Ailen Aleman Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6802072/publications.pdf Version: 2024-02-01

32	1,918 citations	394421 19	395702 33 g-index
papers	citations	h-index	g-index
33 all docs	33 docs citations	33 times ranked	2118 citing authors

#	Article	IF	CITATIONS
1	Extraction and characterization of Argentine red shrimp (Pleoticus muelleri) phospholipids as raw material for liposome production. Food Chemistry, 2022, 374, 131766.	8.2	8

 $_{2}$ Anti-Inflammatory Properties, Bioaccessibility and Intestinal Absorption of Sea Fennel (Crithmum) Tj ETQq0 0 0 rgB $\frac{1}{4}$. 10 Tf 50

3	The effect of chitosan nanoparticles on the rheo-viscoelastic properties and lipid digestibility of oil/vinegar mixtures (vinaigrettes). Journal of Functional Foods, 2022, 93, 105092.	3.4	3
4	The role of the drying method on fish oil entrapment in a fish muscle protein ̶ κ-carrageenan ̶ fish protein hydrolysate wall matrix and the properties of colloidal dispersions. Food Hydrocolloids, 2022, 131, 107799.	10.7	8
5	Drying soy phosphatidylcholine liposomal suspensions in alginate matrix: Effect of drying methods on physico-chemical properties and stability. Food Hydrocolloids, 2021, 111, 106357.	10.7	8
6	The preferential use of a soy-rapeseed lecithin blend for the liposomal encapsulation of a tilapia viscera hydrolysate. LWT - Food Science and Technology, 2021, 139, 110530.	5.2	12
7	Entrapment of natural compounds in spray-dried and heat-dried iota-carrageenan matrices as functional ingredients in <i>surimi</i> gels. Food and Function, 2021, 12, 2137-2147.	4.6	13
8	Physicochemical, Antioxidant, and Anti-Inflammatory Properties of Rapeseed Lecithin Liposomes Loading a Chia (Salvia hispanica L.) Seed Extract. Antioxidants, 2021, 10, 693.	5.1	7
9	Characterization and storage stability of spray dried soy-rapeseed lecithin/trehalose liposomes loaded with a tilapia viscera hydrolysate. Innovative Food Science and Emerging Technologies, 2021, 71, 102708.	5.6	26
10	Characterization, Bioactivity and Application of Chitosan-Based Nanoparticles in a Food Emulsion Model. Polymers, 2021, 13, 3331.	4.5	12
11	Yogurt Fortification by the Addition of Microencapsulated Stripped Weakfish (Cynoscion guatucupa) Protein Hydrolysate. Antioxidants, 2021, 10, 1567.	5.1	12
12	Characterization, stability, and in vivo effects in Caenorhabditis elegans of microencapsulated protein hydrolysates from stripped weakfish (Cynoscion guatucupa) industrial byproducts. Food Chemistry, 2021, 364, 130380.	8.2	10
13	Encapsulation of antioxidant sea fennel (Crithmum maritimum) aqueous and ethanolic extracts in freeze-dried soy phosphatidylcholine liposomes. Food Research International, 2019, 119, 665-674.	6.2	39
14	Bioaccessibility and antimicrobial properties of a shrimp demineralization extract blended with chitosan as wrapping material in ready-to-eat raw salmon. Food Chemistry, 2019, 276, 342-349.	8.2	21
15	Changes in structural integrity of sodium caseinate films by the addition of nanoliposomes encapsulating an active shrimp peptide fraction. Journal of Food Engineering, 2019, 244, 47-54.	5.2	24
16	Anti-Inflammatory, Antioxidant, and Antimicrobial Effects of Underutilized Fish Protein Hydrolysate. Journal of Aquatic Food Product Technology, 2018, 27, 592-608.	1.4	59
17	Effects of agar films incorporated with fish protein hydrolysate or clove essential oil on flounder (Paralichthys orbignyanus) fillets shelf-life. Food Hydrocolloids, 2018, 81, 351-363.	10.7	119
18	A Novel Functional Wrapping Design by Complexation of Îμ-Polylysine with Liposomes Entrapping Bioactive Peptides. Food and Bioprocess Technology, 2016, 9, 1113-1124.	4.7	20

AILEN ALEMAN PEREZ

#	Article	IF	CITATIONS
19	Development of active films of chitosan isolated by mild extraction with added protein concentrate from shrimp waste. Food Hydrocolloids, 2015, 43, 91-99.	10.7	39
20	Antimicrobial and antioxidant chitosan solutions enriched with active shrimp (Litopenaeus vannamei) waste materials. Food Hydrocolloids, 2014, 35, 710-717.	10.7	76
21	Enzyme-assisted extraction of κ∫ι-hybrid carrageenan from Mastocarpus stellatus for obtaining bioactive ingredients and their application for edible active film development. Food and Function, 2014, 5, 319-329.	4.6	37
22	Sea bream bones and scales as a source of gelatin and ACE inhibitory peptides. LWT - Food Science and Technology, 2014, 55, 579-585.	5.2	58
23	Identification of ace-inhibitory peptides from squid skin collagen after in vitro gastrointestinal digestion. Food Research International, 2013, 54, 790-795.	6.2	84
24	Marine Collagen as a Source of Bioactive Molecules: A Review. Natural Products Journal, 2013, 3, 105-114.	0.3	30
25	Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Research International, 2011, 44, 1044-1051.	6.2	195
26	Antioxidant activity of several marine skin gelatins. LWT - Food Science and Technology, 2011, 44, 407-413.	5.2	126
27	Enzymatic hydrolysis of fish gelatin under high pressure treatment. International Journal of Food Science and Technology, 2011, 46, 1129-1136.	2.7	19
28	Contribution of Leu and Hyp residues to antioxidant and ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate. Food Chemistry, 2011, 125, 334-341.	8.2	227
29	Physico-chemical and film forming properties of giant squid (Dosidicus gigas) gelatin. Food Hydrocolloids, 2009, 23, 585-592.	10.7	68
30	Physical and chemical properties of tuna-skin and bovine-hide gelatin films with added aqueous oregano and rosemary extracts. Food Hydrocolloids, 2009, 23, 1334-1341.	10.7	92
31	Antioxidant properties of tuna-skin and bovine-hide gelatin films induced by the addition of oregano and rosemary extracts. Food Chemistry, 2009, 112, 18-25.	8.2	201
32	Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chemistry, 2009, 114, 976-983.	8.2	252