List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6803782/publications.pdf Version: 2024-02-01

HONCIUN CHEN

#	Article	lF	CITATIONS
1	Si:WO ₃ Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Analytical Chemistry, 2010, 82, 3581-3587.	3.2	556
2	Semiconductor Gas Sensors: Dry Synthesis and Application. Angewandte Chemie - International Edition, 2010, 49, 7632-7659.	7.2	474
3	Stable Hematite Nanosheet Photoanodes for Enhanced Photoelectrochemical Water Splitting. Advanced Materials, 2016, 28, 6405-6410.	11.1	275
4	Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes–chitosan composite. Biosensors and Bioelectronics, 2006, 21, 2195-2201.	5.3	269
5	Breath acetone monitoring by portable Si:WO3 gas sensors. Analytica Chimica Acta, 2012, 738, 69-75.	2.6	256
6	Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Advanced Functional Materials, 2017, 27, 1605271.	7.8	247
7	Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy, 2016, 24, 94-102.	8.2	243
8	Ultraporous Electronâ€Depleted ZnO Nanoparticle Networks for Highly Sensitive Portable Visibleâ€Blind UV Photodetectors. Advanced Materials, 2015, 27, 4336-4343.	11.1	222
9	Optimal Doping for Enhanced SnO ₂ Sensitivity and Thermal Stability. Advanced Functional Materials, 2008, 18, 1969-1976.	7.8	193
10	Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol–gel-derived ceramic–carbon nanotube nanocomposite film. Biosensors and Bioelectronics, 2007, 22, 1811-1815.	5.3	179
11	2D Porous TiO ₂ Singleâ€Crystalline Nanostructure Demonstrating High Photoâ€Electrochemical Water Splitting Performance. Advanced Materials, 2018, 30, e1705666.	11.1	176
12	Anti-Fogging Nanofibrous SiO ₂ and Nanostructured SiO ₂ â^'TiO ₂ Films Made by Rapid Flame Deposition and In Situ Annealing. Langmuir, 2009, 25, 12578-12584.	1.6	146
13	Two-dimensional g-C3N4/Ca2Nb2TaO10 nanosheet composites for efficient visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2017, 202, 184-190.	10.8	143
14	One-step preparation and characterization of PDDA-protected gold nanoparticles. Polymer, 2006, 47, 763-766.	1.8	137
15	Micropatterning Layers by Flame Aerosol Depositionâ€Annealing. Advanced Materials, 2008, 20, 3005-3010.	11.1	130
16	Toward portable breath acetone analysis for diabetes detection. Journal of Breath Research, 2011, 5, 037109.	1.5	116
17	Metal–Organic Frameworks/Conducting Polymer Hydrogel Integrated Three-Dimensional Free-Standing Monoliths as Ultrahigh Loading Li–S Battery Electrodes. Nano Letters, 2019, 19, 4391-4399.	4.5	115
18	Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in Nafion-RTIL composite film. Electrochemistry Communications, 2007, 9, 469-474.	2.3	110

#	Article	IF	CITATIONS
19	Synthesis of Palladium Nanoparticles and Their Applications for Surface-Enhanced Raman Scattering and Electrocatalysis. Journal of Physical Chemistry C, 2010, 114, 21976-21981.	1.5	109
20	Dispersed nanoelectrode devices. Nature Nanotechnology, 2010, 5, 54-60.	15.6	107
21	Minimal cross-sensitivity to humidity during ethanol detection by SnO ₂ –TiO ₂ solid solutions. Nanotechnology, 2009, 20, 315502.	1.3	106
22	Omnidirectional Self-Assembly of Transparent Superoleophobic Nanotextures. ACS Nano, 2017, 11, 587-596.	7.3	104
23	Nanostructured βâ€Bi ₂ O ₃ Fractals on Carbon Fibers for Highly Selective CO ₂ Electroreduction to Formate. Advanced Functional Materials, 2020, 30, 1906478.	7.8	104
24	Hybrid Organic–Inorganic Materials and Composites for Photoelectrochemical Water Splitting. ACS Energy Letters, 2020, 5, 1487-1497.	8.8	104
25	Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass. Journal of Chemical Physics, 2006, 124, 074709.	1.2	99
26	Nanostructure sensitization of transition metal oxides for visible-light photocatalysis. Beilstein Journal of Nanotechnology, 2014, 5, 696-710.	1.5	92
27	Transition from the Tetragonal to Cubic Phase of Organohalide Perovskite: The Role of Chlorine in Crystal Formation of CH ₃ NH ₃ Pbl ₃ on TiO ₂ Substrates. Journal of Physical Chemistry Letters, 2015, 6, 4379-4384.	2.1	91
28	Alternate Assemblies of Platinum Nanoparticles and Metalloporphyrins as Tunable Electrocatalysts for Dioxygen Reduction. Langmuir, 2005, 21, 323-329.	1.6	86
29	Enhanced resonance light scattering based on biocatalytic growth of gold nanoparticles for biosensors design. Biosensors and Bioelectronics, 2008, 23, 1180-1184.	5.3	83
30	Three-dimensional nano-heterojunction networks: a highly performing structure for fast visible-blind UV photodetectors. Nanoscale, 2017, 9, 2059-2067.	2.8	82
31	Superior Selfâ€Powered Roomâ€Temperature Chemical Sensing with Lightâ€Activated Inorganic Halides Perovskites. Small, 2018, 14, 1702571.	5.2	82
32	An Integrated Photoelectrochemical–Chemical Loop for Solarâ€Driven Overall Splitting of Hydrogen Sulfide. Angewandte Chemie - International Edition, 2014, 53, 4399-4403.	7.2	79
33	An Effective Hydrothermal Route for the Synthesis of Multiple PDDA-Protected Noble-Metal Nanostructures. Inorganic Chemistry, 2007, 46, 10587-10593.	1.9	78
34	Direct electron transfer and electrocatalysis of microperoxidase immobilized on nanohybrid film. Journal of Electroanalytical Chemistry, 2005, 581, 1-10.	1.9	73
35	Biopolymer and Carbon Nanotubes Interface Prepared by Self-Assembly for Studying the Electrochemistry of Microperoxidase-11. Langmuir, 2005, 21, 10808-10813.	1.6	72
36	Multilayer structured carbon nanotubes/poly-l-lysine/laccase composite cathode for glucose/O2 biofuel cell. Electrochemistry Communications, 2008, 10, 1012-1015.	2.3	72

#	Article	IF	CITATIONS
37	Engineering of SnO ₂ –Graphene Oxide Nanoheterojunctions for Selective Room-Temperature Chemical Sensing and Optoelectronic Devices. ACS Applied Materials & Interfaces, 2020, 12, 39549-39560.	4.0	72
38	A hybrid photoelectrode with plasmonic Au@TiO ₂ nanoparticles for enhanced photoelectrochemical water splitting. Journal of Materials Chemistry A, 2015, 3, 20127-20133.	5.2	68
39	A biofuel cell with enhanced performance by multilayer biocatalyst immobilized on highly ordered macroporous electrode. Biosensors and Bioelectronics, 2008, 24, 329-333.	5.3	66
40	Facile fabrication of large area of aggregated gold nanorods film for efficient surface-enhanced Raman scattering. Journal of Colloid and Interface Science, 2008, 318, 82-87.	5.0	63
41	Highly porous TiO2 films for dye sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 14254.	6.7	63
42	Low-Voltage High-Performance UV Photodetectors: An Interplay between Grain Boundaries and Debye Length. ACS Applied Materials & Interfaces, 2017, 9, 2606-2615.	4.0	62
43	Self-Assembly of TGA-Capped CdTe Nanocrystals into Three-Dimensional Luminescent Nanostructures. Chemistry of Materials, 2010, 22, 2309-2314.	3.2	58
44	Enhanced performance of dye-sensitized solar cells by doping Au nanoparticles into photoanodes: a size effect study. Journal of Materials Chemistry A, 2013, 1, 13524.	5.2	58
45	Switched photocurrent direction in Au/TiO2 bilayer thin films. Scientific Reports, 2015, 5, 10852.	1.6	58
46	Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell. Energy and Environmental Science, 2014, 7, 3347-3351.	15.6	57
47	Nanoarchitechtonics of Visibleâ€Blind Ultraviolet Photodetector Materials: Critical Features and Nanoâ€Microfabrication. Advanced Optical Materials, 2019, 7, 1800580.	3.6	57
48	Understanding the activity and stability of flame-made Co3O4 spinels: A route towards the scalable production of highly performing OER electrocatalysts. Chemical Engineering Journal, 2022, 429, 132180.	6.6	56
49	Copper hexacyanoferrate multilayer films on glassy carbon electrode modified with 4-aminobenzoic acid in aqueous solution. Talanta, 2006, 68, 741-747.	2.9	55
50	Surface-enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors. Journal of Chemical Physics, 2006, 125, 044710.	1.2	55
51	NiO–ZnO Nanoheterojunction Networks for Roomâ€Temperature Volatile Organic Compounds Sensing. Advanced Optical Materials, 2018, 6, 1800677.	3.6	54
52	Understanding the Role of Vanadium Vacancies in BiVO ₄ for Efficient Photoelectrochemical Water Oxidation. Chemistry of Materials, 2021, 33, 3553-3565.	3.2	54
53	Room-temperature photodetectors and VOC sensors based on graphene oxide–ZnO nano-heterojunctions. Nanoscale, 2019, 11, 22932-22945.	2.8	51
54	Tunable Band‣elective UVâ€Photodetectors by 3D Selfâ€Assembly of Heterogeneous Nanoparticle Networks. Advanced Functional Materials, 2016, 26, 7359-7366.	7.8	50

#	Article	IF	CITATIONS
55	Miniaturized Bio-and Chemical-Sensors for Point-of-Care Monitoring of Chronic Kidney Diseases. Sensors, 2018, 18, 942.	2.1	49
56	Enhancement of the photoelectrochemical water splitting by perovskite BiFeO3 via interfacial engineering. Solar Energy, 2020, 202, 198-203.	2.9	49
57	Flame spray pyrolysis synthesis and aerosol deposition of nanoparticle films. AICHE Journal, 2012, 58, 3578-3588.	1.8	47
58	Nanostructured Dielectric Fractals on Resonant Plasmonic Metasurfaces for Selective and Sensitive Optical Sensing of Volatile Compounds. Advanced Materials, 2018, 30, e1800931.	11.1	47
59	Self-assembly of Au nano-islands with tuneable organized disorder for highly sensitive SERS. Journal of Materials Chemistry C, 2019, 7, 6308-6316.	2.7	47
60	Designed Nanostructured Pt Film for Electrocatalytic Activities by Underpotential Deposition Combined Chemical Replacement Techniques. Journal of Physical Chemistry B, 2005, 109, 15264-15271.	1.2	45
61	Self-assembly dynamics and accumulation mechanisms of ultra-fine nanoparticles. Nanoscale, 2015, 7, 9859-9867.	2.8	45
62	Large-Scale Synthesis of Micrometer-Sized Silver Nanosheets. Journal of Physical Chemistry C, 2010, 114, 4495-4501.	1.5	44
63	Robust Subâ€Monolayers of Co ₃ O ₄ Nanoâ€Islands: A Highly Transparent Morphology for Efficient Water Oxidation Catalysis. Advanced Energy Materials, 2016, 6, 1600697.	10.2	44
64	A Review of Metal―and Metalâ€Oxideâ€Based Heterogeneous Catalysts for Electroreduction of Carbon Dioxide. Advanced Sustainable Systems, 2018, 2, 1800028.	2.7	44
65	Unconventional direct synthesis of Ni ₃ N/Ni with N-vacancies for efficient and stable hydrogen evolution. Energy and Environmental Science, 2022, 15, 185-195.	15.6	44
66	Self-Assembly of Ionic Liquids-Stabilized Pt Nanoparticles into Two-Dimensional Patterned Nanostructures at the Airâ^'Water Interface. Langmuir, 2007, 23, 12503-12507.	1.6	43
67	Integrating Lowâ€Cost Earthâ€Abundant Coâ€Catalysts with Encapsulated Perovskite Solar Cells for Efficient and Stable Overall Solar Water Splitting. Advanced Functional Materials, 2021, 31, 2008245.	7.8	43
68	Ultra-rapid synthesis of highly porous and robust hierarchical ZnO films for dye sensitized solar cells. Solar Energy, 2016, 136, 553-559.	2.9	42
69	Structural Engineering of Nanoâ€Grain Boundaries for Lowâ€Voltage UVâ€Photodetectors with Gigantic Photo―to Darkâ€Current Ratios. Advanced Optical Materials, 2016, 4, 1787-1795.	3.6	42
70	One-Step Synthesis of Porous Transparent Conductive Oxides by Hierarchical Self-Assembly of Aluminum-Doped ZnO Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 9589-9599.	4.0	41
71	P-type Charge Transport and Selective Gas Sensing of All-Inorganic Perovskite Nanocrystals. , 2020, 2, 1368-1374.		40
72	Control of organic–inorganic halide perovskites in solid-state solar cells: a perspective. Science Bulletin, 2015, 60, 405-418.	4.3	39

#	Article	IF	CITATIONS
73	Filtration of nanoparticles: Evolution of cake structure and pressure-drop. Journal of Aerosol Science, 2009, 40, 965-981.	1.8	38
74	Bifunctional photoelectrochemical process for humic acid degradation and hydrogen production using multi-layered p-type Cu2O photoelectrodes with plasmonic Au@TiO2. Journal of Hazardous Materials, 2021, 402, 123533.	6.5	37
75	Fabrication and characterization of SERS-active silver clusters on glassy carbon. Journal of Raman Spectroscopy, 2007, 38, 515-521.	1.2	36
76	Electrochemical Preparation of Silver Nanostructure on the Planar Surface for Application in Metal-Enhanced Fluorescence. Journal of Physical Chemistry C, 2007, 111, 10780-10784.	1.5	35
77	Solar Rechargeable Batteries Based on Lead–Organohalide Electrolyte. Advanced Energy Materials, 2015, 5, 1501418.	10.2	35
78	Selfâ€assembled silver nanoparticle monolayer on glassy carbon: an approach to SERS substrate. Journal of Raman Spectroscopy, 2007, 38, 1444-1448.	1.2	33
79	Hierarchical Metalâ€Organic Framework Films with Controllable Meso/Macroporosity. Advanced Science, 2020, 7, 2002368.	5.6	32
80	An approach for synthesizing nanometer- to micrometer-sized silver nanoplates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 303, 226-234.	2.3	31
81	Ultrasonically Assisted Synthesis of 3D Hierarchical Silver Microstructures. Journal of Physical Chemistry C, 2009, 113, 19258-19262.	1.5	31
82	One‣tep Rapid and Scalable Flame Synthesis of Efficient WO ₃ Photoanodes for Water Splitting. ChemPlusChem, 2018, 83, 569-576.	1.3	31
83	Generalized Platform for Antibody Detection using the Antibody Catalyzed Water Oxidation Pathway. Journal of the American Chemical Society, 2014, 136, 1879-1883.	6.6	30
84	Scalable Synthesis of Efficient Water Oxidation Catalysts: Insights into the Activity of Flameâ€Made Manganese Oxide Nanocrystals. ChemSusChem, 2015, 8, 4162-4171.	3.6	30
85	Non-Periodic Epsilon-Near-Zero Metamaterials at Visible Wavelengths for Efficient Non-Resonant Optical Sensing. Nano Letters, 2020, 20, 3970-3977.	4.5	30
86	Ultraporous superhydrophobic gas-permeable nano-layers by scalable solvent-free one-step self-assembly. Nanoscale, 2016, 8, 6085-6093.	2.8	29
87	Tuning the morphology and structure of disordered hematite photoanodes for improved water oxidation:ÂA physical and chemical synergistic approach. Nano Energy, 2018, 53, 745-752.	8.2	29
88	Surface Functionalization and Texturing of Optical Metasurfaces for Sensing Applications. Chemical Reviews, 2022, 122, 14990-15030.	23.0	29
89	Photonic Fractal Metamaterials: A Metal–Semiconductor Platform with Enhanced Volatileâ€Compound Sensing Performance. Advanced Materials, 2020, 32, e2002471.	11.1	27
90	Superior Selfâ€Charged and â€Powered Chemical Sensing with High Performance for NO ₂ Detection at Room Temperature. Advanced Optical Materials, 2020, 8, 1901863.	3.6	27

#	Article	IF	CITATIONS
91	An approach for fabricating self-assembled monolayer of Ag nanoparticles on gold as the SERS-active substrate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 64, 343-348.	2.0	26
92	Facile fabrication of gold nanoparticle arrays for efficient surface-enhanced Raman scattering. Nanotechnology, 2008, 19, 105604.	1.3	26
93	Flame aerosol deposition of Y ₂ O ₃ :Eu nanophosphor screens and their photoluminescent performance. Nanotechnology, 2010, 21, 225603.	1.3	26
94	Flame spray pyrolysis for the one-step fabrication of transition metal oxide films: Recent progress in electrochemical and photoelectrochemical water splitting. Chinese Chemical Letters, 2020, 31, 601-604.	4.8	26
95	Multifunctional nanostructures of Au–Bi ₂ O ₃ fractals for CO ₂ reduction and optical sensing. Journal of Materials Chemistry A, 2020, 8, 11233-11245.	5.2	25
96	Scalable flame synthesis of SiO ₂ nanowires: dynamics of growth. Nanotechnology, 2010, 21, 465604.	1.3	24
97	Wavelength-switchable photocurrent in a hybrid TiO ₂ –Ag nanocluster photoelectrode. Chemical Communications, 2015, 51, 12072-12075.	2.2	24
98	Electrochemical surface plasmon resonance detection of enzymatic reaction in bilayer lipid membranes. Talanta, 2008, 75, 666-670.	2.9	23
99	Ultra-Porous Nanoparticle Networks: A Biomimetic Coating Morphology for Enhanced Cellular Response and Infiltration. Scientific Reports, 2016, 6, 24305.	1.6	23
100	Light-activated inorganic CsPbBr ₂ 1 perovskite for room-temperature self-powered chemical sensing. Physical Chemistry Chemical Physics, 2019, 21, 24187-24193.	1.3	23
101	Highâ€Temperature Oneâ€Step Synthesis of Efficient Nanostructured Bismuth Vanadate Photoanodes for Water Oxidation. Energy Technology, 2019, 7, 1801052.	1.8	23
102	A method to construct polyelectrolyte multilayers film containing gold nanoparticles. Talanta, 2007, 71, 1752-1756.	2.9	21
103	Optimally Hierarchical Nanostructured Hydroxyapatite Coatings for Superior Prosthesis Biointegration. ACS Applied Materials & Interfaces, 2018, 10, 24840-24849.	4.0	20
104	Photochemical formation of silver and gold nanostructures at the air–water interface and their electrocatalytic properties. Nanotechnology, 2007, 18, 245601.	1.3	19
105	Assembly process of CuHCF/MPA multilayers on gold nanoparticles modified electrode and characterization by electrochemical SPR. Journal of Electroanalytical Chemistry, 2007, 600, 265-274.	1.9	18
106	Synthesis of different gold nanostructures by solar radiation and their SERS spectroscopy. Journal of Raman Spectroscopy, 2009, 40, 1188-1193.	1.2	18
107	Switched Photocurrent on Tin Sulfideâ€Based Nanoplate Photoelectrodes. ChemSusChem, 2017, 10, 670-674.	3.6	18
108	Tuning the selectivity of highly sensitive chemiresistive nanoparticle networks by encapsulation with metal–organic frameworks. Journal of Materials Chemistry C, 2021, 9, 17331-17340.	2.7	17

#	Article	IF	CITATIONS
109	Highâ€Temperature Largeâ€6cale Selfâ€Assembly of Highly Faceted Monocrystalline Au Metasurfaces. Advanced Functional Materials, 2019, 29, 1806387.	7.8	16
110	Direct Electrochemistry of Cytochrome c at Gold Electrode Modified with Fumed Silica. Electroanalysis, 2005, 17, 1801-1805.	1.5	15
111	Structure and Identity of 4,4â€~-Thiobisbenzenethiol Self-Assembled Monolayers. Journal of Physical Chemistry B, 2006, 110, 20418-20425.	1.2	15
112	Spontaneous Formation of Two-Dimensional Gold Networks at the Airâ^'Water Interface and Their Application in Surface-Enhanced Raman Scattering (SERS). Crystal Growth and Design, 2007, 7, 1771-1776.	1.4	14
113	Assembly of 12-tungstosilicic acid and 4-aminobenzo-15-crown-5 ether based on the electrostatic attraction through bridging of oxonium ions on different substrates. Journal of Electroanalytical Chemistry, 2007, 600, 318-324.	1.9	14
114	Dualâ€lon Flux Management for Stable High Areal Capacity Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	14
115	Nanomaterials-based UV photodetectors. , 2019, , 123-149.		12
116	Self-assembly of noble metal-free graphene–copper plasmonic metasurfaces. Journal of Materials Chemistry C, 2020, 8, 11896-11905.	2.7	12
117	Mixed-dimensional organic–inorganic metal halide perovskite (OIMHP) based gas sensors with superior stability for NO ₂ detection. Materials Advances, 2022, 3, 1263-1271.	2.6	12
118	From Stochastic Selfâ€Assembly of Nanoparticles to Nanostructured (Photo)Electrocatalysts for Renewable Powerâ€ŧoâ€X Applications via Scalable Flame Synthesis. Advanced Functional Materials, 2022, 32, .	7.8	12
119	Flame-made ultra-porous TiO ₂ layers for perovskite solar cells. Nanotechnology, 2016, 27, 505403.	1.3	11
120	Surface‣tructured Cocatalyst Foils Unraveling a Pathway to Highâ€Performance Solar Water Splitting. Advanced Energy Materials, 2022, 12, 2102752.	10.2	11
121	When Less Gold is More: Selective Attomolar Biosensing at the Nanoscale. Advanced Functional Materials, 2022, 32, .	7.8	11
122	Bio-Inspired Synthesis of Silver Nanoparticles: Anticancer Drug Carrier, Catalytic and Bactericidal Potential. Nanoscience and Nanotechnology Letters, 2018, 10, 889-899.	0.4	10
123	Adsorption of 4,4′â€ŧhiobisbenzenethiol on silver surfaces: surfaceâ€enhanced Raman scattering study. Journal of Raman Spectroscopy, 2008, 39, 389-394.	1.2	9
124	Polymer Brushes as Functional, Patterned Surfaces for Nanobiotechnology. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 53-56.	0.1	9
125	In Situ Fabrication of Noble Metal Nanoparticles Modified Multiwalled Carbon Nanotubes and Related Electrocatalysis. Electroanalysis, 2008, 20, 2410-2415.	1.5	8
126	Insight into the liquid state of organo-lead halide perovskites and their new roles in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 10355.	5.2	8

#	Article	IF	CITATIONS
127	Abnormal Cathodic Photocurrent Generated on an nâ€Type FeOOH Nanorodâ€Array Photoelectrode. Chemistry - A European Journal, 2016, 22, 4802-4808.	1.7	6
128	Nanoparticle-based biomedical sensors. Frontiers of Nanoscience, 2020, 15, 247-269.	0.3	6
129	Engineering Fractal Photonic Metamaterials by Stochastic Selfâ€Assembly of Nanoparticles. Advanced Photonics Research, 2021, 2, 2100020.	1.7	6
130	Direct Electrochemistry and Electrocatalysis of Hemoglobin in Lipid Film Incorporated with Room‶emperature Ionic Liquid. Electroanalysis, 2008, 20, 2171-2176.	1.5	5
131	Paperâ€Like Writable Nanoparticle Network Sheets for Maskâ€Less MOF Patterning. Advanced Functional Materials, 2022, 32, .	7.8	5
132	Integration of Earthâ€Abundant Catalysts on Si Solar Cells for Overall Solar Hydrogen Production. Advanced Energy and Sustainability Research, 2021, 2, 2100012.	2.8	3
133	Advances in Wearable Sensing Technologies and Their Impact for Personalized and Preventive Medicine. , 0, , .		2
134	Disclosing the Sensitivity and Selectivity of Metal Oxide/Graphene Oxide-Based Chemoresistors towards VOCs. Engineering Proceedings, 2021, 6, .	0.4	1
135	Ultrasensitive room-temperature chemical sensors by Ag-decorated ultraporous ZnO nanoparticle networks. , 2019, , .		0
136	Flame assisted synthesis of nanostructures for device applications. Advances in Physics: X, 2022, 7, .	1.5	0