Nigel C A Pitman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6803088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drought Sensitivity of the Amazon Rainforest. Science, 2009, 323, 1344-1347.	6.0	1,443
2	Beta-Diversity in Tropical Forest Trees. Science, 2002, 295, 666-669.	6.0	1,176
3	Averting biodiversity collapse in tropical forest protected areas. Nature, 2012, 489, 290-294.	13.7	909
4	Hyperdominance in the Amazonian Tree Flora. Science, 2013, 342, 1243092.	6.0	873
5	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	13.7	796
6	Variation in wood density determines spatial patterns inAmazonian forest biomass. Global Change Biology, 2004, 10, 545-562.	4.2	633
7	Continental-scale patterns of canopy tree composition and function across Amazonia. Nature, 2006, 443, 444-447.	13.7	593
8	The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology, 2006, 12, 1107-1138.	4.2	497
9	Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 2012, 9, 2203-2246.	1.3	487
10	DOMINANCE AND DISTRIBUTION OF TREE SPECIES IN UPPER AMAZONIAN TERRA FIRME FORESTS. Ecology, 2001, 82, 2101-2117.	1.5	460
11	Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science, 2017, 355, 925-931.	6.0	443
12	The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology, 2004, 10, 563-591.	4.2	436
13	Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 353-365.	1.8	405
14	Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.	1.3	373
15	TREE RECRUITMENT IN AN EMPTY FOREST. Ecology, 2008, 89, 1757-1768.	1.5	372
16	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.	13.7	371
17	Pattern and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 381-407.	1.8	370
18	A spatial model of tree α-diversity and tree density for the Amazon. Biodiversity and Conservation, 2003, 12, 2255-2277	1.2	348

2

#	Article	IF	CITATIONS
19	An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7472-7477.	3.3	335
20	Relationships Among Ecologically Important Dimensions of Plant Trait Variation in Seven Neotropical Forests. Annals of Botany, 2007, 99, 1003-1015.	1.4	317
21	Global Conservation Significance of Ecuador's YasunÃ-National Park. PLoS ONE, 2010, 5, e8767.	1.1	293
22	TREE SPECIES DISTRIBUTIONS IN AN UPPER AMAZONIAN FOREST. Ecology, 1999, 80, 2651-2661.	1.5	289
23	An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science, 2002, 13, 439-450.	1.1	285
24	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	4.2	265
25	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	2.7	248
26	Estimating the Size of the World's Threatened Flora. Science, 2002, 298, 989-989.	6.0	237
27	Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 2015, 6, 6857.	5.8	214
28	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	6.0	198
29	Seasonal drought limits tree species across the Neotropics. Ecography, 2017, 40, 618-629.	2.1	143
30	A COMPARISON OF TREE SPECIES DIVERSITY IN TWO UPPER AMAZONIAN FORESTS. Ecology, 2002, 83, 3210-3224.	1.5	124
31	Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 2015, 1, e1500936.	4.7	122
32	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	4.2	116
33	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 2018, 8, 1003.	1.6	113
34	A Floristic Study of the White-Sand Forests of Peru ¹ . Annals of the Missouri Botanical Garden, 2010, 97, 283-305.	1.3	110
35	The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Scientific Reports, 2016, 6, 29549.	1.6	107
36	Habitat-related error in estimating temperatures from leaf margins in a humid tropical forest. American Journal of Botany, 2001, 88, 1096-1102.	0.8	101

#	Article	IF	CITATIONS
37	Volume and Geographical Distribution of Ecological Research in the Andes and the Amazon, 1995–2008. Tropical Conservation Science, 2011, 4, 64-81.	0.6	86
38	Branch xylem density variations across the Amazon Basin. Biogeosciences, 2009, 6, 545-568.	1.3	84
39	Do species traits determine patterns of wood production in Amazonian forests?. Biogeosciences, 2009, 6, 297-307.	1.3	81
40	Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	2.7	78
41	Tree Community Change across 700 km of Lowland Amazonian Forest from the Andean Foothills to Brazil. Biotropica, 2008, 40, 525-535.	0.8	77
42	Tropical forest wood production: a cross ontinental comparison. Journal of Ecology, 2014, 102, 1025-1037.	1.9	77
43	Methods to estimate aboveground wood productivity from long-term forest inventory plots. Forest Ecology and Management, 2014, 320, 30-38.	1.4	75
44	Does the disturbance hypothesis explain the biomass increase in basinâ€wide Amazon forest plot data?. Global Change Biology, 2009, 15, 2418-2430.	4.2	74
45	Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 2015, 21, 1295-1307.	1.9	72
46	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	1.9	71
47	Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 2014, 17, 527-536.	3.0	63
48	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	5.8	62
49	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	2.7	62
50	Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 2020, 101, e03052.	1.5	57
51	Towards a dynamic list of Amazonian tree species. Scientific Reports, 2019, 9, 3501.	1.6	54
52	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	1.6	53
53	Oligarchies in Amazonian tree communities: a tenâ€year review. Ecography, 2013, 36, 114-123.	2.1	50
54	Multi-scale comparisons of tree composition in Amazonian terra firme forests. Biogeosciences, 2009, 6, 2719-2731.	1.3	49

4

#	Article	IF	CITATIONS
55	Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.	1.2	43
56	Are all species necessary to reveal ecologically important patterns?. Ecology and Evolution, 2014, 4, 4626-4636.	0.8	37
57	Distribution and abundance of tree species in swamp forests of Amazonian Ecuador. Ecography, 2014, 37, 902-915.	2.1	37
58	Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional betaâ€diversity. Ecography, 2018, 41, 1256-1269.	2.1	35
59	Two biases in estimating range sizes of Amazonian plant species. Journal of Tropical Ecology, 2002, 18, 935-942.	0.5	34
60	Phylogenetic Balance and Ecological Evenness. Systematic Biology, 2002, 51, 898-907.	2.7	33
61	Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Global Ecology and Biogeography, 2010, 19, 852-862.	2.7	32
62	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	3.4	32
63	Extinction-Rate Estimates for a Modern Neotropical Flora. Conservation Biology, 2002, 16, 1427-1431.	2.4	31
64	Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences, 2009, 6, 1563-1576.	1.3	31
65	Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.	1.6	28
66	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	3.4	27
67	Catastrophic natural origin of a species-poor tree community in the world's richest forest. Journal of Tropical Ecology, 2005, 21, 559-568.	0.5	26
68	Defaunation increases the spatial clustering of lowland Western Amazonian tree communities. Journal of Ecology, 2018, 106, 1470-1482.	1.9	26
69	Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences, 2009, 6, 1577-1590.	1.3	25
70	Dripâ€ŧips are Associated with Intensity of Precipitation in the Amazon Rain Forest. Biotropica, 2012, 44, 728-737.	0.8	25
71	Dominant tree species drive beta diversity patterns in western Amazonia. Ecology, 2019, 100, e02636.	1.5	23
72	A 5,000-year vegetation and fire history for <i>tierra firme</i> forests in the Medio Putumayo-Algodón watersheds, northeastern Peru. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23

#	Article	IF	CITATIONS
73	Written Accounts of an Amazonian Landscape Over the Last 450 Years. Conservation Biology, 2007, 21, 253-262.	2.4	21
74	Individual-Based Modeling of Amazon Forests Suggests That Climate Controls Productivity While Traits Control Demography. Frontiers in Earth Science, 2019, 7, .	0.8	19
75	DOMINANCE AND DISTRIBUTION OF TREE SPECIES IN UPPER AMAZONIAN TERRA FIRME FORESTS. , 2001, 82, 2101.		19
76	Functional biogeography of Neotropical moist forests: Trait–climate relationships and assembly patterns of tree communities. Global Ecology and Biogeography, 2021, 30, 1430-1446.	2.7	18
77	TREE SPECIES DISTRIBUTIONS IN AN UPPER AMAZONIAN FOREST. , 1999, 80, 2651.		18
78	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	2.7	17
79	Four years of vertebrate monitoring on an upper Amazonian river. Biodiversity and Conservation, 2011, 20, 827-849.	1.2	16
80	Forest conservation: Humans' handprints. Science, 2017, 355, 466-467.	6.0	16
81	Incorporating phylogenetic information for the definition of floristic districts in hyperdiverse Amazon forests: Implications for conservation. Ecology and Evolution, 2017, 7, 9639-9650.	0.8	14
82	Brazilian montane rainforest expansion induced by Heinrich Stadial 1 event. Scientific Reports, 2019, 9, 17912.	1.6	13
83	Indigenous Perceptions of Tree Species Abundance Across an Upper Amazonian Landscape. Journal of Ethnobiology, 2011, 31, 233-243.	0.8	12
84	Economically important species dominate aboveground carbon storage in forests of southwestern Amazonia. Ecology and Society, 2017, 22, .	1.0	10
85	Abiotic modulators of Podocnemis unifilis (Testudines: Podocnemididae) abundances in the Peruvian Amazon. Zoologia, 2011, 28, 343-350.	0.5	8
86	Applied science facilitates the large-scale expansion of protected areas in an Amazonian hot spot. Science Advances, 2021, 7, .	4.7	8
87	Scaling issues of neutral theory reveal violations of ecological equivalence for dominant Amazonian tree species. Ecology Letters, 2019, 22, 1072-1082.	3.0	7
88	The contribution of environmental and dispersal filters on phylogenetic and taxonomic beta diversity patterns in Amazonian tree communities. Oecologia, 2021, 196, 1119-1137.	0.9	7
89	Research in biodiversity hotspots should be free. Trends in Ecology and Evolution, 2010, 25, 381.	4.2	6
90	Trees of Amazonian Ecuador: a taxonomically verified species list with data on abundance and distribution. Ecology, 2019, 100, e02894.	1.5	6

#	Article	IF	CITATIONS
91	Identifying gaps in the photographic record of the vascular plant flora of the Americas. Nature Plants, 2021, 7, 1010-1014.	4.7	6
92	ï»;Rediscovery of Gasteranthus extinctus L.E.Skog & L.P.Kvist (Gesneriaceae) at multiple sites in western Ecuador. PhytoKeys, 2022, 194, 33-46.	0.4	4
93	Estimating and interpreting migration of Amazonian forests using spatially implicit and semiâ€explicit neutral models. Ecology and Evolution, 2017, 7, 4254-4265.	0.8	3
94	Late twentieth-century patterns and trends in Amazon tree turnover. , 2005, , 107-128.		3
95	A Common But Overlooked New Species in the Hyper-Diverse Genus Inga Mill. from the Northwestern Amazon. Systematic Botany, 2019, 44, 536-547.	0.2	2
96	Sesenta y cuatro nuevos registros para la flora del Perú a través de inventarios biológicos rápidos en la AmazonÃa peruana. Revista Peruana De Biologia, 2019, 26, 379-392.	0.1	2
97	TREE SPECIES DISTRIBUTIONS IN AN UPPER AMAZONIAN FOREST. , 1999, 80, 2651.		2
98	Late twentieth-century trends in the biomass of Amazonian forest plots. , 2005, , 129-142.		2
99	An undescribed and overlooked species of Sloanea (Elaeocarpaceae) from the Ecuadorian Amazon. Brittonia, 2018, 70, 221-226.	0.8	1
100	Historia e impacto de la literatura cientÃfica del Departamento de Madre de Dios, Perú. Revista Peruana De Biologia, 2008, 15, .	0.1	1