Christie D Rowe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6801727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Do faults preserve a record of seismic slip: A second opinion. Journal of Structural Geology, 2015, 78, 1-26.	2.3	237
2	Structure and Composition of the Plate-Boundary Slip Zone for the 2011 Tohoku-Oki Earthquake. Science, 2013, 342, 1208-1211.	12.6	226
3	The thickness of subduction plate boundary faults from the seafloor into the seismogenic zone. Geology, 2013, 41, 991-994.	4.4	123
4	Large-scale pseudotachylytes and fluidized cataclasites from an ancient subduction thrust fault. Geology, 2005, 33, 937.	4.4	121
5	Stress State in the Largest Displacement Area of the 2011 Tohoku-Oki Earthquake. Science, 2013, 339, 687-690.	12.6	112
6	Disappearing ink: How pseudotachylytes are lost from the rock record. Journal of Structural Geology, 2013, 52, 183-198.	2.3	107
7	Silica gel formation during fault slip: Evidence from the rock record. Geology, 2013, 41, 1015-1018.	4.4	84
8	Fault rock injections record paleo-earthquakes. Earth and Planetary Science Letters, 2012, 335-336, 154-166.	4.4	69
9	Signature of coseismic decarbonation in dolomitic fault rocks of the Naukluft Thrust, Namibia. Earth and Planetary Science Letters, 2012, 333-334, 200-210.	4.4	58
10	Biomarkers heat up during earthquakes: New evidence of seismic slip in the rock record. Geology, 2014, 42, 99-102.	4.4	57
11	The processes of underthrusting and underplating in the geologic record: structural diversity between the Franciscan Complex (California), the Kodiak Complex (Alaska) and the Internal Ligurian Units (Italy). Geological Journal, 2009, 44, 126-152.	1.3	55
12	Structure and lithology of the Japan Trench subduction plate boundary fault. Tectonics, 2015, 34, 53-69.	2.8	53
13	The State of Stress on the Fault Before, During, and After a Major Earthquake. Annual Review of Earth and Planetary Sciences, 2020, 48, 49-74.	11.0	49
14	10. How Accretionary Prisms Elucidate Seismogenesis in Subduction Zones. , 2007, , 288-315.		46
15	Textural record of the seismic cycle: strain-rate variation in an ancient subduction thrust. Geological Society Special Publication, 2011, 359, 77-95.	1.3	43
16	Earthquake lubrication and healing explained by amorphous nanosilica. Nature Communications, 2019, 10, 320.	12.8	42
17	Snap, Crackle, Pop: Dilational fault breccias record seismic slip below the brittle–plastic transition. Earth and Planetary Science Letters, 2014, 403, 432-445.	4.4	41
18	Geology of the Monapo Klippe, NE Mozambique and its significance for assembly of central Gondwana. Precambrian Research, 2013, 233, 259-281.	2.7	29

CHRISTIE D ROWE

#	Article	IF	CITATIONS
19	Silica gel in a fault slip surface: Field evidence for palaeo-earthquakes?. Journal of Structural Geology, 2014, 69, 108-121.	2.3	25
20	Multiple major faults at the Japan Trench: Chemostratigraphy of the plate boundary at IODP Exp. 343: JFAST. Earth and Planetary Science Letters, 2015, 423, 57-66.	4.4	24
21	Geometric Complexity of Earthquake Rupture Surfaces Preserved in Pseudotachylyte Networks. Journal of Geophysical Research: Solid Earth, 2018, 123, 7998-8015.	3.4	22
22	Whither the megathrust? Localization of large-scale subduction slip along the contact of a mélange. International Geology Review, 2015, 57, 854-870.	2.1	19
23	Emplacement and dewatering of the world's largest exposed sand injectite complex. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	17
24	Earthquake slip surfaces identified by biomarker thermal maturity within the 2011 Tohoku-Oki earthquake fault zone. Nature Communications, 2020, 11, 533.	12.8	17
25	For how long are pseudotachylytes strong? Rapid alteration of basalt-hosted pseudotachylytes from a shallow subduction complex. Earth and Planetary Science Letters, 2019, 518, 108-115.	4.4	16
26	Frictional Strengths of Subduction Thrust Rocks in the Region of Shallow Slow Earthquakes. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018888.	3.4	15
27	Evidence of Localized Failure Along Altered Basaltic Blocks in Tectonic Mélange at the Updip Limit of the Seismogenic Zone: Implications for the Shallow Slow Earthquake Source. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008839.	2.5	15
28	Mapping the surface geomorphology of the Makgadikgadi Rift Zone (MRZ). Quaternary International, 2016, 404, 115-120.	1.5	14
29	STRUCTURAL GEOLOGY OF ROBBEN ISLAND: IMPLICATIONS FOR THE TECTONIC ENVIRONMENT OF SALDANIAN DEFORMATION. South African Journal of Geology, 2010, 113, 57-72.	1.2	13
30	MEGA-SCALE (Â50M) ORDOVICIAN LOAD CASTS AT DE BALIE, SOUTH AFRICA: POSSIBLE SEDIMENT FLUIDIZATION BY THERMAL DESTABILISATION. South African Journal of Geology, 2009, 112, 187-196.	1.2	11
31	Fluid-rock interaction recorded in black fault rocks in the Kodiak accretionary complex, Alaska. Earth, Planets and Space, 2014, 66, .	2.5	11
32	Stress, strain, and fault behavior at a thrust ramp: Insights from the Naukluft thrust, Namibia. Journal of Structural Geology, 2014, 58, 95-107.	2.3	11
33	Seismic cycle feedbacks in a mid-crustal shear zone. Journal of Structural Geology, 2018, 112, 95-111.	2.3	11
34	Structural and metamorphic evidence for Mesoarchaean subduction in the Finlayson Lake greenstone belt, Superior Province, Ontario. Precambrian Research, 2014, 249, 100-114.	2.7	10
35	Deformation structures in the frontal prism near the Japan Trench: Insights from sandbox models. Journal of Geodynamics, 2015, 89, 29-38.	1.6	10
36	Hot on the trail: Coseismic heating on a localized structure along the Muddy Mountain fault, Nevada. Journal of Structural Geology, 2019, 120, 67-79.	2.3	10

CHRISTIE D ROWE

#	Article	IF	CITATIONS
37	Experimental slip distribution in lentils as an analog for scaly clay fabrics. Geology, 2016, 44, 183-186.	4.4	9
38	The spin zone: Transient mid-crust permeability caused by coseismic brecciation. Journal of Structural Geology, 2016, 87, 47-63.	2.3	8
39	DISCUSSION ON: RECONSTRUCTION OF THE ORDOVICIAN PAKHUIS ICE SHEET, SOUTH AFRICA BY H.J. BLIGNAULT AND J.N. THERON. South African Journal of Geology, 2011, 114, 95-102.	1.2	7
40	Shaking Loose: Sand volcanoes and Jurassic earthquakes. Geology, 2013, 41, 1135-1136.	4.4	7
41	Alteration-weakening leading to localized deformation in a damage aureole adjacent to a dormant shear zone. Journal of Structural Geology, 2016, 90, 144-156.	2.3	7
42	Eastward transport of the Monapo Klippe, Mozambique determined from field kinematics and computed tomography and implications for late tectonics in central Gondwana. Precambrian Research, 2013, 237, 101-115.	2.7	5
43	How Fault Rocks Form and Evolve in the Shallow San Andreas Fault. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC010092.	2.5	5
44	Complexity of hydrogeologic regime around an ancient lowâ€angle thrust fault revealed by multidisciplinary field study. Geofluids, 2016, 16, 673-687.	0.7	2
45	Neoarchean supra-subduction gold in Mesoarchean tonalite-granodiorite: Two separate mineralization events at Hammond Reef defined by disseminated and channelized fluid flow. Precambrian Research, 2018, 305, 111-124.	2.7	1
46	Preface for the special issue of "New Perspective of Subduction Zone Earthquakes― Earth, Planets and Space, 2015, 67, .	2.5	0
47	Research Matters 1. Funding for Structural Geology and Tectonics Research in Three Nations. Geoscience Canada, 2013, 40, 366.	0.8	Ο