
Gaetano Burriesci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6804079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluid–structure interaction approach with smoothed particle hydrodynamics and particle–spring systems. Computer Methods in Applied Mechanics and Engineering, 2022, 392, 114728.	6.6	10
2	Standard mechanical testing is inadequate for the mechanical characterisation of shape-memory alloys: Source of errors and a new corrective approach. Materials and Design, 2022, 216, 110538.	7.0	3
3	Effect of the Alterations in Contractility and Morphology Produced by Atrial Fibrillation on the Thrombosis Potential of the Left Atrial Appendage. Frontiers in Bioengineering and Biotechnology, 2021, 9, 586041.	4.1	24
4	In silico study of the ageing effect upon aortic valves. Journal of Fluids and Structures, 2021, 103, 103258.	3.4	6
5	Experimental Validation of Enhanced Magnetic Resonance Imaging (EMRI) Using Particle Image Velocimetry (PIV). Annals of Biomedical Engineering, 2021, , 1.	2.5	2
6	Biological Equivalence of GGTA-1 Glycosyltransferase Knockout and Standard Porcine Pericardial Tissue Using 90-Day Mitral Valve Implantation in Adolescent Sheep. Cardiovascular Engineering and Technology, 2021, , 1.	1.6	2
7	Investigation of the Thermomechanical Response of Cyclically Loaded NiTi Alloys by Means of Temperature Frequency Domain Analyses. Materials, 2021, 14, 7866.	2.9	2
8	Low-Cost Fabrication of Polyvinyl Alcohol-Based Personalized Vascular Phantoms for In Vitro Hemodynamic Studies: Three Applications. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2020, 3, .	0.5	7
9	Polymeric Heart Valves. , 2020, , 1-10.		0
10	In Vitro and Ex Vivo Hemodynamic Testing of an Innovative Occluder for Paravalvular Leak After Transcather Aortic Valve Implantation. Journal of Cardiovascular Translational Research, 2019, 12, 551-559.	2.4	5
11	The neochord mitral valve repair procedure: Numerical simulation of different neochords tensioning protocols. Medical Engineering and Physics, 2019, 74, 121-128.	1.7	7
12	Sizing the aortic annulus with a robotised, commercially available soft balloon catheter: in vitro study on idealised phantoms. , 2019, , .		8
13	Incidence, predictors and cerebrovascular consequences of leaflet thrombosis after transcatheter aortic valve implantation: a systematic review and meta-analysis. European Journal of Cardio-thoracic Surgery, 2019, 56, 488-494.	1.4	42
14	A Durable Porcine Pericardial Surgical Bioprosthetic Heart Valve: a Proof of Concept. Journal of Cardiovascular Translational Research, 2019, 12, 331-337.	2.4	21
15	Does transcatheter aortic valve alignment matter?. Open Heart, 2019, 6, e001132.	2.3	12
16	In vitro assessment of pacing as therapy for aortic regurgitation. Open Heart, 2019, 6, e000976.	2.3	6
17	3D printing assisted finite element analysis for optimising the manufacturing parameters of a lumbar fusion cage. Materials and Design, 2019, 163, 107540.	7.0	40
18	Patient-Specific Aortic Phantom With Tunable Compliance. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2019, 2, .	0.5	9

GAETANO BURRIESCI

#	Article	IF	CITATIONS
19	Enhancing Magnetic Resonance Imaging With Computational Fluid Dynamics. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2019, 2, .	0.5	6
20	Haemodynamic Issues with Transcatheter Aortic Valve Implantation. , 2019, , 47-59.		0
21	Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds. Physics in Medicine and Biology, 2018, 63, 015033.	3.0	52
22	Validation and Extension of a Fluid–Structure Interaction Model of the Healthy Aortic Valve. Cardiovascular Engineering and Technology, 2018, 9, 739-751.	1.6	21
23	Computational Fluid Dynamic Analysis of the Left Atrial Appendage to Predict Thrombosis Risk. Frontiers in Cardiovascular Medicine, 2018, 5, 34.	2.4	112
24	In Vitro Hydrodynamic Assessment of a New Transcatheter Heart Valve Concept (the TRISKELE). Journal of Cardiovascular Translational Research, 2017, 10, 104-115.	2.4	28
25	Design, Analysis and Testing of a Novel Mitral Valve for Transcatheter Implantation. Annals of Biomedical Engineering, 2017, 45, 1852-1864.	2.5	14
26	Pledget-Armed Sutures Affect the Haemodynamic Performance of Biologic Aortic Valve Substitutes: A Preliminary Experimental and Computational Study. Cardiovascular Engineering and Technology, 2017, 8, 17-29.	1.6	30
27	Novel heart valve prosthesis with self-endothelialization potential made of modified polyhedral oligomeric silsesquioxane-nanocomposite material. Biointerphases, 2016, 11, 029801.	1.6	16
28	Numerical model of a valvuloplasty balloon: in vitro validation in a rapid-prototyped phantom. BioMedical Engineering OnLine, 2016, 15, 37.	2.7	6
29	Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves. New England Journal of Medicine, 2016, 374, 1590-1592.	27.0	40
30	Physiological vortices in the sinuses of Valsalva: An in vitro approach for bio-prosthetic valves. Journal of Biomechanics, 2016, 49, 2635-2643.	2.1	63
31	Transcatheter aortic valves produce unphysiological flows which may contribute to thromboembolic events: An in-vitro study. Journal of Biomechanics, 2016, 49, 4080-4089.	2.1	56
32	Physical equivalency of wild type and galactose α 1,3 galactose free porcine pericardium; a new source material for bioprosthetic heart valves. Acta Biomaterialia, 2016, 41, 204-209.	8.3	28
33	Can finite element models of ballooning procedures yield mechanical response of the cardiovascular site to overexpansion?. Journal of Biomechanics, 2016, 49, 2778-2784.	2.1	9
34	Impact of different aortic valve calcification patterns on the outcome of transcatheter aortic valve implantation: A finite element study. Journal of Biomechanics, 2016, 49, 2520-2530.	2.1	69
35	In vitro hemodynamic testing of Amplatzer plugs for paravalvular leak occlusion after transcatheter aortic valve implantation. International Journal of Cardiology, 2016, 203, 1093-1099.	1.7	13
36	A new transcatheter heart valve concept (the TRISKELE): feasibility in an acute preclinical model. EuroIntervention, 2016, 12, 901-908.	3.2	13

GAETANO BURRIESCI

#	Article	IF	CITATIONS
37	A Technical Review of Minimally Invasive Mitral Valve Replacements. Cardiovascular Engineering and Technology, 2015, 6, 174-184.	1.6	28
38	Finite Element Analysis of Transcatheter Aortic Valve Implantation in the Presence of Aortic Leaflet Calcifications. Lecture Notes in Applied and Computational Mechanics, 2015, , 101-115.	2.2	3
39	Uniaxial and buckling mechanical response of auxetic cellular tubes. Smart Materials and Structures, 2013, 22, 084008.	3.5	84
40	Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Medical Engineering and Physics, 2013, 35, 125-130.	1.7	150
41	Polymeric Heart Valves. , 2013, , 1893-1900.		0
42	Hemodynamics in the Valsalva sinuses after transcatheter aortic valve implantation (TAVI). Journal of Heart Valve Disease, 2013, 22, 688-96.	0.5	32
43	A New Generation of Aortic Valve Prosthesis: Design, Manufacture and Hydrodynamic Assessment. , 2012, , .		0
44	STRESS AND STRAIN BASED NUMERICAL SIMULATION OF MITRAL VALVE FIBRE REMODELLING. Journal of Biomechanics, 2012, 45, S147.	2.1	0
45	Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer. Journal of Biomechanics, 2012, 45, 1205-1211.	2.1	85
46	Fluid-Structure Interaction Simulation of the Edge-to-Edge Repair of the Mitral Valve in Functional and Degenerative States. , 2012, , .		0
47	Fluid–structure interaction study of the edge-to-edge repair technique on the mitral valve. Journal of Biomechanics, 2011, 44, 2409-2417.	2.1	35
48	Mitral valve dynamics in structural and fluid–structure interaction models. Medical Engineering and Physics, 2010, 32, 1057-1064.	1.7	90
49	The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: Potential material for synthetic leaflet heart valveâ~†. Acta Biomaterialia, 2010, 6, 4249-4260.	8.3	90
50	Design of a novel polymeric heart valve. Journal of Medical Engineering and Technology, 2010, 34, 7-22.	1.4	29
51	Polymeric heart valves: new materials, emerging hopes. Trends in Biotechnology, 2009, 27, 359-367.	9.3	194
52	Current developments and future prospects for heart valve replacement therapy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 290-303.	3.4	86
53	Manufacture of small calibre quadruple lamina vascular bypass grafts using a novel automated extrusion-phase-inversion method and nanocomposite polymer. Journal of Biomechanics, 2009, 42, 722-730.	2.1	46
54	A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomaterialia, 2009, 5, 2409-2417.	8.3	148

GAETANO BURRIESCI

#	Article	IF	CITATIONS
55	Adaptation and development of software simulation methodologies for cardiovascular engineering: present and future challenges from an end-user perspective. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 2655-2666.	3.4	5
56	Percutaneous Heart Valve Replacement: An Update. Trends in Cardiovascular Medicine, 2008, 18, 117-125.	4.9	15
57	An approach to the simulation of fluid–structure interaction in the aortic valve. Journal of Biomechanics, 2006, 39, 158-169.	2.1	113
58	Computer aided photoelasticity by an optimum phase stepping method. Experimental Mechanics, 2002, 42, 132-139.	2.0	49
59	Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves. Journal of Medical Engineering and Technology, 1999, 23, 203-215.	1.4	41
60	Heart Valves, Polymeric: Biocompatibility. , 0, , 3713-3721.		3
61	DATA MINING USING A SOFT ROBOTIC BALLOON CATHETER: SIZING IDEALISED AORTIC ANNULAR PHANTOMS.		0
62	Standard Mechanical Testing is Inadequate for the Mechanical Characterisation of Shape-Memory Alloys: Source of Errors and a New Corrective Approach. SSRN Electronic Journal, 0, , .	0.4	0
63	The Role of Patient-Specific Morphological Features of the Left Atrial Appendage on the Thromboembolic Risk Under Atrial Fibrillation. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	7