Angie Rizzino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6802215/publications.pdf

Version: 2024-02-01

93 papers 4,202 citations

36 h-index 61 g-index

94 all docs 94
docs citations

94 times ranked 5178 citing authors

#	Article	IF	CITATIONS
1	Subgroup-Specific Diagnostic, Prognostic, and Predictive Markers Influencing Pediatric Medulloblastoma Treatment. Diagnostics, 2022, 12, 61.	2.6	10
2	Elevating SOX2 Downregulates MYC through a SOX2:MYC Signaling Axis and Induces a Slowly Cycling Proliferative State in Human Tumor Cells. Cancers, 2022, 14, 1946.	3.7	4
3	Elevating SOX2 in prostate tumor cells upregulates expression of neuroendocrine genes, but does not reduce the inhibitory effects of enzalutamide. Journal of Cellular Physiology, 2020, 235, 3731-3740.	4.1	18
4	Tumor quiescence: elevating SOX2 in diverse tumor cell types downregulates a broad spectrum of the cell cycle machinery and inhibits tumor growth. BMC Cancer, 2020, 20, 941.	2.6	10
5	Sox2 dosage: A critical determinant in the functions of Sox2 in both normal and tumor cells. Journal of Cellular Physiology, 2019, 234, 19298-19306.	4.1	16
6	Generation of Functional Human Retinal Ganglion Cells with Target Specificity from Pluripotent Stem Cells by Chemically Defined Recapitulation of Developmental Mechanism. Stem Cells, 2017, 35, 572-585.	3.2	72
7	The dark side of SOX2: cancer - a comprehensive overview. Oncotarget, 2017, 8, 44917-44943.	1.8	165
8	SOX2 functions as a molecular rheostat to control the growth, tumorigenicity and drug responses of pancreatic ductal adenocarcinoma cells. Oncotarget, 2016, 7, 34890-34906.	1.8	31
9	Promoter Hypomethylation and Expression Is Conserved in Mouse Chronic Lymphocytic Leukemia Induced by Decreased or Inactivated Dnmt3a. Cell Reports, 2016, 15, 1190-1201.	6.4	32
10	Sox2/Oct4: A delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 780-791.	1.9	104
11	Context-dependent function of the deubiquitinating enzyme USP9X in pancreatic ductal adenocarcinoma. Cancer Biology and Therapy, 2014, 15, 1042-1052.	3.4	29
12	Concise Review: The Sox2-Oct4 Connection: Critical Players in a Much Larger Interdependent Network Integrated at Multiple Levels. Stem Cells, 2013, 31, 1033-1039.	3.2	96
13	The SOX2-Interactome in Brain Cancer Cells Identifies the Requirement of MSI2 and USP9X for the Growth of Brain Tumor Cells. PLoS ONE, 2013, 8, e62857.	2.5	89
14	Sox2 Expression Is Regulated by a Negative Feedback Loop in Embryonic Stem Cells That Involves AKT Signaling and FoxO1. PLoS ONE, 2013, 8, e76345.	2.5	36
15	Musashi2 Is Required for the Self-Renewal and Pluripotency of Embryonic Stem Cells. PLoS ONE, 2012, 7, e34827.	2.5	42
16	Determination of Protein Interactome of Transcription Factor Sox2 in Embryonic Stem Cells Engineered for Inducible Expression of Four Reprogramming Factors. Journal of Biological Chemistry, 2012, 287, 11384-11397.	3.4	63
17	Systems biology provides new insights into the molecular mechanisms that control the fate of embryonic stem cells. Journal of Cellular Physiology, 2012, 227, 27-34.	4.1	21
18	Elevating SOX2 Levels Deleteriously Affects the Growth of Medulloblastoma and Glioblastoma Cells. PLoS ONE, 2012, 7, e44087.	2.5	49

#	Article	IF	Citations
19	Rapid activation of the bivalent gene Sox21 requires displacement of multiple layers of geneâ€silencing machinery. FASEB Journal, 2011, 25, 206-218.	0.5	22
20	Banf1 is required to maintain the self-renewal of both mouse and human embryonic stem cells. Journal of Cell Science, 2011, 124, 2654-2665.	2.0	48
21	Temporally and spatially controlled expression of transgenes in embryonic and adult tissues. Transgenic Research, 2010, 19, 499-509.	2.4	19
22	Proteomic Analysis of Sox2-Associated Proteins During Early Stages of Mouse Embryonic Stem Cell Differentiation Identifies Sox21 as a Novel Regulator of Stem Cell Fate Â. Stem Cells, 2010, 28, 1715-1727.	3.2	107
23	Induced pluripotent stem cells: what lies beyond the paradigm shift. Experimental Biology and Medicine, 2010, 235, 148-158.	2.4	53
24	Structural basis of Ets1 cooperative binding to palindromic sequences on stromelysin-1 promoter DNA. Cell Cycle, 2010, 9, 3126-3134.	2.6	27
25	Stimulating progress in regenerative medicine: improving the cloning and recovery of cryopreserved human pluripotent stem cells with ROCK inhibitors. Regenerative Medicine, 2010, 5, 799-807.	1.7	24
26	Crystal Structure of Mouse Elf3 C-terminal DNA-binding Domain in Complex with Type II TGF-Î ² Receptor Promoter DNA. Journal of Molecular Biology, 2010, 397, 278-289.	4.2	24
27	Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Developmental Biology, 2010, 344, 16-25.	2.0	176
28	Sox2 Uses Multiple Domains to Associate with Proteins Present in Sox2-Protein Complexes. PLoS ONE, 2010, 5, e15486.	2.5	55
29	Sox2 and Octâ€3/4: a versatile pair of master regulators that orchestrate the selfâ€renewal and pluripotency of embryonic stem cells. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2009, 1, 228-236.	6.6	136
30	Regulation of the Nanog gene by both positive and negative <i>cis</i> â€regulatory elements in embryonal carcinoma cells and embryonic stem cells. Molecular Reproduction and Development, 2009, 76, 173-182.	2.0	8
31	ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells. Molecular Reproduction and Development, 2009, 76, 722-732.	2.0	147
32	Comparison of ras-responsive gene enhancers in pancreatic tumor cells that express either wild-type or mutant K-ras. Biochemical and Biophysical Research Communications, 2009, 381, 706-711.	2.1	1
33	Identification of DPPA4 and other genes as putative Sox2:Octâ€3/4 target genes using a combination of in silico analysis and transcriptionâ€based assays. Journal of Cellular Physiology, 2008, 216, 651-662.	4.1	46
34	Differential regulation of the Octâ€3/4 gene in cell culture model systems that parallel different stages of mammalian development. Molecular Reproduction and Development, 2008, 75, 1247-1257.	2.0	8
35	Small Increases in the Level of Sox2 Trigger the Differentiation of Mouse Embryonic Stem Cells. Stem Cells, 2008, 26, 903-911.	3.2	295
36	Transcription factors that behave as master regulators during mammalian embryogenesis function as molecular rheostats. Biochemical Journal, 2008, 411, e5-e7.	3.7	14

3

#	Article	IF	CITATIONS
37	Elevating the levels of Sox2 in embryonal carcinoma cells and embryonic stem cells inhibits the expression of Sox2:Oct-3/4 target genes. Nucleic Acids Research, 2007, 35, 1773-1786.	14.5	102
38	Different Domains of the Transcription Factor ELF3 Are Required in a Promoter-specific Manner and Multiple Domains Control Its Binding to DNA. Journal of Biological Chemistry, 2007, 282, 3027-3041.	3.4	25
39	A challenge for regenerative medicine: Proper genetic programming, not cellular mimicry. Developmental Dynamics, 2007, 236, 3199-3207.	1.8	37
40	Identification of an epithelial-specific enhancer regulating ESX expression. Gene, 2006, 367, 118-125.	2.2	8
41	Differential activity of the FGF-4 enhancer in F9 and P19 embryonal carcinoma cells. Journal of Cellular Physiology, 2006, 208, 97-108.	4.1	14
42	NF-Y Behaves as a Bifunctional Transcription Factor That Can Stimulate or Repress the <i>FGF-4</i> Promoter in an Enhancer-Dependent Manner. Gene Expression, 2005, 12, 193-212.	1.2	23
43	Distal enhancer of the mouseFGF-4 gene and its human counterpart exhibit differential activity: Critical role of a GT box. Molecular Reproduction and Development, 2005, 71, 263-274.	2.0	2
44	Unique and Selective Effects of Five Ets Family Members, Elf3, Ets1, Ets2, PEA3, and PU.1, on the Promoter of the Type II Transforming Growth Factor- \hat{l}^2 Receptor Gene. Journal of Biological Chemistry, 2004, 279, 19407-19420.	3.4	48
45	Transcription factor sox-2 inhibits co-activator stimulated transcription. Molecular Reproduction and Development, 2004, 69, 260-267.	2.0	12
46	Transcriptional regulation of the murine Elf3 gene in embryonal carcinoma cells and their differentiated counterparts: requirement for a novel upstream regulatory region. Gene, 2004, 340, 123-131.	2.2	6
47	Roles of the conserved CCAAT and GC boxes of the human and mouse type II transforming growth factor-? receptor genes. Molecular Reproduction and Development, 2003, 65, 353-365.	2.0	9
48	Regulation of the FGF-4 gene by a complex distal enhancer that functions in part as an enhanceosome. Gene, 2003, 323, 163-172.	2.2	16
49	The Co-activator p300 Associates Physically with and Can Mediate the Action of the Distal Enhancer of the FGF-4Gene. Journal of Biological Chemistry, 2003, 278, 13696-13705.	3.4	37
50	Identification of Novel Domains within Sox-2 and Sox-11 Involved in Autoinhibition of DNA Binding and Partnership Specificity. Journal of Biological Chemistry, 2003, 278, 17901-17911.	3.4	62
51	Expression profile of differentially-regulated genes during progression of androgen-independent growth in human prostate cancer cells. Carcinogenesis, 2002, 23, 967-976.	2.8	121
52	Activation of the Murine Type II Transforming Growth Factor-Î ² Receptor Gene. Journal of Biological Chemistry, 2002, 277, 17520-17530.	3.4	28
53	Effects of B-Myb on Gene Transcription. Journal of Biological Chemistry, 2002, 277, 4088-4097.	3.4	53
54	Embryonic stem cells provide a powerful and versatile model system. Vitamins and Hormones, 2002, 64, 1-42.	1.7	21

#	Article	IF	Citations
55	Stimulation of the murine type II transforming growth factor-? receptor promoter by the transcription factor Egr-1. Molecular Reproduction and Development, 2002, 63, 282-290.	2.0	15
56	Transfection of embryonal carcinoma cells at high efficiency using liposome-mediated transfection. Molecular Reproduction and Development, 2002, 63, 309-317.	2.0	22
57	TRANSCRIPTIONAL REGULATION OF THE TRANSFORMING GROWTH FACTOR-Î ² 2 GENE IN GLIOBLASTOMA CELLS. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 684.	1.5	16
58	Isolation and characterization of the murine transforming growth factor- \hat{l}^2 2 promoter. Gene, 2001, 270, 201-209.	2.2	6
59	DNA microarray analyses of genes regulated during the differentiation of embryonic stem cells. , 2000, 56, 113-123.		106
60	Effects of three Sp1 motifs on the transcription of the FGF-4 gene. Molecular Reproduction and Development, 2000, 57, 4-15.	2.0	27
61	Identification of the Transactivation Domain of the Transcription Factor Sox-2 and an Associated Co-activator. Journal of Biological Chemistry, 2000, 275, 3810-3818.	3.4	82
62	Isolation, characterization, and differential expression of the murine Sox-2 promoter. Gene, 2000, 246, 383-393.	2.2	62
63	Transcriptional Regulation of the Transforming Growth Factor-Î ² 2 Promoter by cAMP-responsive Element-binding Protein (CREB) and Activating Transcription Factor-1 (ATF-1) Is Modulated by Protein Kinases and the Coactivators p300 and CREB-binding Protein. Journal of Biological Chemistry, 1999, 274, 34020-34028.	3.4	62
64	Specific down-regulation of annexin II expression in human cells interferes with cell proliferation. Molecular and Cellular Biochemistry, 1999, 199, 139-147.	3.1	86
65	Role of the transcription factor Sox-2 in the expression of the FGF-4 gene in embryonal carcinoma cells. Molecular Reproduction and Development, 1998, 50, 377-386.	2.0	28
66	Effects of differentiation on the transcriptional regulation of the FGF-4 gene: Critical roles played by a distal enhancer. Molecular Reproduction and Development, 1998, 51, 218-224.	2.0	36
67	Transcriptional Activation of the Type II Transforming Growth Factor-Î ² Receptor Gene upon Differentiation of Embryonal Carcinoma Cells. Journal of Biological Chemistry, 1998, 273, 21115-21124.	3.4	38
68	DNA Sequence and Nucleosome Placement on the Murine Fibroblast Growth Factor-4 Gene. DNA Sequence, 1997, 7, 117-121.	0.7	2
69	Inactivation of the FGF-4 Gene in Embryonic Stem Cells Alters the Growth and/or the Survival of Their Early Differentiated Progeny. Developmental Biology, 1997, 192, 614-629.	2.0	110
70	NF-Y binds to the CCAAT box motif of the FGF-4 gene and promotes FGF-4 expression in embryonal carcinoma cells. Molecular Reproduction and Development, 1997, 48, 301-309.	2.0	17
71	Transcriptional regulation of the TGF- \hat{l}^2 2 gene in choriocarcinoma cells and breast carcinoma cells: Differential utilization of CIS-regulatory elements. In Vitro Cellular and Developmental Biology - Animal, 1997, 33, 294-301.	1.5	8
72	Appearance of Nuclear Protease Activity after Embryonal Carcinoma Cells Undergo Differentiation. Developmental Biology, 1996, 173, 420-427.	2.0	35

#	Article	IF	Citations
73	Effects of oxidation and reduction on the binding of transcription factors to Cis-regulatory elements located in the FGF-4 gene. Molecular Reproduction and Development, 1996, 44, 146-152.	2.0	17
74	Binding of transcription factors to widely-separated cis-regulatory elements of the murine FGF-4 gene. Molecular Reproduction and Development, 1996, 44, 460-471.	2.0	18
75	Characterization of fibroblast growth factor activity secreted by embryonal carcinoma cells. In Vitro Cellular and Developmental Biology - Animal, 1996, 32, 531-533.	1.5	1
76	Transcription of the Transforming Growth Factor- \hat{I}^2 2 Gene Is Dependent on an E-box Located between an Essential cAMP Response Element/Activating Transcription Factor Motif and the TATA Box of the Gene. Journal of Biological Chemistry, 1996, 271, 32375-32380.	3.4	40
77	Regulation of the transforming growth factor-?2 gene promoter in embryonal carcinoma cells and their differentiated cells: Differential utilization of transcription factors. Molecular Reproduction and Development, 1995, 40, 135-145.	2.0	24
78	Cis-regulatory elements and transcription factors involved in the regulation of the transforming growth factor-?2 gene. Molecular Reproduction and Development, 1995, 41, 140-148.	2.0	11
79	Transcriptional regulation of the murinek-fgf gene. Molecular Reproduction and Development, 1994, 39, 106-111.	2.0	12
80	Cryptic promoter activity within the backbone of a plasmid commonly used to prepare promoter/reporter gene constructs. In Vitro Cellular and Developmental Biology - Animal, 1994, 30, 477-481.	1.5	23
81	Mouse genetics in the 21st century: using gene targeting to create a cornucopia of mouse mutants possessing precise genetic modifications. Cytotechnology, 1993, 11, 79-99.	1.6	11
82	Influence of cell density and receptor number on the binding and distribution of cell surface epidermal growth factor receptors. In Vitro Cellular & Developmental Biology, 1993, 29, 708-713.	1.0	8
83	Transcriptional regulation of the murine k-FGF gene in embryonic cell lines. Developmental Biology, 1992, 154, 45-54.	2.0	67
84	Differential regulation of the transforming growth factor type- \hat{l}^2 2 gene promoter in embryonal carcinoma cells and their differentiated cells. Developmental Biology, 1992, 153, 172-175.	2.0	21
85	TGF- \hat{l}^2 does not appear to mediate all effects of 12-O-tetradecan-oylphorbol-13-acetate on the anchorage-independent growth of murine epithelial JB6 cells. In Vitro Cellular & Developmental Biology, 1992, 28, 581-582.	1.0	0
86	Expression of fibroblast growth factor receptors by embryonal carcinoma cells and early mouse embryos. In Vitro Cellular & Developmental Biology, 1992, 28, 61-66.	1.0	14
87	Regulation and expression of transforming growth factor type-� during early mammalian development. Cytotechnology, 1990, 4, 227-242.	1.6	31
88	Expression and developmental regulation of the k-FGF oncogene in human and murine embryonal carcinoma cells. In Vitro Cellular & Developmental Biology, 1989, 25, 1193-1198.	1.0	31
89	Inhibitory effects of transforming growth factor- \hat{l}^2 on laminin production and growth exhibited by endoderm-like cells derived from embryonal carcinoma cells. Differentiation, 1989, 41, 34-41.	1.9	21
90	Production and utilization of growth factors related to fibroblast growth factor by embryonal carcinoma cells and their differentiated cells. Developmental Biology, 1988, 129, 61-71.	2.0	59

Angie Rizzino

#	Article	IF	CITATIONS
91	Transforming growth factor- \hat{l}^2 : Multiple effects on cell differentiation and extracellular matrices. Developmental Biology, 1988, 130, 411-422.	2.0	260
92	Fibroblast growth factor induces the soft agar growth of two non-transformed celllines. In Vitro Cellular & Developmental Biology, 1986, 22, 749-755.	1.0	37
93	Two multipotent embryonal carcinoma cell lines irreversibly differentiate in defined media. Developmental Biology, 1983, 95, 126-136.	2.0	17