How Y Ng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6802726/publications.pdf

Version: 2024-02-01

178	9,755	57 h-index	90
papers	citations		g-index
183	183	183	7822
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered, 2021, 12, 70-87.	1.4	366
2	Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling. Water Research, 2011, 45, 705-713.	5.3	360
3	Microbial degradation of dyes: An overview. Bioresource Technology, 2020, 314, 123728.	4.8	306
4	Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations. Journal of Membrane Science, 2008, 324, 209-219.	4.1	232
5	Fouling of reverse osmosis membrane by protein (BSA): Effects of pH, calcium, magnesium, ionic strength and temperature. Journal of Membrane Science, 2008, 315, 28-35.	4.1	215
6	Influence of colloidal fouling on rejection of trace organic contaminants by reverse osmosis. Journal of Membrane Science, 2004, 244, 215-226.	4.1	197
7	Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresource Technology, 2012, 112, 336-340.	4.8	189
8	Membrane bioreactor operation at short solids retention times: performance and biomass characteristics. Water Research, 2005, 39, 981-992.	5.3	183
9	Anaerobic treatment of pharmaceutical wastewater: A critical review. Bioresource Technology, 2017, 245, 1238-1244.	4.8	179
10	Membrane Fouling of Submerged Membrane Bioreactors:Â Impact of Mean Cell Residence Time and the Contributing Factors. Environmental Science & Environm	4.6	174
11	A novel hybrid forward osmosis - nanofiltration (FO-NF) process for seawater desalination: Draw solution selection and system configuration. Desalination and Water Treatment, 2010, 13, 356-361.	1.0	162
12	Effects of solid retention time on the performance of submerged anoxic/oxic membrane bioreactor. Water Science and Technology, 2006, 53, 7-13.	1.2	142
13	Sequential anaerobic–aerobic treatment of pharmaceutical wastewater with high salinity. Bioresource Technology, 2014, 153, 79-86.	4.8	135
14	Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater. Water Research, 2015, 86, 96-107.	5.3	132
15	Performance of Forward (Direct) Osmosis Process:Â Membrane Structure and Transport Phenomenon. Environmental Science & Environmental Science & Environ	4.6	126
16	Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Bioresource Technology, 2015, 195, 122-130.	4.8	125
17	Concentration of brine by forward osmosis: Performance and influence of membrane structure. Desalination, 2008, 224, 143-153.	4.0	124
18	Investigation of Intertidal Wetland Sediment as a Novel Inoculation Source for Anaerobic Saline Wastewater Treatment. Environmental Science & Environm	4.6	123

#	Article	IF	CITATIONS
19	Review of low-cost point-of-use water treatment systems for developing communities. Npj Clean Water, 2018, 1 , .	3.1	123
20	Fabrication of layered silica–polysulfone mixed matrix substrate membrane for enhancing performance of thin-film composite forward osmosis membrane. Journal of Membrane Science, 2015, 481, 148-163.	4.1	121
21	Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells. Biosensors and Bioelectronics, 2011, 26, 4728-4732.	5.3	118
22	Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II). Bioresource Technology, 2013, 136, 707-710.	4.8	117
23	Ozone-biological activated carbon as a pretreatment process for reverse osmosis brine treatment and recovery. Water Research, 2009, 43, 3948-3955.	5.3	114
24	Forward osmosis organic fouling: Effects of organic loading, calcium and membrane orientation. Desalination, 2013, 312, 88-98.	4.0	114
25	Microbial fuel cells for energy self-sufficient domestic wastewater treatment—a review and discussion from energetic consideration. Applied Microbiology and Biotechnology, 2011, 89, 259-270.	1.7	113
26	Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater. Bioresource Technology, 2019, 288, 121462.	4.8	111
27	Brine pre-treatment technologies for zero liquid discharge systems. Desalination, 2018, 441, 96-111.	4.0	108
28	A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Science and Technology, 2008, 58, 881-885.	1.2	105
29	Evaluation of system performance and microbial communities of aÂbioaugmented anaerobic membrane bioreactor treating pharmaceutical wastewater. Water Research, 2015, 81, 311-324.	5.3	99
30	A novel application of anaerobic bio-entrapped membrane reactor for the treatment of chemical synthesis-based pharmaceutical wastewater. Separation and Purification Technology, 2014, 132, 634-643.	3.9	97
31	Electrodialysis reversal for industrial reverse osmosis brine treatment. Separation and Purification Technology, 2019, 213, 339-347.	3.9	96
32	Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors. Water Research, 2010, 44, 5907-5918.	5.3	95
33	Fouling control mechanism by suspended biofilm carriers addition in submerged ceramic membrane bioreactors. Journal of Membrane Science, 2013, 427, 250-258.	4.1	95
34	Effects of bio-carriers on membrane fouling mitigation in moving bed membrane bioreactor. Journal of Membrane Science, 2016, 499, 134-142.	4.1	93
35	Antibiofouling Polyvinylidene Fluoride Membrane Modified by Quaternary Ammonium Compound: Direct Contact-Killing versus Induced Indirect Contact-Killing. Environmental Science & Eamp; Technology, 2016, 50, 5086-5093.	4.6	86
36	Manganese–polypyrrole–carbon nanotube, a new oxygen reduction catalyst for air-cathode microbial fuel cells. Journal of Power Sources, 2013, 221, 381-386.	4.0	85

#	Article	IF	Citations
37	Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage. Biosensors and Bioelectronics, 2010, 25, 1629-1634.	5.3	83
38	Characterisation of initial fouling in aerobic submerged membrane bioreactors in relation to physico-chemical characteristics under different flux conditions. Water Research, 2010, 44, 2336-2348.	5.3	82
39	Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresource Technology, 2022, 343, 126059.	4.8	82
40	Influence of mixed liquor recycle ratio and dissolved oxygen on performance of pre-denitrification submerged membrane bioreactors. Water Research, 2008, 42, 1122-1132.	5.3	81
41	Biological sulfamethoxazole degradation along with anaerobically digested centrate treatment by immobilized microalgal-bacterial consortium: Performance, mechanism and shifts in bacterial and microalgal communities. Chemical Engineering Journal, 2020, 388, 124217.	6.6	79
42	Comparison in performance of sediment microbial fuel cells according to depth of embedded anode. Bioresource Technology, 2013, 127, 138-142.	4.8	75
43	Effect of membrane type and material on performance of a submerged membrane bioreactor. Chemosphere, 2008, 71, 853-859.	4.2	71
44	An innovative of aerobic bio-entrapped salt marsh sediment membrane reactor for the treatment of high-saline pharmaceutical wastewater. Chemical Engineering Journal, 2016, 295, 317-325.	6.6	71
45	Revised external and internal concentration polarization models to improve flux prediction in forward osmosis process. Desalination, 2013, 309, 125-140.	4.0	70
46	A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations. Bioresource Technology, 2021, 342, 125982.	4.8	68
47	Degradation of C.I. Reactive Red 2 (RR2) using ozone-based systems: Comparisons of decolorization efficiency and power consumption. Journal of Hazardous Materials, 2008, 152, 120-127.	6.5	66
48	Bioelectrochemical treatment of acid mine drainage dominated with iron. Journal of Hazardous Materials, 2012, 241-242, 411-417.	6.5	65
49	Aerobic granular sludge systems for treating hypersaline pharmaceutical wastewater: Start-up, long-term performances and metabolic function. Journal of Hazardous Materials, 2021, 412, 125229.	6.5	65
50	Integrated pretreatment with capacitive deionization for reverse osmosis reject recovery from water reclamation plant. Water Research, 2009, 43, 4769-4777.	5.3	64
51	Membrane fouling between a membrane bioreactor and a moving bed membrane bioreactor: Effects of solids retention time. Chemical Engineering Journal, 2017, 309, 397-408.	6.6	62
52	A comparison of membranes and enrichment strategies for microbial fuel cells. Bioresource Technology, 2011, 102, 6291-6294.	4.8	61
53	Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor. Bioresource Technology, 2017, 240, 25-32.	4.8	61
54	Performance of submerged anaerobic membrane bioreactor at different SRTs for domestic wastewater treatment. Journal of Biotechnology, 2013, 164, 82-90.	1.9	60

#	Article	IF	Citations
55	Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells. Bioresource Technology, 2009, 100, 4907-4910.	4.8	59
56	T-RFLP reveals high \hat{l}^2 -Proteobacteria diversity in microbial fuel cells enriched with domestic wastewater. Journal of Applied Microbiology, 2010, 109, 839-850.	1.4	59
57	Microbial fuel-cell-based toxicity sensor for fast monitoring of acidic toxicity. Water Science and Technology, 2012, 65, 1223-1228.	1.2	58
58	Removal of nitrate and phosphate by chitosan composited beads derived from crude oil refinery waste: Sorption and cost-benefit analysis. Journal of Cleaner Production, 2019, 207, 846-856.	4.6	58
59	Pyrosequencing reveals microbial community profile in anaerobic bio-entrapped membrane reactor for pharmaceutical wastewater treatment. Bioresource Technology, 2016, 200, 1076-1079.	4.8	57
60	Characterization of membrane fouling in submerged ceramic membrane photobioreactors fed with effluent from membrane bioreactors. Chemical Engineering Journal, 2016, 290, 91-102.	6.6	56
61	Metal–Organic Frameworks (MOFs)-boosted filtration membrane technology for water sustainability. APL Materials, 2020, 8, .	2.2	54
62	Effects of Sodium Chloride on the Performance of a Sequencing Batch Reactor. Journal of Environmental Engineering, ASCE, 2005, 131, 1557-1564.	0.7	53
63	3D-printed surface-patterned ceramic membrane with enhanced performance in crossflow filtration. Journal of Membrane Science, 2020, 606, 118138.	4.1	53
64	Bio-based rhamnolipids production and recovery from waste streams: Status and perspectives. Bioresource Technology, 2021, 319, 124213.	4.8	52
65	Full-loop operation and cathodic acidification of a microbial fuel cell operated on domestic wastewater. Bioresource Technology, 2011, 102, 5841-5848.	4.8	51
66	Heterogeneous ZIF-L membranes with improved hydrophilicity and anti-bacterial adhesion for potential application in water treatment. RSC Advances, 2019, 9, 1591-1601.	1.7	51
67	Chemical-grafting of graphene oxide quantum dots (GOQDs) onto ceramic microfiltration membranes for enhanced water permeability and anti-organic fouling potential. Applied Surface Science, 2020, 502, 144128.	3.1	50
68	Effect of quorum quenching on EPS and size-fractioned particles and organics in anaerobic membrane bioreactor for domestic wastewater treatment. Water Research, 2020, 179, 115850.	5. 3	50
69	Effect of ferric hydroxide on membrane fouling in membrane bioreactor treating pharmaceutical wastewater. Bioresource Technology, 2019, 292, 121852.	4.8	49
70	Developing better ceramic membranes for water and wastewater Treatment: Where microstructure integrates with chemistry and functionalities. Chemical Engineering Journal, 2022, 428, 130456.	6.6	49
71	Treatment of industrial brine using capacitive deionization (CDI) towards zero liquid discharge – challenges and optimization. Water Research, 2020, 183, 116059.	5 . 3	48
72	Feasibility of submerged anaerobic membrane bioreactor (SAMBR) for treatment of low-strength wastewater. Water Science and Technology, 2008, 58, 1925-1931.	1,2	47

#	Article	IF	CITATIONS
73	Membrane fouling in a submerged membrane bioreactor using track-etched and phase-inversed porous membranes. Separation and Purification Technology, 2009, 65, 184-192.	3.9	47
74	Different types of carbon nanotube-based anodes to improve microbial fuel cell performance. Water Science and Technology, 2014, 69, 1900-1910.	1.2	47
75	Conductive polypyrrole hydrogels and carbon nanotubes composite as an anode for microbial fuel cells. RSC Advances, 2015, 5, 50968-50974.	1.7	47
76	Pretreatment of saline antibiotic wastewater using marine microalga. Bioresource Technology, 2018, 258, 240-246.	4.8	47
77	Biological treatment of pharmaceutical wastewater from the antibiotics industry. Water Science and Technology, 2014, 69, 855-861.	1.2	46
78	Optimization of a baffled-reactor microbial fuel cell using autotrophic denitrifying bio-cathode for removing nitrogen and recovering electrical energy. Biochemical Engineering Journal, 2017, 120, 93-102.	1.8	46
79	Fate and role of fluorescence moieties in extracellular polymeric substances during biological wastewater treatment: A review. Science of the Total Environment, 2020, 718, 137291.	3.9	45
80	Floating-Type Microbial Fuel Cell (FT-MFC) for Treating Organic-Contaminated Water. Environmental Science & Environmental Scie	4.6	44
81	Specific Resistance to Filtration of Biomass from Membrane Bioreactor Reactor and Activated Sludge: Effects of Exocellular Polymeric Substances and Dispersed Microorganisms. Water Environment Research, 2005, 77, 187-192.	1.3	42
82	Pt/CNT-Based Electrodes with High Electrochemical Activity and Stability for Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2010, 157, B245.	1.3	42
83	In situ grown carbon nanotubes on carbon paper as integrated gas diffusion and catalyst layer for proton exchange membrane fuel cells. Electrochimica Acta, 2011, 56, 4327-4334.	2.6	42
84	Membrane fouling mitigation by NaClO-assisted backwash in anaerobic ceramic membrane bioreactors for the treatment of domestic wastewater. Bioresource Technology, 2018, 268, 622-632.	4.8	42
85	Effect of gradient profile in ceramic membranes on filtration characteristics: Implications for membrane development. Journal of Membrane Science, 2020, 595, 117576.	4.1	42
86	Effect of mean cell residence time on the performance and microbial diversity of pre-denitrification submerged membrane bioreactors. Chemosphere, 2008, 70, 387-396.	4.2	40
87	Double-blade casting technique for optimizing substrate membrane in thin-film composite forward osmosis membrane fabrication. Journal of Membrane Science, 2014, 469, 112-126.	4.1	40
88	Fabrication of mesh-embedded double-skinned substrate membrane and enhancement of its surface hydrophilicity to improve anti-fouling performance of resultant thin-film composite forward osmosis membrane. Journal of Membrane Science, 2016, 511, 40-53.	4.1	40
89	Performance improvement for thin-film composite nanofiltration membranes prepared on PSf/PSf-g-PEG blended substrates. Separation and Purification Technology, 2020, 230, 115855.	3.9	39
90	Feasibility of isolated novel facultative quorum quenching consortiums for fouling control in an AnMBR. Water Research, 2020, 169, 115251.	5.3	39

#	Article	IF	CITATIONS
91	An insight into cathode options for microbial fuel cells. Water Science and Technology, 2008, 57, 2031-2037.	1.2	38
92	Microbial community succession and its correlation with reactor performance in a sponge membrane bioreactor coupled with fiber-bundle anoxic bio-filter for treating saline mariculture wastewater. Bioresource Technology, 2020, 295, 122284.	4.8	38
93	Cobalt and nitrogen-doped carbon catalysts for enhanced oxygen reduction and power production in microbial fuel cells. Electrochimica Acta, 2017, 247, 193-199.	2.6	37
94	Hydrogenated TiO2 membrane with photocatalytically enhanced anti-fouling for ultrafiltration of surface water. Applied Catalysis B: Environmental, 2020, 264, 118528.	10.8	37
95	Treatment of RO brine–towards sustainable water reclamation practice. Water Science and Technology, 2008, 58, 931-936.	1.2	34
96	Optimization of a microbial fuel cell for wastewater treatment using recycled scrap metals as a cost-effective cathode material. Bioresource Technology, 2013, 127, 158-164.	4.8	34
97	Denitrification kinetics indicates nitrous oxide uptake is unaffected by electron competition in Accumulibacter. Water Research, 2021, 189, 116557.	5.3	34
98	Bio-entrapped membrane reactor and salt marsh sediment membrane bioreactor for the treatment of pharmaceutical wastewater: Treatment performance and microbial communities. Bioresource Technology, 2014, 171, 265-273.	4.8	33
99	Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO2 Catalyst. International Journal of Molecular Sciences, 2017, 18, 276.	1.8	33
100	Performance and process simulation of membrane bioreactor (MBR) treating petrochemical wastewater. Science of the Total Environment, 2020, 747, 141311.	3.9	33
101	Impacts of different draw solutions on a novel anaerobic forward osmosis membrane bioreactor (AnFOMBR). Water Science and Technology, 2014, 69, 2036-2042.	1.2	32
102	Photodegradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans: Direct photolysis and photocatalysis processes. Journal of Hazardous Materials, 2008, 151, 507-514.	6.5	31
103	Multi-walled carbon nanotubes as electrode material for microbial fuel cells. Water Science and Technology, 2012, 65, 1208-1214.	1.2	31
104	Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells. Bioresource Technology, 2014, 164, 184-188.	4.8	30
105	A sandwiched denitrifying biocathode in a microbial fuel cell for electricity generation and waste minimization. International Journal of Environmental Science and Technology, 2016, 13, 1055-1064.	1.8	30
106	Applicability of upflow anaerobic sludge blanket and dynamic membrane-coupled process for the treatment of municipal wastewater. Applied Microbiology and Biotechnology, 2017, 101, 6531-6540.	1.7	30
107	Comparison between novel vibrating ceramic MBR and conventional air-sparging MBR for domestic wastewater treatment: Performance, fouling control and energy consumption. Water Research, 2021, 203, 117521.	5. 3	30
108	Insights on fouling development and characteristics during different fouling stages between a novel vibrating MBR and an air-sparging MBR for domestic wastewater treatment. Water Research, 2022, 212, 118098.	5.3	29

#	Article	IF	CITATIONS
109	Analysis of N-Acy-L-homoserine lactones (AHLs) in wastewater treatment systems using SPE-LLE with LC-MS/MS. Water Research, 2020, 177, 115756.	5.3	28
110	Interfacial diffusion assisted chemical deposition (ID-CD) for confined surface modification of alumina microfiltration membranes toward high-flux and anti-fouling. Separation and Purification Technology, 2020, 235, 116177.	3.9	27
111	Enhancing the Permselectivity of Thin-Film Composite Membranes Interlayered with MoS ₂ Nanosheets via Precise Thickness Control. Environmental Science & Environmenta	4.6	27
112	Enhancing the robustness of microbial fuel cell sensor for continuous copper(II) detection against organic strength fluctuations by acetate and glucose addition. Bioresource Technology, 2018, 259, 357-364.	4.8	26
113	Overcoming the Trade-off between Water Permeation and Mechanical Strength of Ceramic Membrane Supports by Interfacial Engineering. ACS Applied Materials & Engineering.	4.0	26
114	Spatial variation of fouling behavior in high recovery nanofiltration for industrial reverse osmosis brine treatment towards zero liquid discharge. Journal of Membrane Science, 2020, 609, 118185.	4.1	26
115	Anthraquinone-2-sulfonate immobilized to conductive polypyrrole hydrogel as a bioanode to enhance power production in microbial fuel cell. Bioresource Technology, 2017, 244, 452-455.	4.8	25
116	Intertidal wetland sediment as a novel inoculation source for developing aerobic granular sludge in membrane bioreactor treating high-salinity antibiotic manufacturing wastewater. Bioresource Technology, 2020, 314, 123715.	4.8	25
117	Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd(II) stress. Journal of Environmental Management, 2019, 250, 109519.	3.8	24
118	Enriched autoinducer-2 (Al-2)-based quorum quenching consortium in a ceramic anaerobic membrane bioreactor (AnMBR) for biofouling retardation. Water Research, 2022, 214, 118203.	5.3	24
119	RO brine treatment and recovery by biological activated carbon and capacitive deionization process. Water Science and Technology, 2011, 64, 77-82.	1.2	23
120	Evaluation of a long-term operation of a submerged nanofiltration membrane bioreactor (NF MBR) for advanced wastewater treatment. Water Science and Technology, 2006, 53, 131-136.	1.2	20
121	Surface engineered alumina microfiltration membranes based on rationally constructed core-shell particles. Journal of the European Ceramic Society, 2020, 40, 5951-5958.	2.8	20
122	An experimental study on the effect of spacer on concentration polarization in a long channel reverse osmosis membrane cell. Water Science and Technology, 2010, 61, 2035-2041.	1.2	19
123	Polyaniline and iron based catalysts as air cathodes for enhanced oxygen reduction in microbial fuel cells. RSC Advances, 2015, 5, 79348-79354.	1.7	19
124	Insights into mechanisms, kinetics and pathway of continuous visible-light photodegradation of PPCPs via porous g-C3N4 with highly dispersed Fe(III) active sites. Chemical Engineering Journal, 2021, 423, 130095.	6.6	18
125	Impacts of bio-carriers on the characteristics of cake layer and membrane fouling in a novel hybrid membrane bioreactor for treating mariculture wastewater. Chemosphere, 2022, 300, 134593.	4.2	18
126	Determination of effects of turbulence flow in a cathode environment on electricity generation using a tidal mud-based cylindrical-type sediment microbial fuel cell. Journal of Environmental Management, 2010, 91, 2478-2482.	3.8	16

#	Article	IF	CITATIONS
127	RO membrane solute rejection behavior at the initial stage of colloidal fouling. Desalination, 2005, 174, 211-217.	4.0	15
128	Novel 16-inch spiral-wound RO systems for water reclamation â€" a quantum leap in water reclamation technology. Desalination, 2008, 225, 274-287.	4.0	15
129	Quorum quenching affects biofilm development in an anaerobic membrane bioreactor (AnMBR): from macro to micro perspective. Bioresource Technology, 2022, 344, 126183.	4.8	15
130	Feasibility of implementing quorum quenching technology to mitigate membrane fouling in MBRs treating phenol-rich pharmaceutical wastewater: Application of Rhodococcus sp. BH4 and quorum quenching consortium. Bioresource Technology, 2022, 358, 127389.	4.8	14
131	Proapoptotic effect of a micropollutant (tris-(2-chloroethyl)-phosphate) at environmental level in primary cultured renal proximal tubule cells. Journal of Water and Health, 2012, 10, 522-530.	1.1	13
132	Nanowires versus nanosheets – Effects of NiCo2O4 nanostructures on ceramic membrane permeability and fouling potential. Separation and Purification Technology, 2019, 215, 644-651.	3.9	13
133	Effects of coarse and fine bubble aeration on performances of membrane filtration and denitrification in moving bed membrane bioreactors. Science of the Total Environment, 2021, 772, 145513.	3.9	13
134	Effect of surface-patterned topographies of ceramic membranes on the filtration of activated sludge and their interaction with different particle sizes. Journal of Membrane Science, 2022, 645, 120125.	4.1	13
135	Mechanism behind the surface evolution and microstructure changes of laser fabricated nanostructured carbon composite. Journal of Applied Physics, 2011, 110, 054904.	1.1	12
136	Novel intertidal wetland sediment-inoculated moving bed biofilm reactor treating high-salinity wastewater: Metagenomic sequencing revealing key functional microorganisms. Bioresource Technology, 2022, 348, 126817.	4.8	12
137	Forward (Direct) Osmosis: A Novel and Prospective Process for Brine Control. Proceedings of the Water Environment Federation, 2006, 2006, 4345-4352.	0.0	11
138	Properties of laser fabricated nanostructured Cu/diamond-like carbon composite. Journal of Materials Research, 2011, 26, 2761-2771.	1.2	11
139	Electrical performance of low cost cathodes prepared by plasma sputtering deposition in microbial fuel cells. Biosensors and Bioelectronics, 2012, 31, 164-169.	5.3	11
140	A high-performance electrocatalytic air cathode derived from aniline and iron for use in microbial fuel cells. RSC Advances, 2014, 4, 12789-12794.	1.7	11
141	Highly permeable Al 2 O 3 microfiltration membranes with holey interior structure achieved through sacrificial C particles. Journal of the American Ceramic Society, 2020, 103, 3361-3372.	1.9	11
142	Ultrathin TiO2 microfiltration membranes supported on a holey intermediate layer to raise filtration performance. Journal of the European Ceramic Society, 2021, 41, 1622-1628.	2.8	11
143	Comparison on the photogranules formation and microbial community shift between the batch and continuous-flow mode for the high saline wastewater treatment. Chemical Engineering Journal, 2022, 446, 137284.	6.6	11
144	Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR). Water Science and Technology, 2009, 59, 2213-2218.	1.2	10

#	Article	IF	CITATIONS
145	Treatment of domestic wastewater with an anaerobic ceramic membrane bioreactor (AnCMBR). Water Science and Technology, 2015, 72, 2301-2307.	1.2	10
146	Evaluation and comparison of the microbial consortia enriched by gamma-caprolactone and N-Acyl homoserine lactones for effective quorum sensing disruption. International Biodeterioration and Biodegradation, 2021, 159, 105200.	1.9	10
147	Hierarchically porous interlayer for highly permeable and fouling-resistant ceramic membranes in water treatment. Separation and Purification Technology, 2022, 293, 121092.	3.9	10
148	Enhanced dissolved methane recovery and energy-efficient fouling mitigation via membrane vibration in anaerobic membrane bioreactor. Resources, Conservation and Recycling, 2022, 184, 106404.	5.3	10
149	Simultaneous ammonium–nitrogen and copper removal, and copper recovery using nitrifying biofilm from the Ultra-Compact Biofilm Reactor. Bioresource Technology, 2008, 99, 6614-6620.	4.8	9
150	A method to eliminate bromide interference on standard COD test for bromide-rich industrial wastewater. Chemosphere, 2020, 240, 124804.	4.2	9
151	Alumina double-layered ultrafiltration membranes with enhanced water flux. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587, 124324.	2.3	9
152	Preparation of a mesoporous silica quorum quenching medium for wastewater treatment using a membrane bioreactor. Biofouling, 2020, 36, 369-377.	0.8	9
153	Suitability of ozone pre-treatment for amoxicillin wastewater. Water Science and Technology, 2013, 68, 2492-2496.	1.2	8
154	Treatment and hybrid modeling of domestic reverse osmosis concentrate using biological activated carbon. Desalination, 2019, 468, 114047.	4.0	8
155	Core carbon fixation pathways associated with cake layer development in an anoxic-oxic biofilm-membrane bioreactor treating textile wastewater. Science of the Total Environment, 2022, 835, 155483.	3.9	8
156	Ammonium removal and recovery from effluent of AnMBR treating real domestic wastewater using polymeric hydrogel. Separation and Purification Technology, 2022, 296, 121376.	3.9	7
157	Biodiesel production by microalgae cultivated using permeate from membrane bioreactors in continuous system. Water Science and Technology, 2014, 69, 1813-1819.	1.2	6
158	Optimization of resource and water recovery from urine. Journal of Water Reuse and Desalination, 2016, 6, 229-234.	1.2	6
159	Toxicity study of reclaimed water on human embryonic kidney cells. Chemosphere, 2017, 189, 390-398.	4.2	6
160	Effect of Formaldehyde on Biofilm Activity and Morphology in an Ultracompact Biofilm Reactor for Carbonaceous Wastewater Treatment. Water Environment Research, 2006, 78, 372-380.	1.3	5
161	Characterisation of biofilm constituents and their effect on membrane filterability in MBRs. Water Science and Technology, 2008, 58, 1933-1939.	1.2	5
162	Alternative Immunofluorescent Labeling of <i>Cryptosporidium parvum</i> in Water Samples Using Semiconductor Quantum Dots. Water Environment Research, 2008, 80, 725-731.	1.3	5

#	Article	IF	CITATIONS
163	A phosphorus-free anolyte to enhance coulombic efficiency ofÂmicrobial fuel cells. Journal of Power Sources, 2014, 268, 14-18.	4.0	5
164	Removal of Toxic Component of Wastewater by Anaerobic Processes. , 2017, , 443-467.		4
165	3D spray-coated gradient profile ceramic membranes enables improved filtration performance in aerobic submerged membrane bioreactor. Water Research, 2022, 220, 118661.	5.3	4
166	Conception and optimization of a membrane electrode assembly microbial fuel cell (MEA-MFC) for treatment of domestic wastewater. Water Science and Technology, 2011, 64, 1527-1532.	1.2	3
167	Challenges and opportunities for anaerobic membrane bioreactors. , 2020, , 55-77.		3
168	Melded ceramic membranes: A novel fabrication method for ultrathin alumina membranes of high performance. Journal of the American Ceramic Society, 2022, 105, 6554-6569.	1.9	3
169	Physico-chemical characterisation versus in situ micro-structural characterisation of membrane fouling in membrane bioreactors. Water Science and Technology, 2011, 63, 1781-1787.	1.2	2
170	Innovative large-diameter RO system for water reclamation and seawater desalination. Water Science and Technology: Water Supply, 2008, 8, 93-99.	1.0	1
171	Reverse Osmosis Brine from Water Reclamation Plant – Cost Effective Process for Treatment and Recovery. Proceedings of the Water Environment Federation, 2009, 2009, 5302-5311.	0.0	1
172	Influence of bio(de)flocculation on activated sludge processes in membrane bioreactors. , 2020, , 375-396.		1
173	Vibrating MBR with Settling Zone for High-Flux Domestic Wastewater Treatment: Enhanced Nitrogen Removal and Fouling Mitigation. ACS ES&T Water, 2022, 2, 1013-1021.	2.3	1
174	Membrane Technology for Environmental Applicationsâ€"Opportunities and Challenges. Water Environment Research, 2006, 78, 779-780.	1.3	0
175	Effect of Membrane Pore Size on Membrane Biofouling in Ceramic Membrane Bioreactors. Proceedings of the Water Environment Federation, 2009, 2009, 7069-7078.	0.0	0
176	Membrane Fouling in MBRs: Mechanisms and Control. , 2012, , 96-139.		0
177	Forward Osmosis Hybrid Processes for Water Reclamation and Reuse. , 2015, , 277-301.		0
178	Editorial: Journal of Water Reuse and Desalination moves to Open Access. Journal of Water Reuse and Desalination, 2016, 6, 465-465.	1.2	0