Xiao Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6803803/publications.pdf

Version: 2024-02-01

93 papers

2,057 citations

257450 24 h-index 302126 39 g-index

94 all docs 94 docs citations 94 times ranked 1627 citing authors

#	Article	IF	CITATIONS
1	On the role of rock matrix to heat transfer in a fracture-rock matrix system. Journal of Contaminant Hydrology, 2022, 245, 103950.	3.3	8
2	Slope reliability analysis through Bayesian sequential updating integrating limited data from multiple estimation methods. Landslides, 2022, 19, 1101-1117.	5.4	8
3	Effect of long-term saline mulched drip irrigation on soil-groundwater environment in arid Northwest China. Science of the Total Environment, 2022, 820, 153222.	8.0	10
4	Using Ensemble Data Assimilation to Estimate Transient Hydrologic Exchange Flow Under Highly Dynamic Flow Conditions. Water Resources Research, 2022, 58, .	4.2	10
5	Experimental investigation of solute transport across transition interface of porous media under reversible flow directions. Ecotoxicology and Environmental Safety, 2022, 238, 113566.	6.0	5
6	Influence of Boundary Layer on Oil Migration into Tight Reservoirs. Transport in Porous Media, 2021, 137, 87-107.	2.6	2
7	Timescale and Effectiveness of Residual Saltwater Desalinization Behind Subsurface Dams in an Unconfined Aquifer. Water Resources Research, 2021, 57, e2020WR028493.	4.2	41
8	On Change of Soil Moisture Distribution With Vegetation Reconstruction in Mu Us Sandy Land of China, With Newly Designed Lysimeter. Frontiers in Plant Science, 2021, 12, 609529.	3.6	16
9	On Inflow to a Tunnel in a Fractured Doubleâ€Porosity Aquifer. Ground Water, 2021, 59, 562-570.	1.3	8
10	Iron oxides decorated graphene oxide/chitosan composite beads for enhanced Cr(VI) removal from aqueous solution. International Journal of Biological Macromolecules, 2021, 172, 197-209.	7.5	53
11	Laboratory observations for two-dimensional solute transport in an aquifer-aquitard system. Environmental Science and Pollution Research, 2021, 28, 38664-38678.	5.3	9
12	A semianalytical solution of the modified twoâ€dimensional diffusive root growth model. Vadose Zone Journal, 2021, 20, e20132.	2.2	0
13	On Riverâ€Aquifer Exchange Flow With Irregular and Semipervious Bank. Water Resources Research, 2021, 57, e2020WR028984.	4.2	4
14	Hydraulic conductivity of soil-bentonite backfill comprised of SHMP-amended Ca-bentonite to Cr(VI)-impacted groundwater. Journal of Contaminant Hydrology, 2021, 242, 103856.	3.3	15
15	Experimental Study of the Adsorption of Nitrogen and Phosphorus by Natural Clay Minerals. Adsorption Science and Technology, 2021, 2021, .	3.2	14
16	Sorption of Monothioarsenate to the Natural Sediments and Its Competition with Arsenite and Arsenate. International Journal of Environmental Research and Public Health, 2021, 18, 12839.	2.6	2
17	Multiscale Study of Physical and Mechanical Properties of Sandstone in Three Gorges Reservoir Region Subjected to Cyclic Wetting–Drying of Yangtze River Water. Rock Mechanics and Rock Engineering, 2020, 53, 2215-2231.	5.4	65
18	Effect of randomly distributed fibre on triaxial shear behavior of loess. Bulletin of Engineering Geology and the Environment, 2020, 79, 1555-1563.	3.5	21

#	Article	IF	CITATIONS
19	Optimization Strategies for in Situ Groundwater Remediation by a Vertical Circulation Well Based on Particleâ€Tracking and Nodeâ€Dependent Finite Difference Methods. Water Resources Research, 2020, 56, e2020WR027396.	4.2	8
20	An Innovative Method to Evaluate Hydraulic Conductivity of a Single Rock Fracture Based on Geometric Characteristics. Rock Mechanics and Rock Engineering, 2020, 53, 4767-4786.	5.4	15
21	Highly efficient removal of As(III) from aqueous solutions using goethite/graphene oxide/chitosan nanocomposite. International Journal of Biological Macromolecules, 2020, 164, 13-26.	7.5	28
22	On the Origin of Deep Soil Water Infiltration in the Arid Sandy Region of China. Water (Switzerland), 2020, 12, 2409.	2.7	12
23	New Simplified Models of Singleâ€Well Pushâ€Pull Tests With Mixing Effect. Water Resources Research, 2020, 56, e2019WR026802.	4.2	11
24	The Transboundary Nature of the Allende–Piedras Negras Aquifer Using a Numerical Model Approach. Journal of the American Water Resources Association, 2020, 56, 387-408.	2.4	2
25	Resolution effect on image-based conventional and tight sandstone pore space reconstructions: Origins and strategies. Journal of Hydrology, 2020, 586, 124856.	5.4	5
26	Probabilistic multi-objective optimization for landslide reinforcement with stabilizing piles in Zigui Basin of Three Gorges Reservoir region, China. Stochastic Environmental Research and Risk Assessment, 2020, 34, 807-824.	4.0	15
27	Editorial of Special Issue "Advances in Groundwater Flow and Solute Transport: Pushing the Hidden Boundary― Water (Switzerland), 2019, 11, 457.	2.7	1
28	A Novel Unsteady Fractal Derivative Creep Model for Soft Interlayers with Varying Water Contents. KSCE Journal of Civil Engineering, 2019, 23, 5064-5075.	1.9	13
29	Pore-Scale CO ₂ Displacement Simulation Based on the Three Fluid Phase Lattice Boltzmann Method. Energy & Samp; Fuels, 2019, 33, 10039-10055.	5.1	19
30	A Mathematical Model for Determining Oil Migration Characteristics in Low-Permeability Porous Media Based on Fractal Theory. Transport in Porous Media, 2019, 129, 633-652.	2.6	10
31	New graphical methods for estimating aquifer hydraulic parameters using pumping tests with exponentially decreasing rates. Hydrological Processes, 2019, 33, 2314-2322.	2.6	13
32	Reactive Transport of Nutrients and Bioclogging During Dynamic Disconnection Process of Stream and Groundwater. Water Resources Research, 2019, 55, 3882-3903.	4.2	36
33	Upscaling of Dynamic Capillary Pressure of Twoâ€Phase Flow in Sandstone. Water Resources Research, 2019, 55, 426-443.	4.2	13
34	Underdamped slug tests with unsaturatedâ€saturated flows by considering effects of wellbore skins. Hydrological Processes, 2018, 32, 968-980.	2.6	12
35	Spatiotemporal Responses of Groundwater Flow and Aquiferâ€River Exchanges to Flood Events. Water Resources Research, 2018, 54, 1513-1532.	4.2	25
36	The Influence of Episodic Shallow Magma Degassing on Heat and Chemical Transport in Volcanic Hydrothermal Systems. Geophysical Research Letters, 2018, 45, 3068-3076.	4.0	4

#	Article	IF	Citations
37	Experimental investigation on oil migration and accumulation in tight sandstones. Journal of Petroleum Science and Engineering, 2018, 160, 267-275.	4.2	31
38	New Comparative Experiments of Different Soil Types for Farmland Water Conservation in Arid Regions. Water (Switzerland), 2018, 10, 298.	2.7	10
39	Models of Singleâ€Well Pushâ€Pull Test With Mixing Effect in the Wellbore. Water Resources Research, 2018, 54, 10,155.	4.2	19
40	The Stability of Tailings Dams under Dry-Wet Cycles: A Case Study in Luonan, China. Water (Switzerland), 2018, 10, 1048.	2.7	15
41	Assessing titanium dioxide nanoparticles transport models by Bayesian uncertainty analysis. Stochastic Environmental Research and Risk Assessment, 2018, 32, 3365-3379.	4.0	4
42	Aquifer Recharge Using a Vadose Zone Infiltration Well. Water Resources Research, 2018, 54, 8847-8863.	4.2	33
43	An Experimental Study on the Adsorption and Desorption of Cu(II) in Silty Clay. Geofluids, 2018, 2018, 1-12.	0.7	32
44	A simple method of transport parameter estimation for slug injecting tracer tests in porous media. Science of the Total Environment, 2018, 644, 1536-1546.	8.0	12
45	Reply to Comment by Roques et al. on "Base Flow Recession from Unsaturated-Saturated Porous Media considering Lateral Unsaturated Discharge and Aquifer Compressibility― Water Resources Research, 2018, 54, 3220-3222.	4.2	0
46	Investigating the Effect of the Temperature and Pressure on Wettability in Crude Oil–Brine–Rock Systems. Energy & Company: Fuels, 2018, 32, 9010-9019.	5.1	24
47	Effect of roughness on water flow through a synthetic single rough fracture. Environmental Earth Sciences, 2017, 76, 1.	2.7	28
48	Thermal effect of climate change on groundwaterâ€fed ecosystems. Water Resources Research, 2017, 53, 3341-3351.	4.2	38
49	Intrawellbore kinematic and frictional losses in a horizontal well in a bounded confined aquifer. Water Resources Research, 2017, 53, 127-141.	4.2	21
50	Asphaltene Deposition Preference and Permeability Reduction Mechanisms in Oil Reservoirs: Evidence from Combining X-ray Microtomography with Fluorescence Microscopy. Energy &	5.1	7
51	One-dimensional analytical solution for hydraulic head and numerical solution for solute transport through a horizontal fracture for submarine groundwater discharge. Journal of Contaminant Hydrology, 2017, 206, 1-9.	3.3	5
52	Base flow recession from unsaturatedâ€saturated porous media considering lateral unsaturated discharge and aquifer compressibility. Water Resources Research, 2017, 53, 7832-7852.	4.2	22
53	Fractional Models Simulating Nonâ€Fickian Behavior in Fourâ€Stage Singleâ€Well Pushâ€Pull Tests. Water Resources Research, 2017, 53, 9528-9545.	4.2	26
54	The influence of large-scale climate phenomena on precipitation in the Ordos Basin, China. Theoretical and Applied Climatology, 2017, 130, 791-805.	2.8	5

#	Article	IF	CITATIONS
55	Influence of Tight Sandstone Micro-Nano Pore-Throat Structures on Petroleum Accumulation: Evidence from Experimental Simulation Combining X-ray Tomography. Journal of Nanoscience and Nanotechnology, 2017, 17, 6459-6469.	0.9	19
56	Oil-Charging Pore-Throat Radius Threshold of Tight Reservoirs: A Comparison on Multi-Method Calculation Results. Journal of Nanoscience and Nanotechnology, 2017, 17, 6067-6076.	0.9	7
57	Effect of Roughness on Conservative Solute Transport through Synthetic Rough Single Fractures. Water (Switzerland), 2017, 9, 656.	2.7	12
58	Characteristics of Nano-Micro Pore Networks and Petroleum Microscopic Occurrence State in Ultra-Low Permeability (Tight) Sandstone Reservoir. Journal of Nanoscience and Nanotechnology, 2017, 17, 6039-6050.	0.9	22
59	Geological control factors of micro oil distribution in tight reservoirs. Marine and Petroleum Geology, 2016, 77, 1193-1205.	3.3	33
60	Experimental and theoretical characterization of the natural gas migration and accumulation mechanism in low-permeability (tight) sandstone cores. Journal of Natural Gas Science and Engineering, 2016, 33, 1308-1315.	4.4	23
61	Application of Wavelet Coherence Method to Investigate Karst Spring Discharge Response to Climate Teleconnection Patterns. Journal of the American Water Resources Association, 2016, 52, 1281-1296.	2.4	15
62	Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors. Scientific Reports, 2016, 6, 36919.	3.3	98
63	Aquitard Horizontal Dispersion on Reactive Solute Transport in an Aquifer–Aquitard System. Transport in Porous Media, 2016, 113, 695-716.	2.6	17
64	The effect of expansion ratio on the critical Reynolds number in single fracture flow with sudden expansion. Hydrological Processes, 2016, 30, 1718-1726.	2.6	23
65	Subsurface solute transport with one-, two-, and three-dimensional arbitrary shape sources. Journal of Contaminant Hydrology, 2016, 190, 44-57.	3.3	19
66	Linkages between Large-Scale Climate Patterns and Karst Spring Discharge in Northern China. Journal of Hydrometeorology, 2016, 17, 713-724.	1.9	17
67	Twoâ€dimensional flow response to tidal fluctuation in a heterogeneous aquiferâ€aquitard system. Hydrological Processes, 2015, 29, 927-935.	2.6	19
68	Numerical simulation and evaluation of groundwater resources in a fractured chalk aquifer: a case study in Zinder well field, Niger. Environmental Earth Sciences, 2014, 72, 3053-3065.	2.7	11
69	The coupled moistureâ€heat process of permafrost around a thermokarst pond in Qinghaiâ€Tibet Plateau under global warming. Journal of Geophysical Research F: Earth Surface, 2014, 119, 836-853.	2.8	64
70	Estimating groundwater recharge beneath irrigated farmland using environmental tracers fluoride, chloride and sulfate. Hydrogeology Journal, 2013, 21, 1469-1480.	2.1	39
71	Groundwater response to dual tidal fluctuations in a peninsula or an elongated island. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37, 2456-2470.	3.3	3
72	Analytical Solution to Subsurface Air Pressure in a Three-Layer Unsaturated Zone with Atmospheric Pressure Changes. Transport in Porous Media, 2012, 93, 461-474.	2.6	4

#	Article	IF	Citations
73	Determining air permeability in reclaimed coastal land based on tidal fluctuations. Environmental Earth Sciences, 2012, 66, 1259-1268.	2.7	2
74	Eddy correlations for water flow in a single fracture with abruptly changing aperture. Hydrological Processes, 2012, 26, 3369-3377.	2.6	30
75	Gas flow to a barometric pumping well in a multilayer unsaturated zone. Water Resources Research, 2011, 47, .	4.2	21
76	Analysis of models for induced gas flow in the unsaturated zone. Water Resources Research, 2011, 47, .	4.2	7
77	Applicability of the Linearized Governing Equation of Gas Flow in Porous Media. Transport in Porous Media, 2011, 87, 815-834.	2.6	7
78	Non-Darcian flow to a well in a leaky aquifer using the Forchheimer equation. Hydrogeology Journal, 2011, 19, 563-572.	2.1	30
79	Efectos del uso urbano de la tierra en la distribución de fosfatos en el agua subterránea en un acuÃfero somero, Cuenca del RÃo Nanfei, China. Hydrogeology Journal, 2011, 19, 1431-1442.	2.1	31
80	Experimental study of the effect of roughness and Reynolds number on fluid flow in roughâ€walled single fractures: a check of local cubic law. Hydrological Processes, 2011, 25, 614-622.	2.6	104
81	A new mobileâ€immobile model for reactive solute transport with scaleâ€dependent dispersion. Water Resources Research, 2010, 46, .	4.2	106
82	Analytical solution of two-dimensional solute transport in an aquifer–aquitard system. Journal of Contaminant Hydrology, 2009, 107, 162-174.	3.3	75
83	What can be learned from sequential multi-well pumping tests in fracture-karst media? A case study in Zhangji, China. Hydrogeology Journal, 2009, 17, 1749-1760.	2.1	16
84	On the origin of oil-field water in the Biyang Depression of China. Environmental Geology, 2009, 58, 1191-1196.	1.2	7
85	Oneâ€dimensional solute transport in a permeable reactive barrier–aquifer system. Water Resources Research, 2009, 45, .	4.2	13
86	An analytical solution of twoâ€dimensional reactive solute transport in an aquiferâ€aquitard system. Water Resources Research, 2009, 45, .	4.2	66
87	Fractured-karst spring-flow protections: a case study in Jinan, China. Hydrogeology Journal, 2006, 14, 1192-1205.	2.1	45
88	Aquitard effect on drawdown in water table aquifers. Water Resources Research, 2005, 41, .	4.2	16
89	Groundwater flow to a horizontal or slanted well in an unconfined aquifer. Water Resources Research, 2002, 38, 13-1-13-11.	4.2	108
90	Vapor Flow to Horizontal Wells in Unsaturated Zones. Soil Science Society of America Journal, 2002, 66, 710-721.	2.2	17

XIAO FENG

#	Article	IF	CITATIONS
91	Vapor Flow to Horizontal Wells in Unsaturated Zones. Soil Science Society of America Journal, 2002, 66, 710.	2.2	9
92	Analytical and Numerical Modeling of a Double Well Capture Zone. Mathematical Geosciences, 1999, 31, 175-193.	0.9	13
93	On the Ergodicity Hypothesis in Heterogeneous Formations. Mathematical Geosciences, 1999, 31, 113-134.	0.9	6