Jeffrey D Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/680380/publications.pdf

Version: 2024-02-01

35 1,669 17
papers citations h-index

35 35 35 2544 all docs docs citations times ranked citing authors

35

g-index

#	Article	IF	CITATIONS
1	OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science, 2017, 358, .	6.0	438
2	Nitrous oxide emissions are enhanced in a warmer and wetter world. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12081-12085.	3.3	155
3	Sunâ€induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytologist, 2019, 223, 1179-1191.	3.5	154
4	Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 2021, 301-302, 108350.	1.9	125
5	Multiscale analyses of solarâ€induced florescence and gross primary production. Geophysical Research Letters, 2017, 44, 533-541.	1.5	98
6	Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3031-3046.	1.3	91
7	Detecting forest response to droughts with global observations of vegetation water content. Global Change Biology, 2021, 27, 6005-6024.	4.2	73
8	Silage effluent management: A review. Journal of Environmental Management, 2014, 143, 113-122.	3.8	54
9	Advancing Terrestrial Ecosystem Science With a Novel Automated Measurement System for Sunâ€Induced Chlorophyll Fluorescence for Integration With Eddy Covariance Flux Networks. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 127-146.	1.3	48
10	Confronting the water potential information gap. Nature Geoscience, 2022, 15, 158-164.	5.4	47
11	The importance of drought–pathogen interactions in driving oak mortality events in the Ozark Border Region. Environmental Research Letters, 2018, 13, 015004.	2.2	36
12	Unpacking the drivers of diurnal dynamics of sun-induced chlorophyll fluorescence (SIF): Canopy structure, plant physiology, instrument configuration and retrieval methods. Remote Sensing of Environment, 2021, 265, 112672.	4.6	33
13	Partitioning N ₂ O emissions within the U.S. Corn Belt using an inverse modeling approach. Global Biogeochemical Cycles, 2016, 30, 1192-1205.	1.9	32
14	Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer. Atmospheric Chemistry and Physics, 2016, 16, 5139-5157.	1.9	29
15	Hydrometeorological sensitivities of net ecosystem carbon dioxide and methane exchange of an Amazonian palm swamp peatland. Agricultural and Forest Meteorology, 2020, 295, 108167.	1.9	25
16	Biases in discrete CH4 and N2O sampling protocols associated with temporal variation of gas fluxes from manure storage systems. Agricultural and Forest Meteorology, 2013, 171-172, 295-305.	1.9	24
17	A long term assessment of phosphorus treatment by a constructed wetland receiving dairy wastewater. Wetlands, 2008, 28, 715-723.	0.7	20
18	Source Partitioning of Methane Emissions and its Seasonality in the U.S. Midwest. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 646-659.	1.3	18

#	Article	IF	Citations
19	Tracking Seasonal and Interannual Variability in Photosynthetic Downregulation in Response to Water Stress at a Temperate Deciduous Forest. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2018JG005002.	1.3	17
20	Error characterization of methane fluxes and budgets derived from a long-term comparison of openand closed-path eddy covariance systems. Agricultural and Forest Meteorology, 2019, 278, 107638.	1.9	16
21	Monitoring agroecosystem productivity and phenology at a national scale: A metric assessment framework. Ecological Indicators, 2021, 131, 108147.	2.6	16
22	Testing stomatal models at the stand level in deciduous angiosperm and evergreen gymnosperm forests using CliMA Land (v0.1). Geoscientific Model Development, 2021, 14, 6741-6763.	1.3	16
23	Seasonality in aerodynamic resistance across a range of North American ecosystems. Agricultural and Forest Meteorology, 2021, 310, 108613.	1.9	14
24	Eastern US deciduous tree species respond dissimilarly to declining soil moisture but similarly to rising evaporative demand. Tree Physiology, 2021, 41, 944-959.	1.4	12
25	Tall Tower Ammonia Observations and Emission Estimates in the U.S. Midwest. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3432-3447.	1.3	10
26	The xylem of anisohydric <i>Quercus alba</i> L. is more vulnerable to embolism than isohydric codominants. Plant, Cell and Environment, 2022, 45, 329-346.	2.8	10
27	Microbial Activity and Root Carbon Inputs Are More Important than Soil Carbon Diffusion in Simulating Soil Carbon Profiles. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006205.	1.3	9
28	The Drought Response of Eastern US Oaks in the Context of Their Declining Abundance. BioScience, 2022, 72, 333-346.	2.2	9
29	Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements. Geoscientific Model Development, 2019, 12, 1601-1612.	1.3	7
30	Modeling the Sources and Transport Processes During Extreme Ammonia Episodes in the U.S. Corn Belt. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031207.	1.2	7
31	Topâ€Down Constraints on Methane Point Source Emissions From Animal Agriculture and Waste Based on New Airborne Measurements in the U.S. Upper Midwest. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005429.	1.3	7
32	Differential Organic Carbon Mineralization Responses to Soil Moisture in Three Different Soil Orders Under Mixed Forested System. Frontiers in Environmental Science, 2021, 9, .	1.5	7
33	Landâ€Atmosphere Responses to a Total Solar Eclipse in Three Ecosystems With Contrasting Structure and Physiology. Journal of Geophysical Research D: Atmospheres, 2019, 124, 530-543.	1.2	5
34	A Multiyear Constraint on Ammonia Emissions and Deposition Within the US Corn Belt. Geophysical Research Letters, 2021, 48, e2020GL090865.	1.5	4
35	Intensified Soil Moisture Extremes Decrease Soil Organic Carbon Decomposition: A Mechanistic Modeling Analysis. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006392.	1.3	3