Patrik Schmuki

List of Publications by Citations

Source: https://exaly.com/author-pdf/6801807/patrik-schmuki-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

106 49,282 195 714 h-index g-index citations papers 6.9 53,175 750 7.99 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
714	TiO2 nanotubes: synthesis and applications. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2904	-3 9 6.4	2393
713	TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. <i>Current Opinion in Solid State and Materials Science</i> , 2007 , 11, 3-18	12	1053
712	Nanosize and vitality: TiO2 nanotube diameter directs cell fate. <i>Nano Letters</i> , 2007 , 7, 1686-91	11.5	1019
711	High-aspect-ratio TiO2 nanotubes by anodization of titanium. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 2100-2	16.4	990
710	One-dimensional titanium dioxide nanomaterials: nanotubes. <i>Chemical Reviews</i> , 2014 , 114, 9385-454	68.1	885
709	Smooth anodic TiO2 nanotubes. Angewandte Chemie - International Edition, 2005, 44, 7463-5	16.4	767
708	Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. <i>Chemical Communications</i> , 2009 , 2791-808	5.8	717
707	Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. <i>Journal of the American Chemical Society</i> , 2008 , 130, 13364-72	16.4	708
706	Self-organized TiO2 nanotube layers as highly efficient photocatalysts. <i>Small</i> , 2007 , 3, 300-4	11	701
705	Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. <i>Nano Letters</i> , 2007 , 7, 1286-9	11.5	654
704	A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. <i>Small</i> , 2012 , 8, 3073-103	11	533
703	TiO2 nanotubes and their application in dye-sensitized solar cells. <i>Nanoscale</i> , 2010 , 2, 45-59	7.7	516
702	Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes. <i>Nano Letters</i> , 2006 , 6, 10	80-1.98	2 ₅₁₁
701	Engineering biocompatible implant surfaces: Part I: Materials and surfaces. <i>Progress in Materials Science</i> , 2013 , 58, 261-326	42.2	506
700	Self-Organized Porous Titanium Oxide Prepared in H[sub 2]SO[sub 4]/HF Electrolytes. <i>Electrochemical and Solid-State Letters</i> , 2003 , 6, B12		459
699	TiO2 nanotube surfaces: 15 nman optimal length scale of surface topography for cell adhesion and differentiation. <i>Small</i> , 2009 , 5, 666-71	11	442
698	A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. <i>Science</i> , 2017 , 358, 1192-1197	33.3	418

(2007-2006)

697	Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. <i>Electrochimica Acta</i> , 2006 , 52, 1258-1264	6.7	406
696	Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. <i>Journal of Electroanalytical Chemistry</i> , 2008 , 621, 254-266	4.1	404
695	Photoanodes based on TiO and FeO for solar water splitting - superior role of 1D nanoarchitectures and of combined heterostructures. <i>Chemical Society Reviews</i> , 2017 , 46, 3716-3769	58.5	385
694	TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes. <i>Electrochemistry Communications</i> , 2006 , 8, 1321-1325	5.1	371
693	Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4230-2	16.4	368
692	Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. <i>Nano Letters</i> , 2014 , 14, 3309-7	l 3 1.5	367
691	Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. <i>Electrochimica Acta</i> , 2005 , 50, 3679-3684	6.7	358
690	Dye-sensitized anodic TiO2 nanotubes. <i>Electrochemistry Communications</i> , 2005 , 7, 1133-1137	5.1	349
689	Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles. <i>Electrochemistry Communications</i> , 2008 , 10, 71-75	5.1	342
688	Titanium oxide nanotubes prepared in phosphate electrolytes. <i>Electrochemistry Communications</i> , 2005 , 7, 505-509	5.1	340
687	Doped TiO2 and TiO2 nanotubes: synthesis and applications. <i>ChemPhysChem</i> , 2010 , 11, 2698-713	3.2	302
686	Titanium nanostructures for biomedical applications. <i>Nanotechnology</i> , 2015 , 26, 062002	3.4	295
685	Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. <i>Journal of the American Chemical Society</i> , 2008 , 130, 16454-5	16.4	295
684	Photocatalysis with Reduced TiO: From Black TiO to Cocatalyst-Free Hydrogen Production. <i>ACS Catalysis</i> , 2019 , 9, 345-364	13.1	295
683	Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. <i>Cell and Tissue Research</i> , 2010 , 339, 131-53	4.2	279
682	Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. <i>Applied Physics Letters</i> , 2005 , 87, 243114	3.4	272
681	250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. <i>Physica Status Solidi - Rapid Research Letters</i> , 2007 , 1, R65-R67	2.5	263
68o	Filling of TiO2 Nanotubes by Self-Doping and Electrodeposition. <i>Advanced Materials</i> , 2007 , 19, 3027-30	3 1 4	260

679	TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. <i>Nano Today</i> , 2013 , 8, 235-264	17.9	259
678	Formation of self-organized niobium porous oxide on niobium. <i>Electrochemistry Communications</i> , 2005 , 7, 97-100	5.1	259
677	Initiation and Growth of Self-Organized TiO[sub 2] Nanotubes Anodically Formed in NH[sub 4]F[NH[sub 4])[sub 2]SO[sub 4] Electrolytes. <i>Journal of the Electrochemical Society</i> , 2005 , 152, B405	3.9	257
676	Hydroxyapatite growth on anodic TiO2 nanotubes. <i>Journal of Biomedical Materials Research - Part A</i> , 2006 , 77, 534-41	5.4	239
675	Self-organized porous WO3 formed in NaF electrolytes. <i>Electrochemistry Communications</i> , 2005 , 7, 295-	2 <u>9</u> .8	227
674	N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia. <i>Electrochemistry Communications</i> , 2006 , 8, 544-548	5.1	226
673	Tailoring the wettability of TiO2 nanotube layers. <i>Electrochemistry Communications</i> , 2005 , 7, 1066-1070	5.1	226
672	Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. <i>Journal of Biomedical Materials Research - Part A</i> , 2005 , 75, 928-33	5.4	219
671	Morphological instability leading to formation of porous anodic oxide films. <i>Nature Materials</i> , 2011 , 11, 162-6	27	216
670	Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization. <i>Electrochemistry Communications</i> , 2005 , 7, 49-52	5.1	216
669	Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation of methanol. <i>Electrochemistry Communications</i> , 2005 , 7, 1417-1422	5.1	206
668	Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. <i>Electrochemistry Communications</i> , 2005 , 7, 576-580	5.1	204
667	TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. <i>Journal of the American Chemical Society</i> , 2008 , 130, 16154-5	16.4	202
666	Mechanistic Aspects of the Self-Organization Process for Oxide Nanotube Formation on Valve Metals. <i>Journal of the Electrochemical Society</i> , 2007 , 154, C472	3.9	197
665	Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angewandte Chemie - International Edition, 2009 , 48, 969-72	16.4	195
664	Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. <i>Nano Letters</i> , 2009 , 9, 3157-64	11.5	194
663	TiO2 nanotubes: H+insertion and strong electrochromic effects. <i>Electrochemistry Communications</i> , 2006 , 8, 528-532	5.1	194
662	Wetting behaviour of layers of TiO2 nanotubes with different diameters. <i>Journal of Materials Chemistry</i> , 2005 , 15, 4488		193

(2007-2009)

661	In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2009 , 89, 165-71	3.5	191
660	From Bacon to barriers: a review on the passivity of metals and alloys. <i>Journal of Solid State Electrochemistry</i> , 2002 , 6, 145-164	2.6	188
659	Vertically aligned mixed V2O5-TiO2 nanotube arrays for supercapacitor applications. <i>Chemical Communications</i> , 2011 , 47, 7746-8	5.8	185
658	Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 1916-9	16.4	182
657	TiO2 Nanotube arrays: Elimination of disordered top layers (Banograss) for improved photoconversion efficiency in dye-sensitized solar cells. <i>Electrochemistry Communications</i> , 2008 , 10, 183	s <i>5</i> :183:	8 ¹⁸¹
656	Photocatalysis with TiO2 Nanotubes: LolorfullReactivity and Designing Site-Specific Photocatalytic Centers into TiO2 Nanotubes. <i>ACS Catalysis</i> , 2017 , 7, 3210-3235	13.1	180
655	Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles. <i>Electrochemistry Communications</i> , 2009 , 11, 1001-1004	5.1	178
654	Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes. <i>Electrochemistry Communications</i> , 2007 , 9, 947-952	5.1	176
653	Towards ideal hexagonal self-ordering of TiO2 nanotubes. <i>Physica Status Solidi - Rapid Research Letters</i> , 2007 , 1, 181-183	2.5	175
652	Thick self-organized porous zirconium oxide formed in H2SO4/NH4F electrolytes. <i>Electrochemistry Communications</i> , 2004 , 6, 1131-1134	5.1	174
651	Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. <i>Nanoscale</i> , 2011 , 3, 309	4 -7 67	168
650	Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. <i>Electrochimica Acta</i> , 2007 , 52, 4053-4061	6.7	168
649	Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes. <i>Electrochimica Acta</i> , 2009 , 54, 4321-4327	6.7	161
648	Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. <i>Acta Biomaterialia</i> , 2008 , 4, 1576-82	10.8	161
647	TiO2 nanotubes in dye-sensitized solar cells: critical factors for the conversion efficiency. <i>Chemistry - an Asian Journal</i> , 2009 , 4, 520-5	4.5	160
646	TiO2-Nb2O5 nanotubes with electrochemically tunable morphologies. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 6993-6	16.4	160
645	Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite. <i>Acta Biomaterialia</i> , 2009 , 5, 2322-30	10.8	159
644	Photoresponse in the visible range from Cr doped TiO2 nanotubes. <i>Chemical Physics Letters</i> , 2007 , 433, 323-326	2.5	157

643	Anodic formation of thick anatase TiO2 mesosponge layers for high-efficiency photocatalysis. Journal of the American Chemical Society, 2010 , 132, 1478-9	16.4	155
642	"Black" TiO2 Nanotubes Formed by High-Energy Proton Implantation Show Noble-Metal-co-Catalyst Free Photocatalytic H2-Evolution. <i>Nano Letters</i> , 2015 , 15, 6815-20	11.5	152
641	Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays. <i>Integrative Biology (United Kingdom)</i> , 2009 , 1, 525-32	3.7	146
640	Self-organized porous TiO2 and ZrO2 produced by anodization. <i>Corrosion Science</i> , 2005 , 47, 3324-3335	6.8	146
639	Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. <i>Electrochemistry Communications</i> , 2007 , 9, 1783-1787	5.1	145
638	Tantalum Nitride Nanorod Arrays: Introducing Ni E e Layered Double Hydroxides as a Cocatalyst Strongly Stabilizing Photoanodes in Water Splitting. <i>Chemistry of Materials</i> , 2015 , 27, 2360-2366	9.6	143
637	Annealing effects on the photoresponse of TiO2 nanotubes. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, R28-R30	1.6	142
636	The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion. <i>Corrosion Science</i> , 2005 , 47, 1239-1250	6.8	140
635	High photocurrent conversion efficiency in self-organized porous WO3. <i>Applied Physics Letters</i> , 2006 , 88, 203119	3.4	140
634	Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. <i>Electrochimica Acta</i> , 2008 , 53, 6995-7003	6.7	139
633	Fabrication and characterization of smooth high aspect ratio zirconia nanotubes. <i>Chemical Physics Letters</i> , 2005 , 410, 188-191	2.5	136
632	Anodic TiO2 nanotube layers: Why does self-organized growth occur mini review. <i>Electrochemistry Communications</i> , 2014 , 46, 157-162	5.1	135
631	Self-Assembled Porous Tantalum Oxide Prepared in H[sub 2]SO[sub 4]/HF Electrolytes. <i>Electrochemical and Solid-State Letters</i> , 2005 , 8, J10		135
630	Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes. <i>Electrochemistry Communications</i> , 2007 , 9, 2822-2826	5.1	128
629	Self-Organized Anodic TiO2 Nanotube Arrays Functionalized by Iron Oxide Nanoparticles. <i>Chemistry of Materials</i> , 2009 , 21, 662-672	9.6	126
628	Characterization of electronic properties of TiO2 nanotube films. <i>Corrosion Science</i> , 2007 , 49, 203-210	6.8	126
627	Self-organized high-aspect-ratio nanoporous zirconium oxides prepared by electrochemical anodization. <i>Small</i> , 2005 , 1, 722-5	11	126
626	A Photo-Electrochemical Investigation of Self-Organized TiO[sub 2] Nanotubes. <i>Journal of the Electrochemical Society</i> , 2010 , 157, G76	3.9	122

(2011-2009)

625	Semimetallic TiO2 nanotubes. Angewandte Chemie - International Edition, 2009, 48, 7236-9	16.4	122
624	Metastable Pitting and Semiconductive Properties of Passive Films. <i>Journal of the Electrochemical Society</i> , 1992 , 139, 1908-1913	3.9	121
623	Initiation and Formation of Porous GaAs. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 3316-3322	3.9	120
622	Conductivity of TiO2 nanotubes: Influence of annealing time and temperature. <i>Chemical Physics Letters</i> , 2010 , 494, 260-263	2.5	117
621	Efficient Photocatalytic H2 Evolution: Controlled Dewetting-Dealloying to Fabricate Site-Selective High-Activity Nanoporous Au Particles on Highly Ordered TiO2 Nanotube Arrays. <i>Advanced Materials</i> , 2015 , 27, 3208-15	24	116
620	Carbon doping of self-organized TiO2nanotube layers by thermal acetylene treatment. <i>Nanotechnology</i> , 2007 , 18, 105604	3.4	116
619	Ultrafast growth of highly ordered anodic TiO2 nanotubes in lactic acid electrolytes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11316-8	16.4	113
618	Tracer Investigation of Pore Formation in Anodic Titania. <i>Journal of the Electrochemical Society</i> , 2008 , 155, C487	3.9	113
617	Transparent TiO2 nanotube electrodes via thin layer anodization: fabrication and use in electrochromic devices. <i>Langmuir</i> , 2009 , 25, 4841-4	4	111
616	TiO2 Nanotubes [Annealing Effects on Detailed Morphology and Structure. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 4351-4356	2.3	111
615	Enhanced photochromism of Ag loaded self-organized TiO2 nanotube layers. <i>Chemical Physics Letters</i> , 2007 , 445, 233-237	2.5	111
614	Dye-sensitized solar cells based on thick highly ordered TiO(2) nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media. <i>Nanotechnology</i> , 2008 , 19, 235602	3.4	110
613	Enhanced electrochromic properties of self-organized nanoporous WO3. <i>Electrochemistry Communications</i> , 2008 , 10, 1777-1780	5.1	110
612	High-contrast electrochromic switching using transparent lift-off layers of self-organized TiO2 nanotubes. <i>Small</i> , 2008 , 4, 1063-6	11	109
611	TiO2 nanotube layers: Dose effects during nitrogen doping by ion implantation. <i>Chemical Physics Letters</i> , 2006 , 419, 426-429	2.5	108
610	Influence of Water Content on the Growth of Anodic TiO[sub 2] Nanotubes in Fluoride-Containing Ethylene Glycol Electrolytes. <i>Journal of the Electrochemical Society</i> , 2010 , 157, C18	3.9	107
609	Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. <i>Chemical Communications</i> , 2011 , 47, 2032-4	5.8	106
608	Highly uniform Pt nanoparticle decoration on TiO2 nanotube arrays: A refreshable platform for methanol electrooxidation. <i>Electrochemistry Communications</i> , 2011 , 13, 290-293	5.1	106

607	TiO2-Nanorfiren: Synthese und Anwendungen. <i>Angewandte Chemie</i> , 2011 , 123, 2956-2995	3.6	103
606	Phase Composition, Size, Orientation, and Antenna Effects of Self-Assembled Anodized Titania Nanotube Arrays: A Polarized Micro-Raman Investigation. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 12687-12696	3.8	103
605	TiO2 Nanotubes: Nitrogen-Ion Implantation at Low Dose Provides Noble-Metal-Free Photocatalytic H2 -Evolution Activity. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3763-7	16.4	102
604	Synergistic control of mesenchymal stem cell differentiation by nanoscale surface geometry and immobilized growth factors on TiO2 nanotubes. <i>Small</i> , 2012 , 8, 98-107	11	102
603	Voltage-induced payload release and wettability control on TiO2 and TiO2 nanotubes. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 351-4	16.4	102
602	Formation of Self-Organized Zirconium Titanate Nanotube Layers by Alloy Anodization. <i>Advanced Materials</i> , 2007 , 19, 1757-1760	24	102
601	Adhesion of osteoblasts to a nanorough titanium implant surface. <i>International Journal of Nanomedicine</i> , 2011 , 6, 1801-16	7.3	101
600	Visible photoluminescence from porous GaAs. <i>Applied Physics Letters</i> , 1996 , 69, 1620-1622	3.4	101
599	On the Controlled Loading of Single Platinum Atoms as a Co-Catalyst on TiO Anatase for Optimized Photocatalytic H Generation. <i>Advanced Materials</i> , 2020 , 32, e1908505	24	100
598	Hierarchical DSSC structures based on lingle walled liO2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%. <i>Energy and Environmental Science</i> , 2015 , 8, 849-854	35.4	100
597	Intrinsic Au decoration of growing TiO2 nanotubes and formation of a high-efficiency photocatalyst for H2 production. <i>Advanced Materials</i> , 2013 , 25, 6133-7	24	99
596	Oxide nanotubes on Ti-Ru alloys: strongly enhanced and stable photoelectrochemical activity for water splitting. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5629-31	16.4	99
595	Transition from Nanopores to Nanotubes: Self-Ordered Anodic Oxide Structures on Titanium Aluminides. <i>Chemistry of Materials</i> , 2008 , 20, 3245-3247	9.6	99
594	TiO2 nanotubes in dye-sensitized solar cells: Higher efficiencies by well-defined tube tops. <i>Electrochemistry Communications</i> , 2010 , 12, 949-951	5.1	98
593	High aspect ratio ordered nanoporous Ta2O5 films by anodization of Ta. <i>Electrochemistry Communications</i> , 2008 , 10, 428-432	5.1	98
592	Aligned metal oxide nanotube arrays: key-aspects of anodic TiO nanotube formation and properties. <i>Nanoscale Horizons</i> , 2016 , 1, 445-466	10.8	97
591	Size-effects in TiO2 nanotubes: Diameter dependent anatase/rutile stabilization. <i>Electrochemistry Communications</i> , 2011 , 13, 538-541	5.1	95
590	Smooth anodic TiO2 nanotubes: annealing and structure. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, R67-R69	1.6	94

(2006-2010)

589	WO3/TiO2 nanotubes with strongly enhanced photocatalytic activity. <i>Chemistry - A European Journal</i> , 2010 , 16, 8993-7	4.8	93
588	Optimized monolayer grafting of 3-aminopropyltriethoxysilane onto amorphous, anatase and rutile TiO2. <i>Surface Science</i> , 2010 , 604, 346-353	1.8	92
587	Strongly Enhanced Water Splitting Performance of Ta3 N5 Nanotube Photoanodes with Subnitrides. <i>Advanced Materials</i> , 2016 , 28, 2432-8	24	92
586	Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents. <i>Electrochemistry Communications</i> , 2010 , 12, 1184-1186	5.1	91
585	Lattice widening in niobium-doped TiO2 nanotubes: efficient ion intercalation and swift electrochromic contrast. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7934-7	16.4	90
584	Self-organization of anodic nanotubes on two size scales. <i>Small</i> , 2006 , 2, 888-91	11	90
583	Light Emitting Micropatterns of Porous Si Created at Surface Defects. <i>Physical Review Letters</i> , 1998 , 80, 4060-4063	7.4	89
582	A lithographic approach to determine volume expansion factors during anodization: Using the example of initiation and growth of TiO2-nanotubes. <i>Electrochimica Acta</i> , 2009 , 54, 5942-5948	6.7	88
581	Efficient solar energy conversion using TiO2 nanotubes produced by rapid breakdown anodization (a) comparison. <i>Physica Status Solidi - Rapid Research Letters</i> , 2007 , 1, 135-137	2.5	88
580	Nanotube oxide coating on TiI29NbI13TaI1.6Zr alloy prepared by self-organizing anodization. <i>Electrochimica Acta</i> , 2006 , 52, 94-101	6.7	88
579	Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation. <i>ACS Nano</i> , 2015 , 9, 7113-23	16.7	85
578	FeO/TiO 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting. <i>Nanoscale</i> , 2017 , 9, 134-142	7.7	85
577	Enhanced visible light photocurrent generation at surface-modified TiO2 nanotubes. <i>Electrochimica Acta</i> , 2009 , 54, 2640-2646	6.7	85
576	Decoration of TiO2 nanotube layers with WO3 nanocrystals for high-electrochromic activity. <i>Electrochemistry Communications</i> , 2009 , 11, 728-732	5.1	85
575	The origin for tubular growth of TiO2 nanotubes: A fluoride rich layer between tube-walls. <i>Surface Science</i> , 2011 , 605, L57-L60	1.8	85
574	Modulated TiO2 nanotube stacks and their use in interference sensors. <i>Electrochemistry Communications</i> , 2010 , 12, 579-582	5.1	85
573	Formation of hexagonally ordered nanoporous anodic zirconia. <i>Electrochemistry Communications</i> , 2008 , 10, 1916-1919	5.1	83
572	Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses. <i>Journal of Materials Research</i> , 2006 , 21, 2824-2828	2.5	83

571	Aligned MoOx /MoS2 Core-Shell Nanotubular Structures with a High Density of Reactive Sites Based on Self-Ordered Anodic Molybdenum Oxide Nanotubes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12252-6	16.4	83
570	Self-organized arrays of single-metal catalyst particles in TiO2 cavities: a highly efficient photocatalytic system. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 7514-7	16.4	82
569	TiO2 nanotubes: photocatalyst for cancer cell killing. <i>Physica Status Solidi - Rapid Research Letters</i> , 2008 , 2, 194-196	2.5	82
568	On wafer TiO2 nanotube-layer formation by anodization of Ti-films on Si. <i>Chemical Physics Letters</i> , 2006 , 428, 421-425	2.5	81
567	Electrochemical Behavior of Cr2 O 3 / Fe2 O 3 Artificial Passive Films Studied by In Situ XANES. Journal of the Electrochemical Society, 1998 , 145, 791-801	3.9	80
566	Influence of anodization parameters on the expansion factor of TiO2 nanotubes. <i>Electrochimica Acta</i> , 2013 , 91, 90-95	6.7	79
565	High aspect ratio, self-ordered iron oxide nanopores formed by anodization of Fe in ethylene glycol/NH4F electrolytes. <i>Physica Status Solidi - Rapid Research Letters</i> , 2009 , 3, 64-66	2.5	79
564	Self-organized TiO2 Nanotube Arrays: Critical Effects on Morphology and Growth. <i>Israel Journal of Chemistry</i> , 2010 , 50, 453-467	3.4	79
563	Promoting the hydrogen evolution reaction through oxygen vacancies and phase transformation engineering on layered double hydroxide nanosheets. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2490-2	453	79
562	Formation of 'single walled' TiO2 nanotubes with significantly enhanced electronic properties for higher efficiency dye-sensitized solar cells. <i>Chemical Communications</i> , 2013 , 49, 2067-9	5.8	78
561	Hydrogenated anatase: strong photocatalytic dihydrogen evolution without the use of a co-catalyst. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 14201-5	16.4	78
560	Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface. <i>International Journal of Biochemistry and Cell Biology</i> , 2014 , 55, 187-95	5.6	77
559	Multilayer TiO[sub 2]Nanotube Formation by Two-Step Anodization. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, K28		77
558	Illumination effects on the stability of the passive film on iron. <i>Electrochimica Acta</i> , 1995 , 40, 775-783	6.7	77
557	Protein interactions with layers of TiO nanotube and nanopore arrays: Morphology and surface charge influence. <i>Acta Biomaterialia</i> , 2016 , 45, 357-366	10.8	77
556	Nitrogen doping of nanoporous WO3 layers by NH3 treatment for increased visible light photoresponse. <i>Nanotechnology</i> , 2010 , 21, 105704	3.4	76
555	Solar water splitting: preserving the beneficial small feature size in porous Fe2O3 photoelectrodes during annealing. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 212-215	13	75
554	Comparison of the Semiconductive Properties of Sputter-Deposited Iron Oxides with the Passive Film on Iron. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 378-385	3.9	75

(2009-2006)

553	Voltage Oscillations and Morphology during the Galvanostatic Formation of Self-Organized TiO[sub 2] Nanotubes. <i>Journal of the Electrochemical Society</i> , 2006 , 153, B137	3.9	75
552	Plasmon-induced hole-depletion layer on hematite nanoflake photoanodes for highly efficient solar water splitting. <i>Nano Energy</i> , 2017 , 35, 171-178	17.1	74
551	Ta-doped TiO2 nanotubes for enhanced solar-light photoelectrochemical water splitting. <i>Chemistry - A European Journal</i> , 2013 , 19, 5841-4	4.8	74
550	Electrochemical formation of self-organized zirconium titanate nanotube multilayers. <i>Electrochemistry Communications</i> , 2007 , 9, 615-619	5.1	74
549	Porous Tantalum Oxide Prepared by Electrochemical Anodic Oxidation. <i>Journal of the Electrochemical Society</i> , 2005 , 152, C639	3.9	74
548	Water annealing and other low temperature treatments of anodic TiO2 nanotubes: A comparison of properties and efficiencies in dye sensitized solar cells and for water splitting. <i>Electrochimica Acta</i> , 2012 , 82, 98-102	6.7	73
547	Size-selective separation of macromolecules by nanochannel titania membrane with self-cleaning (declogging) ability. <i>Journal of the American Chemical Society</i> , 2010 , 132, 7893-5	16.4	73
546	Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes. <i>Chemical Physics Letters</i> , 2010 , 490, 58-62	2.5	73
545	TiO2 nano test tubes as a self-cleaning platform for high-sensitivity immunoassays. Small, 2010, 6, 1180	0- 4 1	73
544	Incorporation of bioactive glass nanoparticles in electrospun PCL/chitosan fibers by using benign solvents. <i>Bioactive Materials</i> , 2018 , 3, 55-63	16.7	72
543	Visible-Light-Triggered Drug Release from TiO2 Nanotube Arrays: A Controllable Antibacterial Platform. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 593-7	16.4	72
542	Self-organized TiO2 nanotubes: Factors affecting their morphology and properties. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2424-2435	1.3	72
541	Unexpected adsorption of oxygen on TiO2 nanotube arrays: influence of crystal structure. <i>Nano Letters</i> , 2007 , 7, 1091-4	11.5	72
540	Electrochemical formation of self-organized anodic nanotube coating on Ti-28Zr-8Nb biomedical alloy surface. <i>Acta Biomaterialia</i> , 2008 , 4, 318-23	10.8	72
539	Enhanced self-ordering of anodic ZrO2 nanotubes in inorganic and organic electrolytes using two-step anodization. <i>Physica Status Solidi - Rapid Research Letters</i> , 2008 , 2, 102-104	2.5	72
538	In Situ X-Ray Absorption Near-Edge Spectroscopic Study of the Cathodic Reduction of Artificial Iron Oxide Passive Films. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 574-582	3.9	72
537	Templated dewetting: designing entirely self-organized platforms for photocatalysis. <i>Chemical Science</i> , 2016 , 7, 6865-6886	9.4	72
536	Formation of a non-thickness-limited titanium dioxide mesosponge and its use in dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 9326-9	16.4	71

535	Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology. <i>Nanotechnology</i> , 2009 , 20, 045603	3.4	71
534	Self-organized TiO2 nanotubes: Visible light activation by Ni oxide nanoparticle decoration. <i>Electrochemistry Communications</i> , 2010 , 12, 254-257	5.1	71
533	Electrochemical synthesis of self-organized TiO2 nanotubular structures using an ionic liquid (BMIM-BF4). <i>Electrochimica Acta</i> , 2008 , 54, 643-648	6.7	71
532	TiO2 nanotubes grown in different organic electrolytes: Two-size self-organization, single vs. double-walled tubes, and giant diameters. <i>Physica Status Solidi - Rapid Research Letters</i> , 2010 , 4, 215-21	7 ^{2.5}	69
531	Selective high-resolution electrodeposition on semiconductor defect patterns. <i>Physical Review Letters</i> , 2000 , 85, 2985-8	7.4	69
530	In Situ Characterization of Anodic Silicon Oxide Films by AC Impedance Measurements. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 1705-1712	3.9	69
529	Ordered Ferroelectric Lead Titanate Nanocellular Structure by Conversion of Anodic TiO2 Nanotubes. <i>Advanced Materials</i> , 2009 , 21, 3121-3125	24	68
528	Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys. <i>Electrochemistry Communications</i> , 2008 , 10, 910-913	5.1	68
527	A Cocatalytic Electron-Transfer Cascade Site-Selectively Placed on TiO2 Nanotubes Yields Enhanced Photocatalytic H2 Evolution. <i>Advanced Functional Materials</i> , 2018 , 28, 1704259	15.6	68
526	Self-organized porous and tubular oxide layers on TiAl alloys. <i>Electrochemistry Communications</i> , 2007 , 9, 2397-2402	5.1	67
525	Formation of Double-Walled TiO2 Nanotubes and Robust Anatase Membranes. <i>Advanced Materials</i> , 2008 , 20, NA-NA	24	67
524	Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization. <i>Journal of Electroceramics</i> , 2006 , 16, 29-34	1.5	67
523	Hematite Photoanodes: Synergetic Enhancement of Light Harvesting and Charge Management by Sandwiched with Fe2TiO5/Fe2O3/Pt Structures. <i>Advanced Functional Materials</i> , 2017 , 27, 1703527	15.6	66
522	Self-organized nano-tubes of TiO2-MoO3 with enhanced electrochromic properties. <i>Chemical Communications</i> , 2009 , 2008-10	5.8	66
521	Lithium-ion insertion in anodic TiO2 nanotubes resulting in high electrochromic contrast. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2007 , 204, 1281-1285	1.6	66
520	Noble Metals on Anodic TiO2 Nanotube Mouths: Thermal Dewetting of Minimal Pt Co-Catalyst Loading Leads to Significantly Enhanced Photocatalytic H2 Generation. <i>Advanced Energy Materials</i> , 2016 , 6, 1501926	21.8	66
519	Enabling the anodic growth of highly ordered V2O5 nanoporous/nanotubular structures. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 9071-5	16.4	65
518	On the stability of rivulet flow. <i>Journal of Fluid Mechanics</i> , 1990 , 215, 125	3.7	65

517	Site-selective Pt dewetting on WO3-coated TiO2 nanotube arrays: An electron transfer cascade-based H2 evolution photocatalyst. <i>Applied Catalysis B: Environmental</i> , 2018 , 237, 198-205	21.8	65
516	Optical properties of porous GaAs. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 1999 , 4, 102	-310	64
515	Transpassive Dissolution of Cr and Sputter-Deposited Cr Oxides Studied by In Situ X-Ray Near-Edge Spectroscopy. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 3997-4005	3.9	64
514	Corrosion, antibacterial activity and haemocompatibility of TiO 2 nanotubes as a function of their annealing temperature. <i>Corrosion Science</i> , 2016 , 103, 215-222	6.8	63
513	Mechanical properties of anatase and semi-metallic TiO2 nanotubes. <i>Acta Materialia</i> , 2010 , 58, 6317-632	2 3 .4	63
512	Small diameter TiO2 nanotubes vs. nanopores in dye sensitized solar cells. <i>Electrochemistry Communications</i> , 2012 , 15, 1-4	5.1	62
511	Anodic formation of self-organized cobalt oxide nanoporous layers. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2077-81	16.4	62
510	The diameter of anodic TiO2 nanotubes affects bone formation and correlates with the bone morphogenetic protein-2 expression in vivo. <i>Clinical Oral Implants Research</i> , 2012 , 23, 359-66	4.8	61
509	Iron Passivity in Borate Buffer: Formation of a Deposit Layer and Its Influence on the Semiconducting Properties. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 609-614	3.9	61
508	Ultrafast oxide nanotube formation on TiNb, TiZr and TiTa alloys by rapid breakdown anodization. <i>Electrochimica Acta</i> , 2010 , 55, 8883-8887	6.7	60
507	Interfacial properties of self-organized TiO2 nanotubes studied by impedance spectroscopy. Journal of Solid State Electrochemistry, 2007, 11, 1077-1084	2.6	60
506	Adherence of oral streptococci to nanostructured titanium surfaces. <i>Dental Materials</i> , 2015 , 31, 1460-8	5.7	59
505	"Suspended" Pt nanoparticles over TiO[hanotubes for enhanced photocatalytic H[evolution. <i>Chemical Communications</i> , 2014 , 50, 9653-6	5.8	59
504	Anodic formation of high aspect ratio, self-ordered Nb2O5 nanotubes. <i>Chemical Communications</i> , 2012 , 48, 4244-6	5.8	59
503	Anodic nanotubular/porous hematite photoanode for solar water splitting: substantial effect of iron substrate purity. <i>ChemSusChem</i> , 2014 , 7, 934-40	8.3	57
502	Dye-sensitized solar cells using anodic TiO2 mesosponge: Improved efficiency by TiCl4 treatment. <i>Electrochemistry Communications</i> , 2010 , 12, 574-578	5.1	57
501	Graphitic C3 N4 -Sensitized TiO2 Nanotube Layers: A Visible-Light Activated Efficient Metal-Free Antimicrobial Platform. <i>Chemistry - A European Journal</i> , 2016 , 22, 3947-51	4.8	57
500	Enhanced water splitting activity of M-doped Ta3N5 (M = Na, K, Rb, Cs). <i>Chemical Communications</i> , 2012 , 48, 8685-7	5.8	56

499	Thick porous tungsten trioxide films by anodization of tungsten in fluoride containing phosphoric acid electrolyte. <i>Electrochemistry Communications</i> , 2009 , 11, 1908-1911	5.1	56
498	Micropatterned TiOlhanotube surfaces for site-selective nucleation of hydroxyapatite from simulated body fluid. <i>Acta Biomaterialia</i> , 2011 , 7, 424-31	10.8	56
497	Polypyrrole self-organized nanopore arrays formed by controlled electropolymerization in TiO2 nanotube template. <i>Chemical Communications</i> , 2010 , 46, 8585-7	5.8	55
496	TiO[sub 2] Nanotubes: Efficient Suppression of Top Etching during Anodic Growth. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, C17		55
495	Anodic oxide nanotube layers on Tilla alloys: Substrate composition, microstructure and self-organization on two-size scales. <i>Corrosion Science</i> , 2009 , 51, 1528-1533	6.8	55
494	Highly Conducting Spaced TiO Nanotubes Enable Defined Conformal Coating with Nanocrystalline Nb O and High Performance Supercapacitor Applications. <i>Small</i> , 2017 , 13, 1603821	11	53
493	Self-decoration of Pt metal particles on TiO(2) nanotubes used for highly efficient photocatalytic H(2) production. <i>Chemical Communications</i> , 2014 , 50, 6123-5	5.8	53
492	Formation of visible light emitting porous GaAs micropatterns. <i>Applied Physics Letters</i> , 1998 , 72, 1039-1	0344	53
491	Spaced TiO2 nanotube arrays allow for a high performance hierarchical supercapacitor structure. Journal of Materials Chemistry A, 2017 , 5, 1895-1901	13	52
490	Bulk Metal Oxides as a Model for the Electronic Properties of Passive Films. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 3336-3342	3.9	52
489	Noble-Metal-Free Photocatalytic Hydrogen Evolution Activity: The Impact of Ball Milling Anatase Nanopowders with TiH. <i>Advanced Materials</i> , 2017 , 29, 1604747	24	51
488	Influence Of Anodization Parameters On Morphology Of TiO2 Nanostructured Surfaces. <i>Advanced Materials Letters</i> , 2016 , 7, 23-28	2.4	51
487	Enhanced performance of dye-sensitized solar cells based on TiO2 nanotube membranes using an optimized annealing profile. <i>Chemical Communications</i> , 2015 , 51, 1631-4	5.8	50
486	Templated DewettingAlloying of NiCu Bilayers on TiO2 Nanotubes Enables Efficient Noble-Metal-Free Photocatalytic H2 Evolution. <i>ACS Catalysis</i> , 2018 , 8, 5298-5305	13.1	50
485	Anodic TiO2 nanotubes: Influence of top morphology on their photocatalytic performance. <i>Electrochemistry Communications</i> , 2012 , 22, 162-165	5.1	50
484	Enhancement of the Electrocatalytic Oxidation of Methanol at PtRu Nanoparticles Immobilized in Different WO[sub 3] Matrices. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, E13		50
483	TiO2-Nanorliren mit hohem Aspektverhitnis durch Anodisieren von Ti. <i>Angewandte Chemie</i> , 2005 , 117, 2136-2139	3.6	50
482	Upconversion Nanoparticle-Assisted Payload Delivery from TiO under Near-Infrared Light Irradiation for Bacterial Inactivation. <i>ACS Nano</i> , 2020 , 14, 337-346	16.7	50

481	Growth of ordered anodic SnO2 nanochannel layers and their use for H2 gas sensing. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 915-920	13	49	
480	Anodic TiO2 nanotubes: double walled vs. single walled. <i>Faraday Discussions</i> , 2013 , 164, 107-16	3.6	49	
479	Influence of annealing temperature on photoelectrochemical water splitting of ⊞e2O3 films prepared by anodic deposition. <i>Electrochimica Acta</i> , 2013 , 91, 307-313	6.7	49	
478	Anodic mesoporous TiO2 layer on Ti for enhanced formation of biomimetic hydroxyapatite. <i>Acta Biomaterialia</i> , 2011 , 7, 1873-9	10.8	49	
477	Nickel hydroxide nanoparticle activated semi-metallic TiO(2) nanotube arrays for non-enzymatic glucose sensing. <i>Chemistry - A European Journal</i> , 2013 , 19, 15530-4	4.8	48	
476	MoO3 in self-organized TiO2 nanotubes for enhanced photocatalytic activity. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 66-9	4.5	48	
475	Black Magic in Gray Titania: Noble-Metal-Free Photocatalytic H Evolution from Hydrogenated Anatase. <i>ChemSusChem</i> , 2017 , 10, 62-67	8.3	47	
474	Enhanced Solar Water Splitting by Swift Charge Separation in Au/FeOOH Sandwiched Single-Crystalline Fe O Nanoflake Photoelectrodes. <i>ChemSusChem</i> , 2017 , 10, 2720-2727	8.3	46	
473	Critical parameters and factors in the formation of spaced TiO2 nanotubes by self-organizing anodization. <i>Electrochimica Acta</i> , 2018 , 268, 435-447	6.7	46	
472	Sb-Doped SnO Nanorods Underlayer Effect to the Fe O Nanorods Sheathed with TiO for Enhanced Photoelectrochemical Water Splitting. <i>Small</i> , 2018 , 14, e1703860	11	46	
471	Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays. <i>ChemSusChem</i> , 2015 , 8, 618-22	8.3	46	
470	Photoelectrochemical and photocatalytic activity of tungsten doped TiO2 nanotube layers in the near visible region. <i>Electrochimica Acta</i> , 2011 , 56, 10557-10561	6.7	46	
469	Impedance Behavior of TiO[sub 2] Nanotubes Formed by Anodization in NaF Electrolytes. <i>Journal of the Electrochemical Society</i> , 2008 , 155, C293	3.9	46	
468	Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system. <i>ChemSusChem</i> , 2014 , 7, 421-4	8.3	45	
467	Various sized nanotubes on TiZr for antibacterial surfaces. <i>Applied Surface Science</i> , 2013 , 270, 190-196	6.7	45	
466	Ti and Sn co-doped anodic #e2O3 films for efficient water splitting. <i>Electrochemistry Communications</i> , 2013 , 30, 21-25	5.1	45	
465	Electron beam-induced carbon masking for electrodeposition on semiconductor surfaces. <i>Applied Physics Letters</i> , 2001 , 78, 2940-2942	3.4	45	
464	Passivity of Iron in Alkaline Solutions Studied by In Situ XANES and a Laser Reflection Technique. Journal of the Electrochemical Society, 1999 , 146, 2097-2102	3.9	45	

463	Influence of Ti3+ defect-type on heterogeneous photocatalytic H2 evolution activity of TiO2. Journal of Materials Chemistry A, 2020 , 8, 1432-1442	13	45
462	Thick Self-Ordered Nanoporous Ta[sub 2]O[sub 5] Films with Long-Range Lateral Order. <i>Journal of the Electrochemical Society</i> , 2009 , 156, K104	3.9	44
461	Investigations on the passivity of iron in borate and phosphate buffers, pH 8.4. <i>Corrosion Science</i> , 2006 , 48, 3472-3488	6.8	44
460	Enhancing the water splitting efficiency of Sn-doped hematite nanoflakes by flame annealing. <i>Chemistry - A European Journal</i> , 2014 , 20, 77-82	4.8	43
459	Optimizing TiO2 nanotube top geometry for use in dye-sensitized solar cells. <i>Chemistry - A European Journal</i> , 2012 , 18, 11862-6	4.8	43
458	Formation and Dissolution of the Passive Film on Iron Studied by a Light Reflectance Technique. Journal of the Electrochemical Society, 1997 , 144, 2307-2312	3.9	43
457	Glattwandige anodische TiO2-Nanorfiren. Angewandte Chemie, 2005, 117, 7629-7632	3.6	43
456	On the Supercapacitive Behaviour of Anodic Porous WO3-Based Negative Electrodes. <i>Electrochimica Acta</i> , 2017 , 232, 192-201	6.7	42
455	Activity of vancomycin release from bioinspired coatings of hydroxyapatite or TiO nanotubes. <i>International Journal of Pharmaceutics</i> , 2017 , 517, 296-302	6.5	42
454	Si-doped Fe2O3 nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting. <i>Electrochemistry Communications</i> , 2013 , 34, 308-311	5.1	42
453	Binding of plasma proteins to titanium dioxide nanotubes with different diameters. <i>International Journal of Nanomedicine</i> , 2015 , 10, 1359-73	7.3	42
452	Thermal air oxidation of Fe: rapid hematite nanowire growth and photoelectrochemical water splitting performance. <i>Electrochemistry Communications</i> , 2012 , 23, 59-62	5.1	42
451	Functionalization of metallic magnesium with protein layers via linker molecules. <i>Langmuir</i> , 2010 , 26, 12044-8	4	42
450	High resolution LAPS and SPIM. <i>Electrochemistry Communications</i> , 2010 , 12, 758-760	5.1	42
449	Dissolution of Thin Iron Oxide Films Used as Models for Iron Passive Films Studied by In Situ X-Ray Absorption Near-Edge Spectroscopy. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 198-204	3.9	42
448	A novel approach for the formation of Mg(OH)2/MgO nanowhiskers on magnesium: Rapid anodization in chloride containing solutions. <i>Electrochemistry Communications</i> , 2008 , 10, 288-292	5.1	42
447	Thin anodic oxides formed on GaAs in aqueous solutions. <i>Journal of Applied Physics</i> , 1996 , 79, 7303-737	112.5	42
446	Bipolar anodization enables the fabrication of controlled arrays of TiO2 nanotube gradients. Journal of Materials Chemistry A, 2014 , 2, 17740-17745	13	41

445	Polymer nanowires or nanopores? Site selective filling of titania nanotubes with polypyrrole. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17909		41	
444	Increased photocurrent response in Nb-doped TiO2 nanotubes. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15205		41	
443	Growth of Aligned TiO2 Bamboo-Type Nanotubes and Highly Ordered Nanolace. <i>Angewandte Chemie</i> , 2008 , 120, 1942-1945	3.6	41	
442	Protein interactions with corroding metal surfaces: comparison of Mg and Fe. <i>Faraday Discussions</i> , 2015 , 180, 347-60	3.6	40	
441	Effect of different hole scavengers on the photoelectrochemical properties and photocatalytic hydrogen evolution performance of pristine and Pt-decorated TiO2 nanotubes. <i>Electrochimica Acta</i> , 2019 , 319, 61-71	6.7	40	
440	Self-Ordered Hexagonal Nanoporous Hafnium Oxide and Transition to Aligned HfO[sub 2] Nanotube Layers. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, K45		40	
439	A surface analytical and electrochemical study on the role of cerium in the chemical surface treatment of stainless steels. <i>Corrosion Science</i> , 1997 , 39, 1897-1913	6.8	40	
438	Artificial Cr- and Fe-Oxide Passive Layers Prepared by Sputter Deposition. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 3067-3972	3.9	40	
437	Highly self-ordered nanochannel TiO2 structures by anodization in a hot glycerol electrolyte. <i>Chemical Communications</i> , 2011 , 47, 5789-91	5.8	39	
436	X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: Degradation of organics and drug release. <i>Electrochemistry Communications</i> , 2009 , 11, 2077-2080	5.1	39	
435	Bright visible luminescence of self-organized ZrO2 nanotubes. <i>Journal of Solid State Electrochemistry</i> , 2010 , 14, 285-288	2.6	39	
434	High-Efficiency Conversion of Sputtered Ti Thin Films into TiO[sub 2] Nanotubular Layers. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, C37		39	
433	A new route for the formation of self-organized anodic porous alumina in neutral electrolytes. <i>Electrochemistry Communications</i> , 2007 , 9, 545-550	5.1	39	
432	Selective palladium electrochemical deposition onto AFM-scratched silicon surfaces. <i>Electrochimica Acta</i> , 2003 , 48, 3123-3130	6.7	39	
431	Photocatalytic H2 Generation Using Dewetted Pt-Decorated TiO2 Nanotubes: Optimized Dewetting and Oxide Crystallization by a Multiple Annealing Process. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 15884-15892	3.8	39	
430	Development of non-enzymatic cholesterol bio-sensor based on TiO2 nanotubes decorated with Cu2O nanoparticles. <i>Sensors and Actuators B: Chemical</i> , 2020 , 302, 127200	8.5	39	
429	Carbon cladded TiO2 nanotubes: fabrication and use in 3D-RuO2 based supercapacitors. <i>Chemical Communications</i> , 2015 , 51, 7614-7	5.8	38	
428	Fast fabrication of Ta2O5 nanotube arrays and their conversion to Ta3N5 for efficient solar driven water splitting. <i>Electrochemistry Communications</i> , 2015 , 50, 15-19	5.1	38	

427	On the improvement of PEC activity of hematite thin films deposited by high-power pulsed magnetron sputtering method. <i>Applied Catalysis B: Environmental</i> , 2015 , 165, 344-350	21.8	38
426	Noble-Metal-Free Photocatalytic H Generation: Active and Inactive 'Black' TiO Nanotubes and Synergistic Effects. <i>Chemistry - A European Journal</i> , 2016 , 22, 13810-13814	4.8	38
425	Enhanced Charge Transport in Tantalum Nitride Nanotube Photoanodes for Solar Water Splitting. <i>ChemSusChem</i> , 2015 , 8, 2615-20	8.3	38
424	Ideally ordered porous TiO2 prepared by anodization of pretextured Ti by nanoimprinting process. <i>Electrochemistry Communications</i> , 2015 , 50, 73-76	5.1	38
423	The efficiency of nanotube formation on titanium anodized under voltage and current control in fluoride/glycerol electrolyte. <i>Nanotechnology</i> , 2008 , 19, 355701	3.4	38
422	Molten o-H3PO4: A New Electrolyte for the Anodic Synthesis of Self-Organized Oxide StructuresWO3 Nanochannel Layers and Others. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5646-9	16.4	37
421	Nb-doping of TiO2/SrTiO3 nanotubular heterostructures for enhanced photocatalytic water splitting. <i>Electrochemistry Communications</i> , 2012 , 17, 56-59	5.1	37
420	Fast electron transport and high surface area: potential application of porous anatase single crystals in solar cells. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 7933-5	16.4	37
419	Improved water-splitting behaviour of flame annealed TiO2 nanotubes. <i>Electrochemistry Communications</i> , 2011 , 13, 1030-1034	5.1	37
418	ToF-SIMS and XPS studies of the adsorption characteristics of a Zn-porphyrin on TiO2. <i>Langmuir</i> , 2010 , 26, 3531-8	4	37
417	Robust Self-Organization of Oxide Nanotubes over a Wide pH Range. <i>Chemistry of Materials</i> , 2007 , 19, 1534-1536	9.6	37
416	Flexible self-organization of two size-scales oxide nanotubes on Ti45Nb alloy. <i>Electrochemistry Communications</i> , 2007 , 9, 2403-2407	5.1	37
415	Effect of Electrolyte Conductivity on the Formation of a Nanotubular TiO2 Photoanode for a Dye-Sensitized Solar Cell. <i>Journal of the Korean Physical Society</i> , 2009 , 54, 1027-1031	0.6	37
414	Influence of various sterilization procedures on TiO2 nanotubes used for biomedical devices. <i>Bioelectrochemistry</i> , 2016 , 109, 79-86	5.6	36
413	Hydrothermal growth of highly oriented single crystalline Ta2O5 nanorod arrays and their conversion to Ta3N5 for efficient solar driven water splitting. <i>Chemical Communications</i> , 2014 , 50, 1556	1 ⁵ 2 ⁸	36
412	Flame annealing effects on self-organized TiO2 nanotubes. <i>Electrochimica Acta</i> , 2012 , 66, 12-21	6.7	36
411	Photoelectrochemical H Generation from Suboxide TiO Nanotubes: Visible-Light Absorption versus Conductivity. <i>Chemistry - A European Journal</i> , 2017 , 23, 12406-12411	4.8	36
410	Anodically formed transparent mesoporous TiO2 electrodes for high electrochromic contrast. Journal of Materials Chemistry, 2012, 22, 9821		36

(2009-2011)

409	Covalent functionalization of TiO2 nanotube arrays with EGF and BMP-2 for modified behavior towards mesenchymal stem cells. <i>Integrative Biology (United Kingdom)</i> , 2011 , 3, 927-36	3.7	36	
408	The two step nanotube formation on TiZr as scaffolds for cell growth. <i>Bioelectrochemistry</i> , 2014 , 98, 39-45	5.6	35	
407	Surface-assisted laser desorption-ionization mass spectrometry on titanium dioxide (TiO2) nanotube layers. <i>Analyst, The</i> , 2012 , 137, 3058-63	5	35	
406	Electrochromic properties of anodically grown mixed V2O5IIiO2 nanotubes. <i>Electrochemistry Communications</i> , 2011 , 13, 1021-1025	5.1	35	
405	Electron beam induced in-vacuo Ag deposition on TiO2 from ionic liquids. <i>Electrochemistry Communications</i> , 2009 , 11, 1567-1570	5.1	35	
404	Uniform ALD deposition of Pt nanoparticles within 1D anodic TiO2 nanotubes for photocatalytic H2 generation. <i>Electrochemistry Communications</i> , 2018 , 86, 6-11	5.1	35	
403	Highly ordered TiO2 nanotube-stumps with memristive response. <i>Electrochemistry Communications</i> , 2013 , 34, 177-180	5.1	34	
402	Overcoming Interfacial Losses in Solution-Processed Organic Multi-Junction Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1601959	21.8	34	
401	Attenuation of the macrophage inflammatory activity by TiOIhanotubes via inhibition of MAPK and NF-B pathways. <i>International Journal of Nanomedicine</i> , 2015 , 10, 6455-67	7.3	34	
400	Tungsten doping of Ta3N5-nanotubes for band gap narrowing and enhanced photoelectrochemical water splitting efficiency. <i>Electrochemistry Communications</i> , 2015 , 51, 85-88	5.1	34	
399	Ru-doped TiO2 nanotubes: Improved performance in dye-sensitized solar cells. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 169-171	2.5	34	
398	Continuous flow photocatalytic oxidation of nitrogen oxides over anodized nanotubular titania films. Chemical Engineering Journal, 2012 , 179, 151-157	14.7	34	
397	A self-cleaning nonenzymatic glucose detection system based on titania nanotube arrays modified with platinum nanoparticles. <i>Electrochemistry Communications</i> , 2011 , 13, 1217-1220	5.1	34	
396	Nanoscale patterning of Si(100) surfaces by scratching through the native oxide layer using atomic force microscope. <i>Applied Physics Letters</i> , 2001 , 79, 1882-1884	3.4	34	
395	Highly controlled coating of biomimetic polydopamine in TiO2 nanotubes. <i>Electrochemistry Communications</i> , 2015 , 52, 41-44	5.1	33	
394	Some critical factors for photocatalysis on self-organized TiO2 nanotubes. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 3499-3504	2.6	33	
393	High-aspect-ratio dye-sensitized solar cells based on robust, fast-growing TiO2 nanotubes. <i>Chemistry - A European Journal</i> , 2013 , 19, 2966-70	4.8	33	
392	Another look at "Stem cell fate dictated solely by altered nanotube dimension". <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, E60; author reply E61	11.5	33	

391	Highly defined and ordered top-openings in TiO2 nanotube arrays. <i>Physica Status Solidi - Rapid Research Letters</i> , 2010 , 4, 151-153	2.5	33
390	TiO2 nanotube layers: Flexible and electrically active flow-through membranes. <i>Electrochemistry Communications</i> , 2010 , 12, 1352-1355	5.1	33
389	Anodic TiO[sub 2] Layer Conversion: Fluoride-Induced Rutile Formation at Room Temperature. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, K11		33
388	Electron beam induced carbon deposition used as a negative resist for selective porous silicon formation. <i>Surface Science</i> , 2003 , 524, 40-48	1.8	33
387	FeO-based nanostructures and nanohybrids for photoelectrochemical water splitting. <i>Progress in Materials Science</i> , 2020 , 110, 100632	42.2	33
386	Nanostar morphology of plasmonic particles strongly enhances photoelectrochemical water splitting of TiO2 nanorods with superior incident photon-to-current conversion efficiency in visible/near-infrared region. <i>Electrochimica Acta</i> , 2018 , 260, 212-220	6.7	33
385	Anodic Synthesis of Hierarchical SnS/SnOx Hollow Nanospheres and Their Application for High-Performance Na-Ion Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1901000	15.6	32
384	Use of Anodic TiO2 Nanotube Layers as Mesoporous Scaffolds for Fabricating CH3NH3PbI3 Perovskite-Based Solid-State Solar Cells. <i>ChemElectroChem</i> , 2015 , 2, 824-828	4.3	32
383	Intrinsically Activated SrTiO: Photocatalytic H Evolution from Neutral Aqueous Methanol Solution in the Absence of Any Noble Metal Cocatalyst. <i>ACS Applied Materials & District Materials & Cocatalyst</i> 10, 29532-10.	29542	32
382	Strongly enhanced photocurrent response for Na doped Ta3N5-nano porous structure. <i>Electrochemistry Communications</i> , 2012 , 17, 67-70	5.1	32
381	Interaction of bovine serum albumin and lysozyme with stainless steel studied by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. <i>Langmuir</i> , 2012 , 28, 16306-17	4	32
380	Highly ordered nanoporous Ta2O5 formed by anodization of Ta at high temperatures in a glycerol/phosphate electrolyte. <i>Electrochemistry Communications</i> , 2011 , 13, 542-545	5.1	32
379	Atomic Force Microscopy-Induced Nanopatterning of Si(100) Surfaces. <i>Journal of the Electrochemical Society</i> , 2001 , 148, C640	3.9	32
378	Anodic TiO2 nanotubes decorated by Pt nanoparticles using ALD: An efficient electrocatalyst for methanol oxidation. <i>Journal of Catalysis</i> , 2018 , 365, 86-93	7-3	32
377	Fast growth of TiO 2 nanotube arrays with controlled tube spacing based on a self-ordering process at two different scales. <i>Electrochemistry Communications</i> , 2017 , 77, 98-102	5.1	31
376	High-power pulsed plasma deposition of hematite photoanode for PEC water splitting. <i>Catalysis Today</i> , 2014 , 230, 8-14	5.3	31
375	Ar+-ion bombardment of TiO2 nanotubes creates co-catalytic effect for photocatalytic open circuit hydrogen evolution. <i>Electrochemistry Communications</i> , 2014 , 49, 60-64	5.1	31
374	Hydrogenated Anatase: Strong Photocatalytic Dihydrogen Evolution without the Use of a Co-Catalyst. <i>Angewandte Chemie</i> , 2014 , 126, 14425-14429	3.6	31

(2013-2017)

373	Semimetallic core-shell TiO2 nanotubes as a high conductivity scaffold and use in efficient 3D-RuO2 supercapacitors. <i>Materials Today Energy</i> , 2017 , 6, 46-52	7	31
372	Stable Co-Catalyst-Free Photocatalytic H2 Evolution From Oxidized Titanium Nitride Nanopowders. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13385-9	16.4	31
371	Formation of highly ordered nanochannel Nb oxide by self-organizing anodization. <i>Chemistry - A European Journal</i> , 2012 , 18, 9521-4	4.8	31
370	Anodic TiOIhanotube layers electrochemically filled with MoOIand their antimicrobial properties. <i>Biointerphases</i> , 2011 , 6, 16-21	1.8	31
369	Pore Formation on n-InP. <i>Physica Status Solidi A</i> , 2000 , 182, 51-61		31
368	Hydrogen-treated hierarchical titanium oxide nanostructures for photoelectrochemical water splitting. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 169, 19-27	6.4	30
367	Less known facts and findings about TiO nanotubes. <i>Nanoscale</i> , 2020 , 12, 8119-8132	7.7	30
366	Thin MoS2 on TiO2 nanotube layers: An efficient co-catalyst/harvesting system for photocatalytic H2 evolution. <i>Electrochemistry Communications</i> , 2016 , 73, 33-37	5.1	30
365	Controlled spacing of self-organized anodic TiO2 nanotubes. <i>Electrochemistry Communications</i> , 2016 , 69, 76-79	5.1	30
364	Metallurgical aspects on the formation of self-organized anodic oxide nanotube layers. <i>Electrochimica Acta</i> , 2009 , 54, 5155-5162	6.7	30
363	Anodic growth of self-ordered magnesium oxy-fluoride nanoporous/tubular layers on Mg alloy (WE43). <i>Electrochemistry Communications</i> , 2010 , 12, 796-799	5.1	30
362	Electrochemical formation of porous superlattices on n-type (1 0 0) InP. Surface Science, 2003, 547, 268	-2:784	30
361	Engineering of the Electron Transport Layer/Perovskite Interface in Solar Cells Designed on TiO2 Rutile Nanorods. <i>Advanced Functional Materials</i> , 2020 , 30, 1909738	15.6	30
360	Inducing a Nanotwinned Grain Structure within the TiO2 Nanotubes Provides Enhanced Electron Transport and DSSC Efficiencies >10%. <i>Advanced Energy Materials</i> , 2018 , 8, 1800981	21.8	30
359	Forming a Highly Active, Homogeneously Alloyed AuPt Co-catalyst Decoration on TiO Nanotubes Directly During Anodic Growth. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 18220-18226	9.5	29
358	The effect of grain boundaries on high temperature oxidation of new 🛭 strengthened Co🗛 liw B superalloys. <i>Corrosion Science</i> , 2014 , 79, 29-33	6.8	29
357	Role of Transparent Electrodes for High Efficiency TiO2 Nanotube Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014 , 118, 16562-16566	3.8	29
356	Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynamic conditions. <i>Electrochemistry Communications</i> , 2013 , 26, 1-4	5.1	29

355	Self-Ordered Nanoporous Nickel Oxide/Fluoride Composite Film with Strong Electrochromic Contrast. <i>Electrochemical and Solid-State Letters</i> , 2010 , 13, C21		29
354	Ultra fast electrochromic switching of nanoporous tungsten-tantalum oxide films. <i>Chemical Communications</i> , 2011 , 47, 1000-2	5.8	29
353	Optimizing TiO2 nanotube morphology for enhanced photocatalytic H2 evolution using single-walled and highly ordered TiO2 nanotubes decorated with dewetted Au nanoparticles. <i>Electrochemistry Communications</i> , 2017 , 79, 46-50	5.1	28
352	Aminated TiO 2 nanotubes as a photoelectrochemical water splitting photoanode. <i>Catalysis Today</i> , 2017 , 281, 189-197	5.3	28
351	Ta doping for an enhanced efficiency of TiO2 nanotube based dye-sensitized solar cells. <i>Electrochemistry Communications</i> , 2012 , 25, 11-14	5.1	28
350	Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12792		28
349	Current dependent formation of PEDOT inverse nanotube arrays. RSC Advances, 2013, 3, 2154	3.7	28
348	Semimetallic TiO2 Nanotubes. <i>Angewandte Chemie</i> , 2009 , 121, 7372-7375	3.6	28
347	Direct anodic growth of thick WO3 mesosponge layers and characterization of their photoelectrochemical response. <i>Electrochimica Acta</i> , 2010 , 56, 828-833	6.7	28
346	Electron beam-induced modification of organic monolayers on Si(111) surfaces used for selective electrodeposition. <i>Electrochemistry Communications</i> , 2004 , 6, 153-157	5.1	28
345	Magnli-Phases in Anatase Strongly Promote Cocatalyst-Free Photocatalytic Hydrogen Evolution. <i>ACS Catalysis</i> , 2019 , 9, 3627-3632	13.1	27
344	A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting. <i>ChemSusChem</i> , 2016 , 9, 2048-53	8.3	27
343	Reliable metal deposition into TiO(2) nanotubes for leakage-free interdigitated electrode structures and use as a memristive electrode. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 1238	s 1 -44	27
342	Properties of the Nanoporous Anodic Oxide Electrochemically Grown on Steel in Hot 50% NaOH. Journal of the Electrochemical Society, 2009 , 156, C45	3.9	27
341	Effects of low oxygen annealing on the photoelectrochemical water splitting properties of Fe2O3. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1315-1325	13	27
340	Self-organized transparent 1D TiO 2 nanotubular photoelectrodes grown by anodization of sputtered and evaporated Ti layers: A comparative photoelectrochemical study. <i>Chemical Engineering Journal</i> , 2017 , 308, 745-753	14.7	26
339	Conductivity of anodic TiO2 nanotubes: Influence of annealing conditions. <i>Physica Status Solidi - Rapid Research Letters</i> , 2014 , 8, 158-162	2.5	26
338	Semimetallic TiO2 nanotubes: new interfaces for bioelectrochemical enzymatic catalysis. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4615		26

337	Ideal Hexagonal Order: Formation of Self-Organized Anodic Oxide Nanotubes and Nanopores on a TiB5Ta Alloy. <i>Journal of the Electrochemical Society</i> , 2010 , 157, C409	3.9	26	
336	Magnetically Guided Titania Nanotubes for Site-Selective Photocatalysis and Drug Release. <i>Angewandte Chemie</i> , 2009 , 121, 987-990	3.6	26	
335	Formation of a Non-Thickness-Limited Titanium Dioxide Mesosponge and its Use in Dye-Sensitized Solar Cells. <i>Angewandte Chemie</i> , 2009 , 121, 9490-9493	3.6	26	
334	Smooth titania nanotubes: Self-organization and stabilization of anatase phase. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 2190-2194	3.9	26	
333	Capillary effects, wetting behavior and photo-induced tube filling of TiO(2) nanotube layers. <i>Nanotechnology</i> , 2008 , 19, 305710	3.4	26	
332	Gravity assisted growth of self-organized anodic oxide nanotubes on titanium. <i>Electrochemistry Communications</i> , 2008 , 10, 1082-1086	5.1	26	
331	Initiation of tantalum oxide pores grown on tantalum by potentiodynamic anodic oxidation. <i>Journal of Electroceramics</i> , 2006 , 16, 35-39	1.5	26	
330	AFM scratching and metal deposition through insulating layers on silicon. <i>Surface Science</i> , 2005 , 597, 11-19	1.8	26	
329	Challenges in the Surface Analytical Characterisation of Anodic TiO2 Films & Review. <i>Zeitschrift Fur Physikalische Chemie</i> , 2005 , 219, 1561-1582	3.1	26	
328	Predefined Initiation of Porous GaAs Using Focused Ion Beam Surface Sensitization. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 735-740	3.9	26	
327	Novel highly active and self-healing Co(CO3)xOHy cocatalysts on BiVO4 photoanodes for effective solar water oxidation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2563-2570	13	26	
326	Nanoporous AuPt and AuPtAg alloy co-catalysts formed by dewetting dealloying on an ordered TiO2 nanotube surface lead to significantly enhanced photocatalytic H2 generation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13599-13606	13	26	
325	The double-walled nature of TiO2 nanotubes and formation of tube-in-tube structures a characterization of different tube morphologies. <i>Electrochimica Acta</i> , 2017 , 231, 721-731	6.7	25	
324	Black and white anatase, rutile and mixed forms: band-edges and photocatalytic activity. <i>Chemical Communications</i> , 2019 , 55, 533-536	5.8	25	
323	Self-Enhancing H Evolution from TiO Nanostructures under Illumination. <i>ChemSusChem</i> , 2019 , 12, 1900-	-18995	25	
322	Nanochannels formed on TiZr alloy improve biological response. <i>Acta Biomaterialia</i> , 2015 , 24, 370-7	10.8	25	
321	An Operando X-ray Absorption Spectroscopy Study of a NiCulliO2 Photocatalyst for H2 Evolution. <i>ACS Catalysis</i> , 2020 , 10, 8293-8302	13.1	25	
320	Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting. <i>ChemSusChem</i> , 2018 , 11, 1873-1879	8.3	25	

319	Free-Standing Membranes to Study the Optical Properties of Anodic TiO2 Nanotube Layers. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 789-97	4.5	25
318	Tuning the Selectivity of Photocatalytic Synthetic Reactions Using Modified TiO2 Nanotubes. <i>Angewandte Chemie</i> , 2014 , 126, 12813-12816	3.6	25
317	TiO nanotubes with laterally spaced ordering enable optimized hierarchical structures with significantly enhanced photocatalytic H generation. <i>Nanoscale</i> , 2016 , 8, 16868-16873	7.7	25
316	Radiative and Non-Radiative Recombination Pathways in Mixed-Phase TiO2 Nanotubes for PEC Water-Splitting. <i>Catalysts</i> , 2019 , 9, 204	4	25
315	Extracting the limiting factors in photocurrent measurements on TiO2 nanotubes and enhancing the photoelectrochemical properties by Nb doping. <i>Electrochimica Acta</i> , 2015 , 176, 819-826	6.7	24
314	Anodic growth of hierarchically structured nanotubular ZnO architectures on zinc surfaces using a sulfide based electrolyte. <i>Electrochemistry Communications</i> , 2013 , 34, 9-13	5.1	24
313	Transport properties of single TiO2 nanotubes. <i>Applied Physics Letters</i> , 2013 , 103, 173108	3.4	24
312	ECM spreading behaviour on micropatterned TiO2 nanotube surfaces. <i>Acta Biomaterialia</i> , 2012 , 8, 2639	9-47 .8	24
311	Characterization of r.fsputtered iron oxide films for modeling passive films. <i>Thin Solid Films</i> , 1998 , 312, 46-60	2.2	24
310	Growth and characterization of anodic oxides on Si(100) formed in 0.1 M hydrochloric acid. <i>Journal of Applied Physics</i> , 1996 , 79, 8761-8769	2.5	24
309	Voltage-Switchable Biosensor with Gold Nanoparticles on TiO Nanotubes Decorated with CdS Quantum Dots for the Detection of Cholesterol and HO. <i>ACS Applied Materials & Detection of Cholesterol and HO. ACS Applied Materials</i>	9.5	24
308	Adhesion of osteoblasts to a vertically aligned TiO2 nanotube surface. <i>Mini-Reviews in Medicinal Chemistry</i> , 2013 , 13, 194-200	3.2	24
307	Robust free standing flow-through TiO 2 nanotube membranes of pure anatase. <i>Electrochemistry Communications</i> , 2016 , 71, 73-78	5.1	23
306	Visible light photo response from N-doped anodic niobium oxide after annealing in ammonia atmosphere. <i>Electrochimica Acta</i> , 2012 , 62, 402-407	6.7	23
305	Protein denaturation detected by time-of-flight secondary ion mass spectrometry. <i>Langmuir</i> , 2011 , 27, 7510-5	4	23
304	Photoinduced release of active proteins from TiO2 surfaces. <i>Electrochemistry Communications</i> , 2009 , 11, 1429-1433	5.1	23
303	MFI-type (ZSM-5) zeolite-filled TiO2 nanotubes for enhanced photocatalytic activity. <i>Nanotechnology</i> , 2009 , 20, 225607	3.4	23
302	Activation of Fe O for Photoelectrochemical Water Splitting Strongly Enhanced by Low Temperature Annealing in Low Oxygen Containing Ambient. <i>Chemistry - A European Journal</i> , 2020 , 26, 2695, 2692	4.8	23

(2013-2015)

301	Topographical study of TiO2 nanostructure surface for photocatalytic hydrogen production. <i>Electrochimica Acta</i> , 2015 , 179, 423-430	6.7	22	
300	Direct alcohol fuel cells: Increasing platinum performance by modification with sp-group metals. Journal of Power Sources, 2015 , 275, 341-350	8.9	22	
299	TiO2 Nanotubes: Nitrogen-Ion Implantation at Low Dose Provides Noble-Metal-Free Photocatalytic H2-Evolution Activity. <i>Angewandte Chemie</i> , 2016 , 128, 3827-3831	3.6	22	
298	Providing significantly enhanced photocatalytic H2 generation using porous PtPdAg alloy nanoparticles on spaced TiO2 nanotubes. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 22962-22	9717	22	
297	NHItreatment of TiOIhanotubes: from N-doping to semimetallic conductivity. <i>Chemical Communications</i> , 2014 , 50, 7960-3	5.8	22	
296	Controlled Thermal Annealing Tunes the Photoelectrochemical Properties of Nanochanneled Tin-Oxide Structures. <i>ChemElectroChem</i> , 2014 , 1, 1133-1137	4.3	22	
295	Electrochemical Behavior of Fe in Phosphate Solutions Studied by In Situ X-Ray Absorption Near Edge Structure. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 4087-4094	3.9	22	
294	Pt-Decorated g-CN/TiO Nanotube Arrays with Enhanced Visible-Light Photocatalytic Activity for H Evolution. <i>ChemistryOpen</i> , 2016 , 5, 197-200	2.3	22	
293	High-temperature annealing of TiO2nanotube membranes for efficient dye-sensitized solar cells. <i>Semiconductor Science and Technology</i> , 2016 , 31, 014010	1.8	21	
292	Key factors for an improved lithium ion storage capacity of anodic TiO2 nanotubes. <i>Electrochimica Acta</i> , 2016 , 198, 56-65	6.7	21	
291	A direct synthesis of platinum/nickel co-catalysts on titanium dioxide nanotube surface from hydrometallurgical-type process streams. <i>Journal of Cleaner Production</i> , 2018 , 201, 39-48	10.3	21	
29 0	Formation of highly ordered VO2 nanotubular/nanoporous layers and their supercooling effect in phase transitions. <i>Advanced Materials</i> , 2012 , 24, 1571-5	24	21	
289	Anodic TiO2 nanotube membranes: Site-selective Pt-activation and photocatalytic H2 evolution. <i>Electrochimica Acta</i> , 2017 , 258, 302-310	6.7	21	
288	Rapid anodic formation of high aspect ratio WO3 layers with self-ordered nanochannel geometry and use in photocatalysis. <i>Chemistry - A European Journal</i> , 2012 , 18, 14622-6	4.8	21	
287	From anodic TiO2 nanotubes to hexagonally ordered TiO2 nanocolumns. <i>Applied Surface Science</i> , 2011 , 257, 8177-8181	6.7	21	
286	Intrinsic Cu nanoparticle decoration of TiO2 nanotubes: A platform for efficient noble metal free photocatalytic H2 production. <i>Electrochemistry Communications</i> , 2019 , 98, 82-86	5.1	21	
285	Self-organization and zinc doping of Ga2O3 nanoporous architecture: A potential nano-photogenerator for hydrogen. <i>Electrochemistry Communications</i> , 2013 , 35, 112-115	5.1	20	
284	Dewetted Au films form a highly active photocatalytic system on TiO2 nanotube-stumps. <i>Electrochemistry Communications</i> , 2013 , 34, 351-355	5.1	20	

283	Advanced geometries of PEDOT formed in titania nanotubes. <i>ChemPhysChem</i> , 2012 , 13, 3790-3	3.2	20
282	Electrochemical Formation of Bismuth Phosphate Nanorods by Anodization of Bismuth. <i>Electrochemical and Solid-State Letters</i> , 2010 , 13, C5		20
281	Preparation and Adsorption Properties of Pd Nanoparticles Supported on TiO2 Nanotubes. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 20146-20154	3.8	20
280	Formation of self-organized superlattice nanotube arrays - embedding heterojunctions into nanotube walls. <i>Advanced Materials</i> , 2010 , 22, 4770-4	24	20
279	Environmentally assisted cracking behavior of peak-aged 7010 aluminum alloy containing scandium. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2005 , 36, 3257-3262	2.3	20
278	Pore Morphology and Self-Organization Effects during Etching of n-Type GaP(100) in Bromide Solutions. <i>Electrochemical and Solid-State Letters</i> , 2005 , 8, B72		20
277	Li+ Pre-Insertion Leads to Formation of Solid Electrolyte Interface on TiO2 Nanotubes That Enables High-Performance Anodes for Sodium Ion Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 1903448	21.8	20
276	Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis. <i>Nano Letters</i> , 2020 , 20, 3663-3672	11.5	20
275	TiO nanotubes with different spacing, FeO decoration and their evaluation for Li-ion battery application. <i>Nanotechnology</i> , 2018 , 29, 195402	3.4	19
274	In-situ Cr doped anodized TiO2 nanotubes with increased photocurrent response. <i>Electrochimica Acta</i> , 2014 , 132, 410-415	6.7	19
273	Photocatalytic properties of in situ doped TiO2-nanotubes grown by rapid breakdown anodization. <i>Catalysis Science and Technology</i> , 2013 , 3, 1765	5.5	19
272	Single-Walled TiO2 Nanotubes: Enhanced Carrier-Transport Properties by TiCl4 Treatment. <i>Chemistry - A European Journal</i> , 2015 , 21, 9204-8	4.8	19
271	H[mapping on Pt-loaded TiO[hanotube gradient arrays. <i>Langmuir</i> , 2014 , 30, 15356-63	4	19
270	Lithium-ion intercalation and electrochromism in ordered V2O5 nanoporous layers. <i>Electrochemistry Communications</i> , 2011 , 13, 1198-1201	5.1	19
269	Scanning Electron Microscopy Observation of Nanoscopic Wetting of TiO[sub 2] Nanotubes and ODS Modified Nanotubes Using Ionic Liquids. <i>Electrochemical and Solid-State Letters</i> , 2010 , 13, E11		19
268	Influence of Surface Condition on Nanoporous and Nanotubular Film Formation on Titanium. Journal of the Electrochemical Society, 2009, 156, K17	3.9	19
267	Repair of thin thermally grown silicon dioxide by anodic oxidation. <i>Electrochimica Acta</i> , 2008 , 53, 3395-3	346072	19
266	Prediction of negative index material lenses based on metallo-dielectric nanotubes. <i>Physica Status Solidi - Rapid Research Letters</i> , 2008 , 2, 242-244	2.5	19

(2011-2003)

265	Nanopatterning of Si(111) surfaces by atomic force microscope scratching of an organic monolayer. <i>Electrochemistry Communications</i> , 2003 , 5, 337-340	5.1	19	
264	Halbleitereigenschaften von Passivfilmen und ihre Bedeutung f die Lochkorrosion. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 1991 , 42, 203-207	1.6	19	
263	Hematite dodecahedron crystals with high-index facets grown and grafted on one dimensional structures for efficient photoelectrochemical H2 generation. <i>Nano Energy</i> , 2018 , 50, 331-338	17.1	19	
262	Dewetted Au Nanoparticles on TiO2 Surfaces: Evidence of a Size-Independent Plasmonic Photoelectrochemical Response. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 16934-16942	3.8	18	
261	Controlling the diameter of aligned single-walled carbon nanotubes on quartz via catalyst reduction time. <i>Carbon</i> , 2015 , 95, 452-459	10.4	18	
260	Visible-Light-Triggered Drug Release from TiO2 Nanotube Arrays: A Controllable Antibacterial Platform. <i>Angewandte Chemie</i> , 2016 , 128, 603-607	3.6	18	
259	Excited state properties of anodic TiO2 nanotubes. <i>Applied Physics Letters</i> , 2013 , 102, 233109	3.4	18	
258	Large-Diameter TiO Nanotubes Enable Wall Engineering with Conformal Hierarchical Decoration and Blocking Layers for Enhanced Efficiency in Dye-Sensitized Solar Cells (DSSC). <i>Chemistry - A European Journal</i> , 2017 , 23, 12995-12999	4.8	18	
257	Conical-shaped titania nanotubes for optimized light management in DSSCs reach back-side illumination efficiencies > 8%. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12603-12608	13	18	
256	Enhanced Open-Circuit Photopotential in Quasi-Solid-State Dye-Sensitized Solar Cells Based on Polymer Redox Electrolytes Filled with Anodic Titania Nanotubes. <i>Advanced Energy Materials</i> , 2011 , 1, 569-572	21.8	18	
255	Controlling the adsorption kinetics via nanostructuring: Pd nanoparticles on TiO2 nanotubes. <i>Langmuir</i> , 2010 , 26, 14014-23	4	18	
254	Laser-Assisted Maskless Cu Patterning on Porous Silicon. <i>Electrochemical and Solid-State Letters</i> , 2004 , 7, G98		18	
253	Laser-assisted nickel deposition onto porous silicon. <i>Physica Status Solidi A</i> , 2003 , 197, 46-50		18	
252	A Dewetted-Dealloyed Nanoporous Pt Co-Catalyst Formed on TiO Nanotube Arrays Leads to Strongly Enhanced Photocatalytic H Production. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 301-309	4.5	18	
251	Solar steam generation on scalable ultrathin thermoplasmonic TiN nanocavity arrays. <i>Nano Energy</i> , 2021 , 83, 105828	17.1	18	
250	Depth elemental characterization of 1D self-aligned TiO2 nanotubes using calibrated radio frequency glow discharge optical emission spectroscopy (GDOES). <i>Applied Surface Science</i> , 2018 , 442, 412-416	6.7	17	
249	Ordered "superlattice" TiO2/Nb2O5 nanotube arrays with improved ion insertion stability. <i>Chemical Communications</i> , 2013 , 49, 460-2	5.8	17	
248	Enabling the Anodic Growth of Highly Ordered V2O5 Nanoporous/Nanotubular Structures. <i>Angewandte Chemie</i> , 2011 , 123, 9237-9241	3.6	17	

247	Fast formation of aligned high-aspect ratio TiO2 nanotube bundles that lead to increased open circuit voltage when used in dye sensitized solar cells. <i>Electrochemistry Communications</i> , 2011 , 13, 302-305		17
246	Adsorption kinetics of alkanes on TiO2 nanotubesarray Istructure Ictivity relationship. <i>Surface Science</i> , 2007 , 601, 4620-4628	;	17
245	Nanoscale observation of initial stages of Cd-electrodeposition on Au(). Surface Science, 2003, 527, L16511.8	170	17
244	Formation and Properties of Porous GaAs. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 431, 439		17
243	High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticles. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 22773-2279 $\hat{0}^{3}$		17
242	Intrinsic AuPt-alloy particles decorated on TiO2 nanotubes provide enhanced photocatalytic degradation. <i>Electrochimica Acta</i> , 2018 , 292, 865-870	7	17
241	Alternating Current Electrophoretic Deposition for the Immobilization of Antimicrobial Agents on Titanium Implant Surfaces. <i>ACS Applied Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Immobilization of Antimicrobial Agents on Prize Materials & Deposition for the Prize Materials & Deposition for Prize Materials & Deposition</i>	5	16
240	Lateral Spacing of TiO Nanotubes Modulates Osteoblast Behavior. <i>Materials</i> , 2019 , 12, 3.5		16
239	Intracellular Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. <i>ACS Applied Materials & Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Applied Materials & Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. <i>ACS Applied Materials & Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Applied Materials & Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. <i>ACS Applied Materials & Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Applied Materials & Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. <i>ACS Applied Materials & Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Applied Materials & Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Applied Materials & Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Applied Materials & Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Applied Materials & Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Applied Materials & Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Applied Materials & Drug Delivery with Account Deliv</i></i></i></i>	5	16
238	Photocatalytic H2 production on self-decorated Au nanoparticles/TiO2 nanotubes under visible light. <i>Electrochemistry Communications</i> , 2014 , 43, 105-108		16
237	Self-organized cobalt fluoride nanochannel layers used as a pseudocapacitor material. <i>Chemical Communications</i> , 2014 , 50, 7067-70	3	16
236	Nitrogen-doped TiO2 mesosponge layers formed by anodization of nitrogen-containing Ti alloys. Journal of Solid State Electrochemistry, 2012 , 16, 89-92	ó	16
235	Electrochemical growth of self-organized TiO2WO3 composite nanotube layers: effects of applied voltage and time. <i>Journal of Applied Electrochemistry</i> , 2013 , 43, 9-13	ó	16
234	Morphological characterization of porous InP superlattices. Science and Technology of Advanced Materials, 2004 , 5, 119-123 7.1		16
233	Composition and growth of thin anodic oxides formed on InP (100). Electrochimica Acta, 2002, 47, 2733-267	40	16
232	Electron-Beam Induced Nanomasking for Metal Electrodeposition on Semiconductor Surfaces. <i>Journal of the Electrochemical Society</i> , 2001 , 148, C197)	16
231	A Photoelectrochemical Investigation of Passive Films Formed by Alternating Voltage Passivation. <i>Journal of the Electrochemical Society</i> , 1993 , 140, L119-L121)	16
230	Advanced Photocatalysts: Pinning Single Atom Co-Catalysts on Titania Nanotubes. <i>Advanced</i>	.6	16

(2015-2019)

229	Intrinsic Au-decoration on anodic 11O2 nanotubes grown from metastable 11Au sputtered alloysHigh density co-catalyst decoration enhances the photocatalytic H2 evolution. <i>Applied Materials Today</i> , 2019 , 14, 118-125	6.6	16	
228	Anodic Titanium Dioxide Nanotubes for Magnetically Guided Therapeutic Delivery. <i>Scientific Reports</i> , 2019 , 9, 13439	4.9	15	
227	Anodic self-organized transparent nanotubular/porous hematite films from Fe thin-films sputtered on FTO and photoelectrochemical water splitting. <i>Research on Chemical Intermediates</i> , 2015 , 41, 9333-9	93 ² 4 ⁸	15	
226	Comparison of Anodic TiO2-Nanotube Membranes used for Frontside-Illuminated Dye-Sensitized Solar Cells. <i>ChemElectroChem</i> , 2015 , 2, 204-207	4.3	15	
225	Carbon-Decorated TiO2 Nanotube Membranes: A Renewable Nanofilter for Charge-Selective Enrichment of Proteins. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 21997-2004	9.5	15	
224	Electric Field-Induced Osteogenic Differentiation on TiO2 Nanotubular Layer. <i>Tissue Engineering - Part C: Methods</i> , 2016 , 22, 809-21	2.9	15	
223	Capacitance response in an aqueous electrolyte of Nb2O5 nanochannel layers anodically grown in pure molten o-H3PO4. <i>Electrochimica Acta</i> , 2018 , 281, 725-737	6.7	15	
222	Robust graphene membranes in a silicon carbide frame. <i>ACS Nano</i> , 2013 , 7, 4441-8	16.7	15	
221	Modeling of Growth and Dissolution of Nanotubular Titania in Fluoride-Containing Electrolytes. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, C5		15	
220	Voltage-Induced Payload Release and Wettability Control on TiO2 and TiO2 Nanotubes. Angewandte Chemie, 2010 , 122, 361-364	3.6	15	
219	TiO2-Nb2O5-Nanorfiren mit elektrochemisch einstellbaren Morphologien. <i>Angewandte Chemie</i> , 2006 , 118, 7150-7153	3.6	15	
218	Nanopatterning of an organic monolayer covered Si (111) surfaces by atomic force microscope scratching. <i>Electrochimica Acta</i> , 2006 , 51, 3674-3679	6.7	15	
217	Pore initiation and growth on n-InP(100). Electrochimica Acta, 2003, 48, 1301-1308	6.7	15	
216	Growth and characterization of thin anodic oxide films on n-InSb(1 0 0) formed in aqueous solutions. <i>Corrosion Science</i> , 2004 , 46, 2067-2079	6.8	15	
215	Selective Electrodeposition of Cu Nanostructures on Focused Ion Beam Sensitized p-Si. <i>Journal of the Electrochemical Society</i> , 2002 , 149, C432	3.9	15	
214	Dewetting of PtCu Nanoalloys on TiO Nanocavities Provides a Synergistic Photocatalytic Enhancement for Efficient H Evolution. <i>ACS Applied Materials & Enhancement for Efficient H Evolution</i> . <i>ACS Applied Materials & Enhancement for Efficient H Evolution</i> . <i>ACS Applied Materials & Enhancement for Efficient H Evolution</i> .	9.5	15	
213	Optimized Spacing between TiO2 Nanotubes for Enhanced Light Harvesting and Charge Transfer. <i>ChemElectroChem</i> , 2018 , 5, 3183-3190	4.3	15	
212	Open top anodic Ta3N5 nanotubes for higher solar water splitting efficiency. <i>Electrochimica Acta</i> , 2015 , 182, 803-808	6.7	14	

211	Efficient photocatalysis on hierarchically structured TiO2 nanotubes with mesoporous TiO2 filling. <i>Electrochemistry Communications</i> , 2014 , 42, 21-25	5.1	14
210	Formation of Pt/Pb nanoparticles by electrodeposition and redox replacement cycles on fluorine doped tin oxide glass. <i>Electrochimica Acta</i> , 2013 , 88, 278-286	6.7	14
209	Interface chemistry and molecular bonding of functional ethoxysilane-based self-assembled monolayers on magnesium surfaces. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 9006-14	9.5	14
208	Surface modification of TiO2 nanotubes by low temperature thermal treatment in C2H2 atmosphere. <i>Journal of Electroanalytical Chemistry</i> , 2011 , 662, 25-29	4.1	14
207	Visible-light-induced photocatalysis using self-organized TiO2nanotubes decorated with AgBr deposits. <i>Semiconductor Science and Technology</i> , 2011 , 26, 092002	1.8	14
206	Self-organized CdS microstructures by anodization of Cd in chloride containing Na2S solution. <i>Electrochimica Acta</i> , 2010 , 55, 7766-7771	6.7	14
205	Surface topology of GaAs(100) after focused ion beam implantation of Si++. <i>Applied Physics Letters</i> , 1997 , 70, 1305-1307	3.4	14
204	A One-Pot Universal Approach to Fabricate Lubricant-Infused Slippery Surfaces on Solid Substrates. <i>Advanced Functional Materials</i> , 2021 , 31, 2101090	15.6	14
203	Fabrication of ideally ordered anodic porous TiO 2 by anodization of pretextured two-layered metals. <i>Electrochemistry Communications</i> , 2016 , 72, 100-103	5.1	13
202	A significant cathodic shift in the onset potential of photoelectrochemical water splitting for hematite nanostructures grown from FeBi alloys. <i>Materials Horizons</i> , 2014 , 1, 344-347	14.4	13
201	Bottom sealing and photoelectrochemical properties of different types of anodic TiO2 nanotubes. <i>Electrochimica Acta</i> , 2013 , 100, 229-235	6.7	13
200	N-Doped lepidocrocite nanotubular arrays: hydrothermal formation from anodic TiO2 nanotubes and enhanced visible light photoresponse. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1860-1866	13	13
199	Tuning the selectivity of photocatalytic synthetic reactions using modified TiO2 nanotubes. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12605-8	16.4	13
198	Oxide Growth Efficiencies and Self-Organization of TiO2Nanotubes. <i>Journal of the Electrochemical Society</i> , 2012 , 159, H697-H703	3.9	13
197	Lattice Widening in Niobium-Doped TiO2 Nanotubes: Efficient Ion Intercalation and Swift Electrochromic Contrast. <i>Angewandte Chemie</i> , 2008 , 120, 8052-8055	3.6	13
196	Direct immobilization of DNA on diamond-like carbon nanodots. <i>Nanotechnology</i> , 2006 , 17, 2004-2007	3.4	13
195	Structural and optical properties of p-InP(1 0 0) anodized in halogenic acids. <i>Electrochimica Acta</i> , 2004 , 49, 1743-1749	6.7	13
194	Defect-Free AFM Scratching at the Si/SiO[sub 2] Interface Used for Selective Electrodeposition of Nanowires. <i>Electrochemical and Solid-State Letters</i> , 2004 , 7, A41		13

193	Optimized Pt Single Atom Harvesting on TiO Nanotubes-Towards a Most Efficient Photocatalyst. Small, 2021 , e2104892	11	13
192	Binding of human coronary artery endothelial cells to plasma-treated titanium dioxide nanotubes of different diameters. <i>Journal of Biomedical Materials Research - Part A</i> , 2016 , 104, 1113-20	5.4	13
191	Noble metal free photocatalytic H2 generation on black TiO2: On the influence of crystal facets vs. crystal damage. <i>Applied Physics Letters</i> , 2017 , 110, 072102	3.4	12
190	Double-Side Co-Catalytic Activation of Anodic TiO Nanotube Membranes with Sputter-Coated Pt for Photocatalytic H Generation from Water/Methanol Mixtures. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 314-323	4.5	12
189	Photocatalytic reduction and scavenging of Hg(ii) over templated-dewetted Au on TiO nanotubes. <i>Photochemical and Photobiological Sciences</i> , 2019 , 18, 1046-1055	4.2	12
188	Critical Factors in the Anodic Formation of Extremely Ordered Titania Nanocavities. <i>Journal of the Electrochemical Society</i> , 2019 , 166, C3389-C3398	3.9	12
187	Composition Gradients in Sputtered TiAu Alloys: Site-Selective Au Decoration of Anodic TiO2 Nanotubes for Photocatalytic H2 Evolution. <i>ACS Applied Nano Materials</i> , 2019 , 2, 4018-4025	5.6	12
186	Anodic nanoporous niobium oxide layers grown in pure molten ortho-phosphoric acid. <i>Electrochimica Acta</i> , 2020 , 344, 136158	6.7	12
185	Ordered nanopore boring in silicon: Metal-assisted etching using a self-aligned block copolymer Au nanoparticle template and gravity accelerated etching. <i>Electrochemistry Communications</i> , 2010 , 12, 565	-569	12
184	Selective etching of n-InP(100) triggered at surface dislocations induced by nanoscratching. <i>Electrochimica Acta</i> , 2006 , 51, 2182-2187	6.7	12
183	Porous Semiconductor Micropatterns Formed on Focussed Ion Beam Implants. <i>Journal of Porous Materials</i> , 2000 , 7, 233-237	2.4	12
182	Direct micropatterning of Si and GaAs using electrochemical development of focused ion beam implants. <i>Applied Physics Letters</i> , 1998 , 73, 2600-2602	3.4	12
181	Large Area Photocurrent Behavior and Laser Spot Scanning of Passivated Stainless Steels. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 362-366	3.9	12
180	Drug Delivery Systems Based on Titania Nanotubes and Active Agents for Enhanced Osseointegration of Bone Implants. <i>Current Medicinal Chemistry</i> , 2020 , 27, 854-902	4.3	12
179	Synthesis of free-standing TaN nanotube membranes and flow-through visible light photocatalytic applications. <i>Chemical Communications</i> , 2017 , 53, 11763-11766	5.8	11
178	TiO2 Nanotubes on Transparent Substrates: Control of Film Microstructure and Photoelectrochemical Water Splitting Performance. <i>Catalysts</i> , 2018 , 8, 25	4	11
177	Photocatalytic H2 Evolution: Dealloying as Efficient Tool for the Fabrication of Rh-decorated TiO2 Nanotubes. <i>ChemCatChem</i> , 2019 , 11, 6258-6262	5.2	11
176	Influence of bioactive linker molecules on protein adsorption. <i>Surface and Interface Analysis</i> , 2014 , 46, 193-197	1.5	11

175	Front side illuminated dye-sensitized solar cells using anodic TiO2 mesoporous layers grown on FTO-glass. <i>Electrochemistry Communications</i> , 2012 , 22, 157-161	5.1	11
174	Nitrates: A new class of electrolytes for the rapid anodic growth of self-ordered oxide nanopore layers on Ti and Ta. <i>Physica Status Solidi - Rapid Research Letters</i> , 2011 , 5, 394-396	2.5	11
173	Maskless patterning of various kinds of metals onto porous silicon. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2005 , 202, 1571-1575	1.6	11
172	EC-STM tip induced Cd nanostructures on Au(1 1 1). Surface Science, 2004, 551, L33-L39	1.8	11
171	Factors in Electrochemical Nanostructure Fabrication Using Electron-Beam Induced Carbon Masking. <i>Journal of the Electrochemical Society</i> , 2004 , 151, G175	3.9	11
170	Passivity of High Corrosion Resistant Cu-Al-Sn Alloys. <i>Journal of the Electrochemical Society</i> , 1993 , 140, 2786-2790	3.9	11
169	Thermal-Oxidative Growth of Substoichiometric WO3N Nanowires at Mild Conditions. <i>Physica Status Solidi - Rapid Research Letters</i> , 2020 , 14, 2000235	2.5	11
168	Polydopamine-Coated TiO2 Nanotubes for Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde Under Visible Light. <i>Journal of Nanoscience and Nanotechnology</i> , 2016 , 16, 5353-8	1.3	11
167	Conductive Cu-Doped TiO2 Nanotubes for Enhanced Photoelectrochemical Methanol Oxidation and Concomitant Hydrogen Generation. <i>ChemElectroChem</i> , 2019 , 6, 1244-1249	4.3	10
166	Photoelectrochemical properties of Increasingly dark TiO2 nanotube arrays. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 872, 114098	4.1	10
165	Improved photoelectrochemical water splitting of hematite nanorods thermally grown on FeIIi alloys. <i>Electrochemistry Communications</i> , 2014 , 44, 49-53	5.1	10
164	Self-Organized Arrays of Single-Metal Catalyst Particles in TiO2 Cavities: A Highly Efficient Photocatalytic System. <i>Angewandte Chemie</i> , 2013 , 125, 7662-7665	3.6	10
163	Anodic Formation of Self-Organized Cobalt Oxide Nanoporous Layers. <i>Angewandte Chemie</i> , 2013 , 125, 2131-2135	3.6	10
162	Novel pore shape and self-organization effects in n-GaP(111). <i>Journal of Solid State Electrochemistry</i> , 2009 , 13, 807-812	2.6	10
161	Electron beam lithographic techniques and electrochemical reactions for the micro- and nanostructuring of surfaces under extreme conditions. <i>Journal of Electroceramics</i> , 2006 , 16, 9-14	1.5	10
160	High intensity and oscillatory electroluminescence observed during porous etching of GaP in HBr and HF electrolytes. <i>Chemical Physics Letters</i> , 2005 , 414, 47-50	2.5	10
159	Electron-beam induced carbon deposition used as a mask for cadmium sulfide deposition on Si(100). <i>Electrochimica Acta</i> , 2001 , 47, 891-897	6.7	10
158	Transparent and Low-Loss Luminescent Solar Concentrators Based on Self-Trapped Exciton Emission in Lead-Free Double Perovskite Nanocrystals. <i>ACS Applied Energy Materials</i> , 2021 , 4, 6445-645	3 ^{6.1}	10

157	Ordered Nanotubular Titanium Disulfide (TiS2) Structures: Synthesis and Use as Counter Electrodes in Dye Sensitized Solar Cells (DSSCs). <i>Journal of the Electrochemical Society</i> , 2019 , 166, H3009-H3013	3.9	10
156	Spaced TiO Nanotubes Enable Optimized Pt Atomic Layer Deposition for Efficient Photocatalytic H Generation. <i>ChemistryOpen</i> , 2018 , 7, 797-802	2.3	10
155	Self-organized, free-standing TiO2 nanotube membranes: Effect of surface electrokinetic properties on flow-through membranes. <i>Electrochimica Acta</i> , 2017 , 245, 25-31	6.7	9
154	Water Annealing of TiO2 Nanotubes for Photocatalysis Revisited. <i>ChemElectroChem</i> , 2020 , 7, 2792-2796	54.3	9
153	Photoelectrochemical Poperties of Anodic TiO2 Nanosponge Layers. <i>ECS Electrochemistry Letters</i> , 2012 , 2, H9-H11		9
152	Preparation of Organized Ti Nanorods by Successive Electrochemical Processes in Aqueous Solution and Molten Salt. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, C51		9
151	Nanostructured black cobalt coatings for solar absorbers. Surface and Interface Analysis, 2008, 40, 1493-	1499	9
150	Tip-Induced Nanostructuring of Au[sub 3]Cu(001) with an Electrochemical Scanning Tunneling Microscope. <i>Journal of the Electrochemical Society</i> , 2003 , 150, C111	3.9	9
149	Morphology and Optical Properties of Highly Ordered TiO2 Nanotubes Grown in NH4F/o-H3PO4 Electrolytes in View of Light-Harvesting and Catalytic Applications. <i>ACS Applied Nano Materials</i> , 2020 , 3, 10646-10658	5.6	9
148	Spatially Confined Formation of Single Atoms in Highly Porous Carbon Nitride Nanoreactors. <i>ACS Nano</i> , 2021 , 15, 7790-7798	16.7	9
147	Photoelectrocatalytic oxidation of As(III) over hematite photoanodes: A sensible indicator of the presence of highly reactive surface sites. <i>Electrochimica Acta</i> , 2018 , 292, 828-837	6.7	9
146	Fe2O3 Blocking Layer Produced by Cyclic Voltammetry Leads to Improved Photoelectrochemical Performance of Hematite Nanorods. <i>Surfaces</i> , 2019 , 2, 131-144	2.9	8
145	Establishing High Photocatalytic H2 Evolution from Multiwalled Titanate Nanotubes. <i>ChemCatChem</i> , 2020 , 12, 2951-2956	5.2	8
144	Metal-Phosphate Bilayers for Anatase Surface Modification. <i>ACS Applied Materials & Description of the Phosphate Bilayers for Anatase Surface Modification</i> . <i>ACS Applied Materials & Description of the Phosphate Bilayers for Anatase Surface Modification</i> . <i>ACS Applied Materials & Description of the Phosphate Bilayers for Anatase Surface Modification</i> . <i>ACS Applied Materials & Description of the Phosphate Bilayers for Anatase Surface Modification</i> . <i>ACS Applied Materials & Description of the Phosphate Bilayers for Anatase Surface Modification</i> . <i>ACS Applied Materials & Description of the Phosphate Bilayers for Anatase Surface Modification</i> . <i>ACS Applied Materials & Description of the Phosphate Bilayers for Anatase Surface Modification</i> . <i>ACS Applied Materials & Description of the Phosphate Bilayers for Anatase Surface Modification</i> . <i>ACS Applied Materials & Description of the Phosphate Bilayers for Anatase Surface Modification of the Phosphate Bilayers for Anatase Surface Modification of the Phosphate Bilayers for Anatase Bi</i>	9.5	8
143	Self-induced current oscillations during anodization of Ti in LA containing DMSO electrolyte. <i>Electrochemistry Communications</i> , 2016 , 65, 18-22	5.1	8
142	Formation of aligned nanoporous/nanotubular layers of vanadium oxy-nitrides. <i>Electrochemistry Communications</i> , 2014 , 43, 31-35	5.1	8
141	Embedded Palladium Activation as a Facile Method for TiO2-Nanotube Nanoparticle Decoration: Cu2O-Induced Visible-Light Photoactivity. <i>ChemistryOpen</i> , 2013 , 2, 21-4	2.3	8
140	Electrochemically Assisted Self-Assembling of ZnF2-ZnO Nanospheres: Formation of Hierarchical Thin Porous Films. <i>ECS Electrochemistry Letters</i> , 2013 , 3, E1-E3		8

139	Molybdenum dichalcogenide nanotube arrays for hydrogen-evolution-reaction catalysis: Synergistic effects of sulfur and selenium in a core-shell tube wall. <i>Electrochemistry Communications</i> , 2017 , 82, 112	-1516	8
138	Reactivity of TiO2 Nanotube-Supported Platinum Particles in the CO Oxidation Reaction. <i>ChemCatChem</i> , 2017 , 9, 564-572	5.2	8
137	Through-hole, self-ordered nanoporous oxide layers on titanium, niobium and titanium-niobium alloys in aqueous and organic nitrate electrolytes. <i>ChemistryOpen</i> , 2012 , 1, 21-5	2.3	8
136	Voltage Induced Self-Peeling of Initiation Layers on Self-Organized TiO[sub 2]IWO[sub 3] Nanotubes and Formation of Oxide Nanosheet Rolls. <i>Electrochemical and Solid-State Letters</i> , 2010 , 13, K73		8
135	Electrochemical wettability control on conductive TiO2 nanotube surfaces modified with a ferrocene redox system. <i>Electrochemistry Communications</i> , 2009 , 11, 2000-2003	5.1	8
134	Self-organized Anodic TiO2-nanotubes in Fluoride Free Electrolytes. <i>ECS Transactions</i> , 2009 , 16, 369-37	31	8
133	Selective Electrodeposition of Micropatterns on Predefined Surface Defects on p-Si(100). <i>Journal of the Electrochemical Society</i> , 2001 , 148, C177	3.9	8
132	Nature and growth of anodic and thermal oxides on GaAs and AlxGa1☑ As. <i>Corrosion Science</i> , 1999 , 41, 1467-1474	6.8	8
131	Physical and Electrical Characterization of Thin Anodic Oxides on Si(100). <i>Journal of the Electrochemical Society</i> , 1995 , 142, 3933-3940	3.9	8
130	Long-Living Holes in Grey Anatase TiO2 Enable Noble-Metal-Free and Sacrificial-Agent-Free Water Splitting. <i>ChemSusChem</i> , 2020 , 13, 4937-4944	8.3	8
129	Anodic TiO2 nanotube arrays directly grown on quartz glass used in front- and back-side irradiation configuration for photocatalytic H2 generation. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 2733-2740	1.6	8
128	As a single atom Pd outperforms Pt as the most active co-catalyst for photocatalytic H evolution. <i>IScience</i> , 2021 , 24, 102938	6.1	8
127	Electrical transport properties of polycrystalline and amorphous TiO 2 'single nanotubes. <i>Nano Structures Nano Objects</i> , 2017 , 10, 51-56	5.6	7
126	Post treatments effect on TiZr nanostructures fabricated via anodizing. <i>Journal of Materials Research and Technology</i> , 2019 , 8, 5802-5812	5.5	7
125	Amorphous Mo-Ta Oxide Nanotubes for Long-Term Stable Mo Oxide-Based Supercapacitors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 45665-45673	9.5	7
124	Evaluation of nanostructured vanadium(V) oxide in catalytic oxidations. <i>Catalysis Science and Technology</i> , 2013 , 3, 2610	5.5	7
123	Optimized FTO seeding enables the growth of highlyefficient Ta-doped TiO nanorod photoanodes. <i>Chemical Communications</i> , 2017 , 53, 10050-10053	5.8	7
122	Anodic formation of Ti-V binary oxide mesosponge layers for supercapacitor applications. Chemistry - an Asian Journal, 2011, 6, 2916-9	4.5	7

121	Formation of magnetic aluminium oxyhydroxide nanorods and use for hyperthermal effects. <i>Nanotechnology</i> , 2011 , 22, 115601	3.4	7	
120	Bulk micromachining of silicon using electron-beam-induced carbonaceous nanomasking. <i>Nanotechnology</i> , 2006 , 17, 5363-5366	3.4	7	
119	Self-organized Nucleation of Cd Island Arrays on Reconstructed Au(111) Electrode Surfaces by Underpotential Deposition. <i>Electrochemical and Solid-State Letters</i> , 2003 , 6, C63		7	
118	Electron Beam Induced Writing of Corrosion Protection. <i>Electrochemical and Solid-State Letters</i> , 2003 , 6, C1		7	
117	Maskless deposition of gold patterns on silicon. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2000 , 18, 3198		7	
116	Selective Growth of Porous Silicon on Focused Ion Beam Patterns. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 2993	3.9	7	
115	Characterisation of r.f. sputtered Feller-oxide films. <i>Vacuum</i> , 1999 , 52, 477-483	3.7	7	
114	Aligned MoOx/MoS2 CoreBhell Nanotubular Structures with a High Density of Reactive Sites Based on Self-Ordered Anodic Molybdenum Oxide Nanotubes. <i>Angewandte Chemie</i> , 2016 , 128, 12440-	123444	7	
113	Tunable Transformation Between SnS and SnOx Nanostructures via Facile Anodization and Their Photoelectrochemical and Photocatalytic Performance. <i>Solar Rrl</i> , 2018 , 2, 1800161	7.1	7	
112	Uncovering the Role of Trioctylphosphine on Colloidal and Emission Stability of Sb-Alloyed CsNaInCl Double Perovskite Nanocrystals. <i>ACS Applied Materials & Double Perovskite</i> 13, 47845-478.	5 9 ·5	7	
111	Black TiO nanotubes: Efficient electrodes for triggering electric field-induced stimulation of stem cell growth. <i>Acta Biomaterialia</i> , 2019 , 97, 681-688	10.8	6	
110	Templating Using Self-Aligned TiO2 Nanotube Stumps: Highly Ordered Metal and Polymer Bumped Arrays. <i>ChemElectroChem</i> , 2014 , 1, 64-66	4.3	6	
109	Photocatalysis vs. anodic-breakdown catalysis on TiO2 layers. <i>Electrochimica Acta</i> , 2012 , 66, 7-11	6.7	6	
108	Signal Amplification Strategy Based on TiO2-Nanotube Layers and Nanobeads Carrying Quantum Dots for Electrochemiluminescent Immunosensors. <i>ChemistryOpen</i> , 2013 , 2, 93-8	2.3	6	
107	Transparent Self-Ordered Niobium-Oxide Nanochannel Layers Formed on Conducting Glass by Total Anodization of Thin Metal Films in Glycerol/Phosphate Electrolyte. <i>ECS Electrochemistry Letters</i> , 2012 , 2, C4-C6		6	
106	Steel corrosion in alkaline batteries. <i>Electrochimica Acta</i> , 2009 , 54, 5216-5222	6.7	6	
105	Anodic Porous and Tubular Oxide Layers on Ti Alloys. <i>ECS Transactions</i> , 2009 , 16, 359-367	1	6	
104	Printing halftone photographic images on diamond by focused silicon ion implantation. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1997 , 15, 2358		6	

103	A light reflectance technique for thickness measurements of passive films. <i>Electrochimica Acta</i> , 1998 , 43, 635-637	6.7	6
102	Chapter 3:Electrochemistry at TiO2 nanotubes and other semiconductor nanostructures. <i>SPR Electrochemistry</i> ,87-131		6
101	Photoelectrochemical performance of TiO2 photoanodes: Nanotube versus nanoflake electrodes. <i>Electrochemistry Communications</i> , 2021 , 124, 106937	5.1	6
100	Magnli Phases Doped with Pt for Photocatalytic Hydrogen Evolution. <i>ACS Applied Energy Materials</i> , 2019 , 2, 8399-8404	6.1	6
99	Photo-Electrochemical Solar-to-Fuel Energy Conversion by Hematite-Based Photo-Anodes IThe Role of 1D Nanostructuring. <i>Zeitschrift Fur Physikalische Chemie</i> , 2020 , 234, 615-631	3.1	6
98	Reduced grey brookite for noble metal free photocatalytic H2 evolution. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 1168-1179	13	6
97	Constructing a photo-enzymatic cascade reaction and its in situ monitoring: enzymes hierarchically trapped in titania meso-porous MOFs as a new photosynthesis platform. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 14911-14919	13	6
96	Sulfur and Ti co-Doping of TiO Nanotubes Enhance Photocatalytic H Evolution Without the Use of Any co-catalyst. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 2724-2730	4.5	5
95	Optimized Polymer Electrolyte Membrane Fuel Cell Electrode Using TiO2 Nanotube Arrays with Well-Defined Spacing. <i>ACS Applied Nano Materials</i> , 2020 , 3, 4157-4170	5.6	5
94	Electrochemically Faceted Bamboo-type TiO2 Nanotubes Provide Enhanced Open-Circuit Hydrogen Evolution. <i>ChemElectroChem</i> , 2019 , 6, 114-120	4.3	5
93	Tuning Anatase Surface Reactivity toward Carboxylic Acid Anchor Groups. <i>Langmuir</i> , 2017 , 33, 13913-1	39 ₁ 22	5
92	Hierarchical decoration of anodic TiO2 nanorods for enhanced photocatalytic degradation properties. <i>Electrochimica Acta</i> , 2015 , 155, 244-250	6.7	5
91	Toward Self-Ordered Silica Nanotubes by Electrochemical Anodization of Si(100). <i>Electrochemical and Solid-State Letters</i> , 2010 , 13, C25		5
90	Anodic Porous Zirconium Oxide Prepared in Sulfuric Acid Electrolytes. <i>Materials Science Forum</i> , 2006 , 512, 205-210	0.4	5
89	Morphology of porous n-GaP anodically formed in different mineral acids. <i>Journal of Electroceramics</i> , 2006 , 16, 23-28	1.5	5
88	Formation of porous layers on InSb(100) by anodization. <i>Physica Status Solidi A</i> , 2003 , 197, 71-76		5
87	Tip-induced nanostructuring of alloy surfaces with an electrochemical scanning tunneling microscope. <i>Surface Science</i> , 2005 , 597, 20-25	1.8	5
86	A Few Pt Single Atoms Are Responsible for the Overall Co-Catalytic Activity in Pt/TiO 2 Photocatalytic H 2 Generation. <i>Solar Rrl</i> ,2101026	7.1	5

(2021-2021)

85	Intrinsically Ru-Doped Suboxide TiO2 Nanotubes for Enhanced Photoelectrocatalytic H2 Generation. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 6116-6127	3.8	5	
84	Photocatalytic Hydrogen Generation from Water-Annealed TiO2 Nanotubes with White and Grey Modification. <i>ChemElectroChem</i> , 2021 , 8, 240-245	4.3	5	
83	Photoelectrochemical performance of facet-controlled TiO2 nanosheets grown hydrothermally on FTO. <i>Nanoscale Advances</i> , 2021 , 3, 747-754	5.1	5	
82	Multi-Leg TiO2 Nanotube Photoelectrodes Modified by Platinized Cyanographene with Enhanced Photoelectrochemical Performance. <i>Catalysts</i> , 2020 , 10, 717	4	4	
81	Could Titanium Dioxide Nanotubes Represent a Viable Support System for Appropriate Cells in Vascular Implants?. <i>Advances in Biomembranes and Lipid Self-Assembly</i> , 2017 , 25, 1-39	1	4	
80	Tantalum nitride nanotube photoanodes: Establishing a beneficial back-contact by lift-off and transfer to titanium nitride layer. <i>Electrochemistry Communications</i> , 2016 , 72, 27-31	5.1	4	
79	Design of self-assembled TiO2 architectures: Towards hybrid nanotubular interfaces. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2014 , 211, 938-945	1.6	4	
78	Metal-insulator transition in nanocomposite VOx films formed by anodic electrodeposition. <i>Applied Physics Letters</i> , 2013 , 103, 202102	3.4	4	
77	Self-Organized Oxide Nanotube Layers on Titanium and Other Transition Metals. <i>Nanostructure Science and Technology</i> , 2009 , 435-466	0.9	4	
76	Tailored Electrochemical Surface Modification of Semiconductors. <i>Materials Science Forum</i> , 2006 , 512, 129-136	0.4	4	
75	Oxidation of IIIIV semiconductors. <i>Corrosion Science</i> , 2007 , 49, 31-41	6.8	4	
74	Resistless deposition of metallic nanostructures on ion projection sensitized p-Si. <i>Microelectronic Engineering</i> , 2003 , 67-68, 175-181	2.5	4	
73	Ion projection sensitized selective Cu electroplating on uncoated p-Si. <i>Journal of Vacuum Science</i> & <i>Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2002 , 20, 2713		4	
72	Fabrication of ideally ordered TiO through-hole membranes by two-layer anodization <i>RSC Advances</i> , 2020 , 10, 37657-37661	3.7	4	
71	A High-Field Anodic NiO Nanosponge with Tunable Thickness for Application in p-Type Dye-Sensitized Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 7865-7872	6.1	4	
70	Thermal Ramping Rate during Annealing of TiO2 Nanotubes Greatly Affects Performance of Photoanodes. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2021 , 218, 2100040	1.6	4	
69	Optical properties of silicon-implanted polycrystalline diamond membranes. <i>Carbon</i> , 2021 , 174, 295-304	10.4	4	
68	A long-term stable aqueous aluminum battery electrode based on one-dimensional molybdenum-tantalum oxide nanotube arrays. <i>Nanoscale</i> , 2021 , 13, 6087-6095	7.7	4	

67	A facile darkEdeposition approach for Pt single-atom trapping on facetted anatase TiO2 nanoflakes and use in photocatalytic H2 generation. <i>Electrochimica Acta</i> , 2022 , 412, 140129	6.7	4
66	Alkali Metal Cation Incorporation in Conductive TiO2 Nanoflakes with Improved Photoelectrochemical H2 Generation. <i>ChemElectroChem</i> , 2020 , 7, 1699-1706	4.3	3
65	Spaced Titania Nanotube Arrays Allow the Construction of an Efficient N-Doped Hierarchical Structure for Visible-Light Harvesting. <i>ChemistryOpen</i> , 2018 , 7, 131-135	2.3	3
64	Engineering of Self-Organizing Electrochemistry: Porous Alumina and Titania Nanotubes. <i>Advances in Electrochemical Science and Engineering</i> , 2015 , 145-192		3
63	Palladium Activated Decoration of TiO2 Nanotubes by Copper Nanoparticles and Enhanced Photocatalytic Properties. <i>ECS Electrochemistry Letters</i> , 2012 , 1, H29-H31		3
62	Schneller Elektronentransport und groß Oberfkähe: porße Anatas-Einkristalle als Schlßselmaterialien filneue Solarzellen. <i>Angewandte Chemie</i> , 2013 , 125, 8088-8090	3.6	3
61	Selective electrochemical gold deposition onto p-Si (1 0 0) surfaces. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 175301	3	3
60	Nonaqueous Viscous Electrolytes for Growth of Anodic Titania Nanotubes. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 963, 1		3
59	Anodic Oxide Nanotubes on Ti Alloys. <i>ECS Transactions</i> , 2006 , 3, 365-374	1	3
58	Formation of Self-Organized Zirconia Nanostructure. ECS Transactions, 2006, 1, 351-357	1	3
57	Electron beam-treated organic monolayers as a negative resist for Cu immersion plating on Si. <i>Journal of Solid State Electrochemistry</i> , 2004 , 8, 772	2.6	3
56	Selective porosification of n-InP(100) after focused ion beam implantation of Si++. <i>Physica Status Solidi A</i> , 2003 , 197, 180-185		3
55	Electrochemical structuring of mechanically activated n-InP(100) surfaces. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 3359-3364		3
54	Light Induced Inhibition of Local Passivity Breakdown. <i>Materials Science Forum</i> , 1995 , 185-188, 1065-10	7 ₫ .4	3
53	Metallic nanoparticle-on-mirror: Multiple-band light harvesting and efficient photocurrent generation under visible light irradiation. <i>Nano Energy</i> , 2021 , 90, 106609	17.1	3
52	Grey facet-controlled anatase nanosheets for photocatalytic H2 evolution without co-catalyst. <i>JPhys Energy</i> , 2021 , 3, 034003	4.9	3
51	Photocurrent conversion efficiency of TiO2 nanotube photoanodes in dependence of illumination intensity. <i>Electrochimica Acta</i> , 2021 , 377, 137988	6.7	3
50	Anodic self-assembly method for synthesizing hierarchical FeS/FeOx hollow nanospheres. <i>Journal of Power Sources</i> , 2021 , 484, 229268	8.9	3

49	Efficient Preparation Process for TiO2 Through-Hole Membranes with Ordered Hole Arrangements. Journal of the Electrochemical Society, 2018 , 165, E763-E767	3.9	3
48	Light-Induced Migration of Spin Defects in TiO Nanosystems and their Contribution to the H Evolution Catalysis from Water. <i>ChemSusChem</i> , 2021 , 14, 4408-4414	8.3	3
47	Hierarchical Anodic TiO2 Nanostructures Formed in Ethylene Glycol/o-H3PO4 Electrolytes for Direct Photocatalysis. <i>ChemElectroChem</i> , 2020 , 7, 2859-2863	4.3	2
46	Key Oxidation Parameters that Influence Photo-Induced Properties and Applications of Anodic Titanium Oxides. <i>Journal of the Electrochemical Society</i> , 2016 , 163, H119-H127	3.9	2
45	Boron-Doped Diamond as an Efficient Back Contact to Thermally Grown TiO2 Photoelectrodes. <i>ChemElectroChem</i> , 2019 , 6, 4545-4549	4.3	2
44	Adsorption characteristics of a Zn-Porphyrin on MgO surfaces. <i>Surface and Interface Analysis</i> , 2013 , 45, 194-197	1.5	2
43	Reliable Metal Deposition into TiO2 Nanotubes for Leakage-Free Interdigitated Electrode Structures and Use as a Memristive Electrode. <i>Angewandte Chemie</i> , 2013 , 125, 12607-12610	3.6	2
42	Stable Co-Catalyst-Free Photocatalytic H2 Evolution From Oxidized Titanium Nitride Nanopowders. <i>Angewandte Chemie</i> , 2015 , 127, 13583-13587	3.6	2
41	Front-side illuminated dye-sensitized solar cells based on bundle shaped titania nanotube membranes. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012 , 209, 193-198	1.6	2
40	Porous anodic alumina: Amphiphilic and magnetically guidable micro-rafts. <i>Electrochemistry Communications</i> , 2011 , 13, 934-937	5.1	2
39	Reactivity Screening of Anatase TiO2 Nanotubes Array and Anatase Thin Films: A Surface Chemistry Point of View. <i>ACS Symposium Series</i> , 2008 , 139-151	0.4	2
38	Oxygen Reduction on Passive Steel and Cr Rich Alloys for Concrete Reinforcement 2006 , 305-310		2
37	Organic monolayers as resist layers for Cu deposition on Si (111) surfaces. <i>Journal of Electroceramics</i> , 2006 , 16, 71-77	1.5	2
36	Pore formation on p-type InP(100). <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2005 , 202, 1446-1450	1.6	2
35	Selective Titanium Oxide Formation Using Electron-beam Induced Carbon Deposition Technique. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 741, 451		2
34	Cu-Nanoclusters Produced on AuCu-Alloys with an Electrochemical Scanning Tunneling Microscope. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 704, 581		2
33	Red luminescence from a focused ion beam modified silicon surface. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1998 , 16, 3301		2
32	Thickness measurements of thin anodic oxides on GaAs using atomic force microscopy, profilometry, and secondary ion mass spectrometry. <i>Applied Physics Letters</i> , 1996 , 68, 2675-2677	3.4	2

31	Self-assembled monolayers enhance the efficiency of Pt single atom co-catalysts in photocatalytic H2 generation. <i>Electrochemistry Communications</i> , 2021 , 133, 107166	5.1	2
30	Enhancing Photoelectrochemical Energy Storage by Large-Area CdS-Coated Nickel Nanoantenna Arrays. <i>ACS Applied Energy Materials</i> , 2021 , 4, 11367-11376	6.1	2
29	Nanoscale Assembly of BiVO4/CdS/CoOx CoreBhell Heterojunction for Enhanced Photoelectrochemical Water Splitting. <i>Catalysts</i> , 2021 , 11, 682	4	2
28	Dye-sensitized TiO2 nanotube membranes act as a visible-light switchable diffusion gate. <i>Nanoscale Advances</i> , 2019 , 1, 4844-4852	5.1	2
27	Improvement of polymer properties for powder bed fusion by combining in situ PECVD nanoparticle synthesis and dry coating. <i>Plasma Processes and Polymers</i> , 2021 , 18, 2000247	3.4	2
26	Self-assembly of a Ni(I)-photocatalyst for plain water splitting without sacrificial agents. <i>Electrochemistry Communications</i> , 2021 , 122, 106909	5.1	2
25	Nanotube diameter directs stem cell fate. <i>Journal of Stem Cells and Regenerative Medicine</i> , 2007 , 2, 168	0.8	2
24	Easy Room Temperature Synthesis of High Surface Area Anatase Nanowires with Different Morphologies. <i>ChemistryOpen</i> , 2019 , 8, 817-821	2.3	1
23	Adhesion of Osteoblasts to a Vertically Aligned TiO2 Nanotube Surface. <i>Mini-Reviews in Medicinal Chemistry</i> , 2013 , 13, 194-200	3.2	1
22	Electrochemical Monitoring of the Formation of Self Organized Monolayers: Octadecylphosphonic Acid on Anodically Grown Titanium Dioxide. <i>Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan</i> , 2009 , 60, 170-173	0.1	1
21	TiO2 nanotube micropatterns [highly selective model surfaces. Biomedizinische Technik, 2012, 57,	1.3	1
20	Electrochemical trench etching of silicon triggered via mechanical nanocontacts. <i>Electrochimica Acta</i> , 2007 , 53, 758-762	6.7	1
19	Anodization of Ti: Formation of Self-Organized Titanium Oxide Nanotube-Layers 2006 , 179-186		1
18	Self-Organized Nanoporous Valve Metal Oxide Layers 2006 , 187-192		1
17	Potential influence on copper electrodeposition on scratched silicon surfaces. <i>Journal of Electroceramics</i> , 2006 , 16, 65-70	1.5	1
16	Controlled and Selective Aggregation of Submicrometer Cu-Crystallites on FIB Sensitized p-Si. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 704, 7101		1
15	Nanoscale Electrochemical Deposition of Metals on FIB Sensitizedp-Type Silicon. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 705, 431		1
14	Pt-ion-implantation-induced suppression of leakage conduction in Pt/Pb)(ZrxTi1☑)O3/Pt capacitors. <i>Integrated Ferroelectrics</i> , 1999 , 23, 191-198	0.8	1

LIST OF PUBLICATIONS

13	Nanocrystals <i>ChemistryOpen</i> , 2022 , e202200010	2.3	1
12	Li+ doped anodic TiO2 nanotubes for enhanced efficiency of Dye-sensitized solar cells. <i>Surface Science</i> , 2022 , 718, 122012	1.8	1
11	Light-induced In-situ Ti3+ Formation in TiO2 Nanosheets for Photocatalytic Hydrogen Evolution. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 908, 012001	0.4	1
10	Self-assembly and activation of a titania-nanotube based photocatalyst for H evolution. <i>Chemical Communications</i> , 2021 , 57, 7120-7123	5.8	1
9	A drastic improvement in photocatalytic H production by TiO nanosheets grown directly on TaO substrates. <i>Nanoscale</i> , 2021 , 13, 12750-12756	7.7	1
8	Facile Approach of Direct Sulfidation of FTO to Form Vertically Aligned SnS2 Nanoflake Photoanodes for Efficient Photoelectrochemical Water Splitting. <i>ACS Applied Energy Materials</i> , 2021 , 4, 8395-8400	6.1	1
7	Easy Room Temperature Synthesis of High Surface Area Anatase Nanowires with Different Morphologies. <i>ChemistryOpen</i> , 2019 , 8, 813	2.3	
6	A Semiconductor Nano-Patterning Approach Using AFM-Scratching Through Oxide Thin Layers. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 740, 1		
5	Light Emitting Micropatterns of Porous Semiconductors. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 536, 3		
4	Visible Light Emission from Silicon Nanostructures. <i>Physica Status Solidi (B): Basic Research</i> , 1999 , 215, 297-300	1.3	
3	Cathodic electrodeposition of mixed oxide/hydroxide precursor for lead-zirconate titanate thin films. <i>Ferroelectrics</i> , 1999 , 225, 311-318	0.6	
2	Self-Organizing Anodization in Pure Molten Ortho-Phosphoric Acid: Nanoporous Niobium Oxide Layers. <i>ECS Meeting Abstracts</i> , 2020 , MA2020-01, 2831-2831	O	
1	One-dimensional TiO2 nanotubeBased photocatalysts: enhanced performance by site-selective decoration. <i>Interface Science and Technology</i> , 2020 , 31, 231-264	2.3	