Rajesh Kisni Khatirkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/680204/publications.pdf

Version: 2024-02-01

331670 345221 1,501 63 21 36 citations g-index h-index papers 63 63 63 1129 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tribological behaviour of HVOF sprayed WC-12Co, WC-10Co-4Cr and Cr3C2â^'25NiCr coatings. Tribology International, 2017, 105, 55-68.	5.9	125
2	Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments. Materials Characterization, 2014, 93, 10-23.	4.4	108
3	Effect of solution annealing temperature on precipitation in 2205 duplex stainless steel. Materials Characterization, 2012, 74, 55-63.	4.4	70
4	Microstructure evolution and abrasive wear behavior of D2 steel. Wear, 2015, 328-329, 206-216.	3.1	69
5	Effect of TiB2 addition on the microstructure and wear resistance of Ti-6Al-4V alloy fabricated through direct metal laser sintering (DMLS). Journal of Alloys and Compounds, 2019, 777, 165-173.	5.5	69
6	Effect of friction stir welding process parameters on Mg-AZ31B/Al-AA6061 joints. Materials and Manufacturing Processes, 2018, 33, 308-314.	4.7	64
7	Friction and abrasive wear behaviour of Al 2 O 3 -13TiO 2 and Al 2 O 3 -13TiO 2 +Ni Graphite coatings. Tribology International, 2018, 121, 353-372.	5.9	63
8	A review of microstructure and texture evolution during plastic deformation and heat treatment of \hat{I}^2 -Ti alloys. Journal of Alloys and Compounds, 2022, 899, 163242.	5.5	60
9	Effect of cooling rate on transformation texture and variant selection during β→α transformation in Ti–5Ta–1.8Nb alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 549-558.	5.6	56
10	Microstructure, Mechanical and Intergranular Corrosion Behavior of Dissimilar DSS 2205 and ASS 316L Shielded Metal Arc Welds. Transactions of the Indian Institute of Metals, 2017, 70, 225-237.	1.5	50
11	Welding Behaviour of Low Nickel Chrome-Manganese Stainless Steel. ISIJ International, 2014, 54, 1361-1367.	1.4	44
12	Structural changes in iron powder during ball milling. Materials Chemistry and Physics, 2010, 123, 247-253.	4.0	40
13	Microstructure and texture development during deformation and recrystallisation in strip cast AA8011 aluminum alloy. Journal of Alloys and Compounds, 2018, 742, 369-382.	5.5	40
14	Low silicon non-grain-oriented electrical steel: Linking magnetic properties with metallurgical factors. Journal of Magnetism and Magnetic Materials, 2007, 313, 21-28.	2.3	39
15	A Comparative Study on the Effect of Electrode on Microstructure and Mechanical Properties of Dissimilar Welds of 2205 Austeno-Ferritic and 316L Austenitic Stainless Steel. Materials Transactions, 2016, 57, 494-500.	1.2	34
16	Microstructure and texture development in Ti-15V-3Cr-3Sn-3Al alloy $\hat{a}\in$ Possible role of strain path. Materials Characterization, 2019, 156, 109884.	4.4	30
17	Effect of austenitic fillers on microstructural and mechanical properties of ultra-low nickel austenitic stainless steel. Science and Technology of Welding and Joining, 2016, 21, 331-337.	3.1	28
18	Effect of Heat Input on Microstructure and Corrosion Behavior of Duplex Stainless Steel Shielded Metal Arc Welds. Transactions of the Indian Institute of Metals, 2018, 71, 1595-1606.	1.5	27

#	Article	IF	Citations
19	Investigations on the effect of heating temperature and cooling rate on evolution of microstructure in an \hat{l}_{\pm} + \hat{l}^{2} titanium alloy. Journal of Materials Research, 2018, 33, 946-957.	2.6	25
20	Strain Localizations in Ultra Low Carbon Steel: Exploring the Role of Dislocations. ISIJ International, 2011, 51, 849-856.	1.4	24
21	Microstructure and Texture Development during Cold Rolling in UNS S32205 and UNS S32760 Duplex Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2349-2362.	2.2	24
22	Recrystallization behavior of a cold rolled Ti–15V–3Sn–3Cr–3Al alloy. Journal of Materials Research, 2019, 34, 3082-3092.	2.6	22
23	Texture development during multi-step cross rolling of a \hat{l}^2 titanium alloy: Experiments and simulations. Journal of Alloys and Compounds, 2021, 850, 156824.	5.5	21
24	Microstructure Evolution and Abrasive Wear Behavior of Ti-6Al-4V Alloy. Journal of Materials Engineering and Performance, 2015, 24, 3969-3981.	2.5	19
25	Comparison of recrystallization textures in interstitial free and interstitial free high strength steels. Materials Chemistry and Physics, 2011, 127, 128-136.	4.0	17
26	ND// $<$ 111 > Recrystallization in Interstitial Free Steel: The Defining Role of Growth Inhibition. ISIJ International, 2012, 52, 894-901.	1.4	17
27	Controlled Warm Working: Possible Tool for Optimizing Stored Energy Advantage in Deformed γ-fiber (ND//‹111›). ISIJ International, 2009, 49, 78-85.	1.4	16
28	Structural and Wear Characterization of Heat Treated En24 Steel. ISIJ International, 2012, 52, 1370-1376.	1.4	16
29	Abrasive Wear Behaviour of Heat Treated En31 Steel. ISIJ International, 2013, 53, 1471-1478.	1.4	16
30	Gas Tungsten Arc Welding of 316L Austenitic Stainless Steel with UNS S32205 Duplex Stainless Steel. Transactions of the Indian Institute of Metals, 2018, 71, 361-372.	1.5	16
31	Shielded metal arc welding of UNS S32750 steel: microstructure, mechanical properties and corrosion behaviour. Materials Research Express, 2018, 5, 106506.	1.6	16
32	Texture development during cold rolling of Fe–Cr–Ni alloy-experiments and simulations. Philosophical Magazine, 2017, 97, 1939-1962.	1.6	15
33	Multistep Cross Rolling of UNS S32101 Steel: Microstructure, Texture, and Magnetic Properties. Journal of Materials Engineering and Performance, 2021, 30, 2916-2929.	2.5	15
34	Orientation Dependent Recovery in Interstitial Free Steel. ISIJ International, 2012, 52, 884-893.	1.4	15
35	Strain Rate Sensitivity Behaviour of a Chrome-Nickel Austentic-Ferritic Stainless Steel and its Constitutive Modelling. ISIJ International, 2018, 58, 1840-1849.	1.4	14
36	Structural developments in un-stabilized ultra low carbon steel during warm deformation and annealing. Materials Chemistry and Physics, 2016, 183, 339-348.	4.0	13

#	Article	IF	CITATIONS
37	Deciphering the Possible Role of Strain Path on the Evolution of Microstructure, Texture, and Magnetic Properties in a Fe-Cr-Ni Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 3402-3418.	2.2	13
38	Cold rolling of an interstitial free (IF) steel—Experiments and simulations. Mechanics of Materials, 2020, 148, 103420.	3.2	13
39	Microstructure evolution and corrosion behaviour of a high Mo containing $\hat{l}\pm\hat{A}+\hat{A}\hat{l}^2$ titanium alloy for biomedical applications. Journal of Alloys and Compounds, 2022, 912, 165240.	5.5	12
40	Strontium barium niobate-relating structural developments and dielectric constant. Journal of the European Ceramic Society, 2007, 27, 2255-2263.	5.7	11
41	Texture Development During Cold Rolling of a \hat{i}^2 -Ti Alloy: Experiments and Simulations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1031-1043.	2.2	11
42	Effect of Mode of Rolling on Recrystallization Kinetics and Microstructure Evolution in Interstitial Free High Strength Steel Sheet. ISIJ International, 2013, 53, 356-364.	1.4	10
43	Strain rate sensitivity behaviour of Fe–21Cr-1.5Ni–5Mn alloy and its constitutive modelling. Materials Chemistry and Physics, 2021, 271, 124948.	4.0	10
44	Microstructure and texture development in AA3003 aluminium alloy. Materials Today Communications, 2020, 24, 100965.	1.9	9
45	Study of texture and microtexture during β to α+β transformation in a Ti–5Ta–1.8Nb alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 581-588.	5.6	8
46	High perpendicular anisotropy in copper ferrite thin films. Journal of Applied Physics, 2008, 103, 013903.	2.5	7
47	Development of Cube Recrystallization Texture in Strip Cast AA3004 Aluminium Alloy. Transactions of the Indian Institute of Metals, 2016, 69, 1833-1841.	1.5	7
48	Development of recrystallization textures in 0.08%C steel. Transactions of the Indian Institute of Metals, 2010, 63, 55-62.	1.5	6
49	Evolution of Microstructure and Texture in UNS S32750 Super Duplex Stainless Steel Weldments. Transactions of the Indian Institute of Metals, 2021, 74, 2267-2283.	1.5	6
50	Effect of heating temperature and cooling rate on the microstructure and mechanical properties of a Mo-rich two phase α + β titanium alloy. Journal of Materials Research, 2021, 36, 751-763.	2.6	5
51	Effect of isothermal aging at 750°C on microstructure and mechanical properties of UNS S32101 lean duplex stainless steel. Materials Today Communications, 2021, 29, 102753.	1.9	5
52	Assessment of Inter-granular Corrosion Susceptibility of 304L Stainless Steel Using Non-destructive Electrochemical Techniques. ISIJ International, 2014, 54, 1898-1905.	1.4	4
53	Effect of Cooling Rate on the Precipitation Behavior of a Fe–Cr–Ni Alloy. Transactions of the Indian Institute of Metals, 2020, 73, 1961-1973.	1.5	4
54	Evolution of microstructure and texture during homogenization in a strip cast AA8011 aluminum alloy. Intermetallics, 2021, 130, 107064.	3.9	4

#	Article	IF	CITATIONS
55	Cold compression behavior on the evolution of microstructure and texture in Beta C titanium alloy. Journal of Alloys and Compounds, 2021, 887, 161400.	5.5	4
56	Effect of composition and microstructure on slurry abrasion response of hardfaced martensitic stainless steel. Tribology - Materials, Surfaces and Interfaces, 2016, 10, 45-52.	1.4	3
57	Strain Localizations in Ultra Low Carbon Steel. Materials Science Forum, 0, 702-703, 782-785.	0.3	2
58	A new method for automated reconstruction of pre-transformation microstructures. Philosophical Magazine Letters, 2016, 96, 175-182.	1.2	2
59	Texture development during cross rolling of a dual-phase Fe–Cr–Ni alloy: experiments and simulations. Philosophical Magazine Letters, 2018, 98, 17-26.	1.2	2
60	Unidirectional cold rolling of Fe-21Cr-5Mn-1.5Ni alloy – Microstructure, texture and magnetic properties. Journal of Magnetism and Magnetic Materials, 2022, 549, 169040.	2.3	2
61	An investigation on the influence of cutting speed and thermal softening in micro-cutting of single crystal. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.	1.6	2
62	Scaling Laws of Wear by Slurry Abrasion of Mild Steel. Applied Mechanics and Materials, 0, 446-447, 126-130.	0.2	1
63	Role of Texture and Microstructural Developments in the Forming Limit Diagrams of Family of Interstitial Free Steels. Journal of Materials Engineering and Performance, 0, , 1.	2.5	1