2018, 5, S79-S79.	0.4	1
65	2846. Perirectal Samples for Analysis of the Gut Microbiota as a Predictive Tool for Multi-drug-Resistant Organism (MDRO) Acquisition in Nursing Facility (NF) Patients. Open Forum Infectious Diseases, 2019, 6, S69-S70.	0.4	1
66	Signal Versus Noise: How to Analyze the Microbiome and Make Progress on Antimicrobial Resistance. Journal of Infectious Diseases, 2021, 223, S214-S221.	1.9	1
67	Non-steroidal anti-inflammatory drugs are not associated with increased risk of Clostridioides difficile infection: A propensity-score-matched case-control study. Anaerobe, 2021, 72, 102444.	1.0	1
68	Can prediction scores be used to identify patients at risk of Clostridioides difficile infection?. Current Opinion in Gastroenterology, 2021, Publish Ahead of Print, 7-14.	1.0	1
69	791. Evaluation of NSAID Exposure as a Risk Factor for Clostridium difficile infection: A Propensity-Score-Matched Case-Control Study. Open Forum Infectious Diseases, 2020, 7, S439-S439.	0.4	1
70	Changing Epidemiology and Control of Clostridium difficile in Older Adults. Current Translational Geriatrics and Experimental Gerontology Reports, 2013, 2, 143-150.	0.7	0
71	Serum Procalcitonin Does Not Differentiate C. difficile Infection From Active Ulcerative Colitis. American Journal of Gastroenterology, 2015, 110, S821-S822.	0.2	0
72	Treatment forClostridium difficileInfection in Adults—Reply. JAMA - Journal of the American Medical Association, 2015, 313, 1976.	3.8	0

#	Article	IF	CITATIONS
73	High-Dose Daptomycin and Mortality: The Case Is Not Yet Closed. Clinical Infectious Diseases, 2017, 65, 1426-1427.	2.9	0
74	A data-driven approach to predict daily risk of Clostridium difficile infection at two large academic health centers. Open Forum Infectious Diseases, 2017, 4, S403-S404.	0.4	0
75	P086 OVER 30% OF SYMPTOMATIC FLARES IN INFLAMMATORY BOWEL DISEASE PATIENTS ARE ASSOCIATED WITH DETECTABLE GASTROINTESTINAL INFECTIOUS AGENTS BY THE BIOFIRE GI PCR PANEL STOOL TEST. Gastroenterology, 2018, 154, S44-S45.	0.6	0
76	Identifying causes of persistent HIV viremia in adult patients at an academic medical center. SAGE Open Medicine, 2019, 7, 205031211985100.	0.7	0
77	496 Baseline and Longitudinal Microbial Changes Predict Response to Rifaximin and/or Diet Low in Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols in Irritable Bowel Syndrome. American Journal of Gastroenterology, 2019, 114, S289-S289.	0.2	0
78	2403. Clostridium difficile ribotypes and human microbiota differ in Taiwan and the United States with respect to diarrheal patients. Open Forum Infectious Diseases, 2019, 6, S829-S830.	0.4	0
79	2355. The Association Between Diagnostic Testing Method and Clostridium difficile Infection Severity. Open Forum Infectious Diseases, 2019, 6, S811-S811.	0.4	0
80	2424. Shedding of Viable Clostridiodes difficile in Patients Admitted to a Medical Intensive Care Unit. Open Forum Infectious Diseases, 2019, 6, S837-S838.	0.4	0
81	223. Predicting Mortality Among Immunocompromised Patients Who Present With Bloodstream Infection. Open Forum Infectious Diseases, 2019, 6, S130-S130.	0.4	0
82	2415. Oral Vancomycin for Secondary Prophylaxis of Clostridium difficile Infections among High-risk Patients. Open Forum Infectious Diseases, 2019, 6, S833-S834.	0.4	0
83	2409. External Validation and Comparison of Clostridioides difficile Severity Scoring Systems. Open Forum Infectious Diseases, 2019, 6, S831-S832.	0.4	0
84	3185 A Randomized Controlled Trial Comparing the Nonabsorbable Antibiotic Rifaximin vs. Dietary Intervention Low in Fermentable Sugars (FODMAP) in Irritable Bowel Syndrome. Journal of Clinical and Translational Science, 2019, 3, 31-31.	0.3	0
85	Improving Detection Rates of Giardia Using Duodenal Biopsy PCR: Is the Juice Worth the Squeeze?. Digestive Diseases and Sciences, 2020, 65, 2156-2157.	1.1	0
86	Association of Household Pets, Common Dietary Factors, and Lifestyle Factors with Clostridium difficile Infection. Digestive Diseases and Sciences, 2021, 66, 206-212.	1.1	0
87	792. Evaluation of Persistent Diarrhea and Recurrence Following Fecal Microbiota Transplantation for Recurrent <i>Clostridioides difficile</i> Infection. Open Forum Infectious Diseases, 2020, 7, S439-S440.	0.4	0
88	17. Comparative Assessment of a Machine Learning Model and Rectal Swab Surveillance to Predict Hospital Onset <i>Clostridioides difficile</i> . Open Forum Infectious Diseases, 2021, 8, S12-S12.	0.4	0