Christoph Scheiermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6803482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dendritic Cells Direct Circadian Antiâ€Tumor Immune Response. FASEB Journal, 2022, 36, .	0.2	Ο
2	Timeâ€ofâ€Day Influence on Central Nervous System Autoimmunity. FASEB Journal, 2022, 36, .	0.2	0
3	Benefit of Circadian Clocks in Adaptive Immunity And Vaccination Responses. FASEB Journal, 2022, 36, .	0.2	0
4	The circadian immune system. Science Immunology, 2022, 7, .	5.6	60
5	IFN-γ–dependent tumor-antigen cross-presentation by lymphatic endothelial cells promotes their killing by T cells and inhibits metastasis. Science Advances, 2022, 8, .	4.7	20
6	Control of lymph node activity by direct local innervation. Trends in Neurosciences, 2022, , .	4.2	7
7	Peripheral neurotransmitters in the immune system. Current Opinion in Physiology, 2021, 19, 73-79.	0.9	18
8	Macroautophagy in lymphatic endothelial cells inhibits T cell–mediated autoimmunity. Journal of Experimental Medicine, 2021, 218, .	4.2	21
9	MHC Class II Antigen Presentation by Lymphatic Endothelial Cells in Tumors Promotes Intratumoral Regulatory T cell–Suppressive Functions. Cancer Immunology Research, 2021, 9, 748-764.	1.6	30
10	Loss of direct adrenergic innervation after peripheral nerve injury causes lymph node expansion through IFN-γ. Journal of Experimental Medicine, 2021, 218, .	4.2	14
11	Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis. European Heart Journal, 2021, 42, 4077-4088.	1.0	58
12	Binding of Rap1 and Riam to Talin1 Fine-Tune β2 Integrin Activity During Leukocyte Trafficking. Frontiers in Immunology, 2021, 12, 702345.	2.2	13
13	Timing vaccination against SARS-CoV-2. Cell Research, 2021, 31, 1146-1147.	5.7	4
14	Ex Vivo Whole-Mount Imaging of Leukocyte Migration to the Bone Marrow. Methods in Molecular Biology, 2021, 2308, 139-150.	0.4	0
15	Paul S. Frenette (1965–2021). Nature Cell Biology, 2021, 23, 1049-1050.	4.6	0
16	Circadian clocks guide dendritic cells into skin lymphatics. Nature Immunology, 2021, 22, 1375-1381.	7.0	47
17	Editorial: Circadian Control of Immunity. Frontiers in Immunology, 2020, 11, 618843.	2.2	4
18	Neutrophils Recirculate through Lymph Nodes to Survey Tissues for Pathogens. Journal of Immunology, 2020, 204, 2552-2561.	0.4	36

#	Article	IF	CITATIONS
19	Molecular Interactions Between Components of the Circadian Clock and the Immune System. Journal of Molecular Biology, 2020, 432, 3700-3713.	2.0	96
20	Artery-Associated Sympathetic Innervation Drives Rhythmic Vascular Inflammation of Arteries and Veins. Circulation, 2019, 140, 1100-1114.	1.6	37
21	Time-of-Day-Dependent Trafficking and Function of Leukocyte Subsets. Trends in Immunology, 2019, 40, 524-537.	2.9	101
22	Clocking in to immunity. Nature Reviews Immunology, 2018, 18, 423-437.	10.6	346
23	Circadian Expression of Migratory Factors Establishes Lineage-Specific Signatures that Guide the Homing of Leukocyte Subsets to Tissues. Immunity, 2018, 49, 1175-1190.e7.	6.6	141
24	Chrono-pharmacological Targeting of the CCL2-CCR2 Axis Ameliorates Atherosclerosis. Cell Metabolism, 2018, 28, 175-182.e5.	7.2	139
25	Control of Leukocyte Trafficking by Stress-Associated Hormones. Frontiers in Immunology, 2018, 9, 3143.	2.2	82
26	Differential requirement of kindlin-3 for T cell progenitor homing to the non-vascularized and vascularized thymus. ELife, 2018, 7, .	2.8	11
27	Lymphocyte Circadian Clocks Control Lymph Node Trafficking and Adaptive Immune Responses. Immunity, 2017, 46, 120-132.	6.6	324
28	The timeâ€ofâ€day of myocardial infarction onset affects healing through oscillations in cardiac neutrophil recruitment. EMBO Molecular Medicine, 2016, 8, 937-948.	3.3	115
29	Rac signal adaptation controls neutrophil mobilization from the bone marrow. Science Signaling, 2016, 9, ra124.	1.6	14
30	Cathepsin G Controls Arterial But Not Venular Myeloid Cell Recruitment. Circulation, 2016, 134, 1176-1188.	1.6	54
31	Regulation of Immunity by the Circadian Clock. , 2016, , 251-266.		2
32	Recruitment of classical monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5. Science Translational Medicine, 2015, 7, 317ra196.	5.8	90
33	Regulation of leucocyte homeostasis in the circulation. Cardiovascular Research, 2015, 107, 340-351.	1.8	79
34	Neutrophil ageing is regulated by the microbiome. Nature, 2015, 525, 528-532.	13.7	627
35	Circadian rhythms in leukocyte trafficking. Seminars in Immunopathology, 2014, 36, 149-62.	2.8	30
36	Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nature Medicine, 2014, 20, 1315-1320.	15.2	483

#	Article	IF	CITATIONS
37	Peri-vascular megakaryocytes restrain hematopoietic stem cell proliferation. Experimental Hematology, 2013, 41, S12.	0.2	0
38	Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 2013, 502, 637-643.	13.7	1,002
39	Mesenchymal Stem Cell: Keystone of the Hematopoietic Stem Cell Niche and a Stepping-Stone for Regenerative Medicine. Annual Review of Immunology, 2013, 31, 285-316.	9.5	381
40	Circadian control of the immune system. Nature Reviews Immunology, 2013, 13, 190-198.	10.6	782
41	Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nature Medicine, 2013, 19, 695-703.	15.2	232
42	Some Monocytes Got Rhythm. Science, 2013, 341, 1462-1464.	6.0	8
43	Megakaryocytes Regulate Hematopoietic Stem Cell Quiescence Via PF4 Secretion. Blood, 2013, 122, 3-3.	0.6	2
44	Hydroxyurea and a cGMP-amplifying agent have immediate benefits on acute vaso-occlusive events in sickle cell disease mice. Blood, 2012, 120, 2879-2888.	0.6	86
45	Adrenergic Nerves Govern Circadian Leukocyte Recruitment to Tissues. Immunity, 2012, 37, 290-301.	6.6	406
46	Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. Journal of Experimental Medicine, 2011, 208, 261-271.	4.2	732
47	Bone Marrow Neuropathy Prevents Hematopoietic Regeneration. Blood, 2011, 118, 139-139.	0.6	26
48	Local Adrenergic Nerves Regulate Diurnal Leukocyte Adhesion: Impact In Sickle Cell Disease. Blood, 2011, 118, 1099-1099.	0.6	6
49	Neutrophil microdomains: linking heterocellular interactions with vascular injury. Current Opinion in Hematology, 2010, 17, 25-30.	1.2	14
50	Leukocyte recruitment to the cremaster muscle exhibits circadian oscillations. FASEB Journal, 2010, 24, 355.6.	0.2	0
51	Circadian Adrenergic Regulation of Bone Marrow Endothelial Adhesion Molecule Expression Impacts Progenitor Recruitment and Engraftment Efficiency. Blood, 2010, 116, 398-398.	0.6	0
52	Junctional Adhesion Molecule-C Mediates Leukocyte Infiltration in Response to Ischemia Reperfusion Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1509-1515.	1.1	57
53	Effect of soluble JAM on leukocyte transmigration in models of ischemia/reperfusion injury. FASEB Journal, 2009, 23, 360.3.	0.2	0
54	Expression and Function of Junctional Adhesion Molecule-C in Myelinated Peripheral Nerves. Science, 2007, 318, 1472-1475.	6.0	55

#	Article	IF	CITATIONS
55	The junctional adhesion molecule (JAM)-C is required for maintaining the integrity and function of myelinated peripheral nerves. Journal of Neuropathology and Experimental Neurology, 2007, 66, 431-432.	0.9	0
56	JAM-A mediates neutrophil transmigration in a stimulus-specific manner in vivo: evidence for sequential roles for JAM-A and PECAM-1 in neutrophil transmigration. Blood, 2007, 110, 1848-1856.	0.6	126
57	JAM-C regulates unidirectional monocyte transendothelial migration in inflammation. Blood, 2007, 110, 2545-2555.	0.6	140
58	The junctional adhesion molecule (JAM) is required for maintaining the integrity and function of myelinated peripheral nerves. FASEB Journal, 2007, 21, A65.	0.2	0
59	Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. Journal of Experimental Medicine, 2006, 203, 1519-1532.	4.2	338
60	ICAM-2 mediates neutrophil transmigration in vivo: evidence for stimulus specificity and a role in PECAM-1–independent transmigration. Blood, 2006, 107, 4721-4727.	0.6	117
61	Disruption of neurofascin localization reveals early changes preceding demyelination and remyelination in multiple sclerosis. Brain, 2006, 129, 3173-3185.	3.7	167
62	Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. Journal of Cell Biology, 2006, 173, i11-i11.	2.3	0
63	Evidence for a protective role of Mcl-1 in proteasome inhibitor-induced apoptosis. Blood, 2005, 105, 3255-3262.	0.6	114