List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6801503/publications.pdf Version: 2024-02-01

LADS KODTE

#	Article	IF	CITATIONS
1	A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351, 151-155.	12.6	2,514
2	Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 2020, 370, 1300-1309.	12.6	1,120
3	Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy and Environmental Science, 2016, 9, 81-88.	30.8	536
4	Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy and Environmental Science, 2019, 12, 3356-3369.	30.8	519
5	Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency. Advanced Energy Materials, 2020, 10, 1904102.	19.5	321
6	Roadmap and roadblocks for the band gap tunability of metal halide perovskites. Journal of Materials Chemistry A, 2017, 5, 11401-11409.	10.3	307
7	Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy and Environmental Science, 2018, 11, 3511-3523.	30.8	281
8	Infrared Light Management Using a Nanocrystalline Silicon Oxide Interlayer in Monolithic Perovskite/Silicon Heterojunction Tandem Solar Cells with Efficiency above 25%. Advanced Energy Materials, 2019, 9, 1803241.	19.5	239
9	Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Solar Energy Materials and Solar Cells, 2015, 141, 14-23.	6.2	233
10	Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance. Sustainable Energy and Fuels, 2019, 3, 1995-2005.	4.9	208
11	Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2745-2750.	4.6	170
12	Physical aspects of a-Si:H/c-Si hetero-junction solar cells. Thin Solid Films, 2007, 515, 7475-7480.	1.8	145
13	Hydrogen plasma treatments for passivation of amorphous-crystalline silicon-heterojunctions on surfaces promoting epitaxy. Applied Physics Letters, 2013, 102, 122106.	3.3	131
14	Oxygen vacancies in tungsten oxide and their influence on tungsten oxide/silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2016, 158, 77-83.	6.2	129
15	Interplay of amorphous silicon disorder and hydrogen content with interface defects in amorphous/crystalline silicon heterojunctions. Applied Physics Letters, 2010, 96, .	3.3	127
16	Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures. Optics Express, 2017, 25, A473.	3.4	114
17	Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization. Solar Energy Materials and Solar Cells, 2009, 93, 905-910.	6.2	108
18	It Takes Two to Tango—Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis. ACS Applied Materials & Interfaces, 2017, 9, 17245-17255.	8.0	107

#	Article	IF	CITATIONS
19	Towards wafer quality crystalline silicon thin-film solar cells on glass. Solar Energy Materials and Solar Cells, 2014, 128, 190-197.	6.2	105
20	Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells. ACS Photonics, 2017, 4, 1232-1239.	6.6	103
21	Electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells. Journal of Applied Physics, 2010, 107, .	2.5	100
22	Band lineup in amorphous/crystalline silicon heterojunctions and the impact of hydrogen microstructure and topological disorder. Physical Review B, 2011, 83, .	3.2	96
23	p-type microcrystalline silicon oxide emitter for silicon heterojunction solar cells allowing current densities above 40 mA/cm2. Applied Physics Letters, 2015, 106, .	3.3	93
24	Efficient interdigitated backâ€contacted silicon heterojunction solar cells. Physica Status Solidi - Rapid Research Letters, 2011, 5, 159-161.	2.4	83
25	Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells. Journal of Optics (United Kingdom), 2016, 18, 064012.	2.2	82
26	Discerning passivation mechanisms at a-Si:H/c-Si interfaces by means of photoconductance measurements. Applied Physics Letters, 2011, 98, .	3.3	79
27	Stability and Dark Hysteresis Correlate in NiOâ€Based Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901642.	19.5	69
28	Three-Terminal Perovskite/Silicon Tandem Solar Cells with Top and Interdigitated Rear Contacts. ACS Applied Energy Materials, 2020, 3, 1381-1392.	5.1	63
29	Investigation of gap states in phosphorous-doped ultra-thin a-Si:H by near-UV photoelectron spectroscopy. Journal of Non-Crystalline Solids, 2008, 354, 2138-2143.	3.1	62
30	Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application. Applied Surface Science, 2008, 254, 3615-3625.	6.1	61
31	27.9% Efficient Monolithic Perovskite/Silicon Tandem Solar Cells on Industry Compatible Bottom Cells. Solar Rrl, 2021, 5, 2100244.	5.8	59
32	Impact of the transparent conductive oxide work function on injection-dependent a-Si:H/c-Si band bending and solar cell parameters. Journal of Applied Physics, 2013, 113, .	2.5	55
33	Field Effect Passivation in Perovskite Solar Cells by a LiF Interlayer. Advanced Energy Materials, 2022, 12, .	19.5	53
34	Ultra-thin nanocrystalline n-type silicon oxide front contact layers for rear-emitter silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2018, 179, 386-391.	6.2	52
35	ITO-Free Silicon Heterojunction Solar Cells With ZnO:Al/SiO ₂ Front Electrodes Reaching a Conversion Efficiency of 23%. IEEE Journal of Photovoltaics, 2019, 9, 34-39.	2.5	52
36	Optimisation of electronic interface properties of a-Si:H/c-Si hetero-junction solar cells by wet-chemical surface pre-treatment. Thin Solid Films, 2008, 516, 6775-6781.	1.8	51

LARS KORTE

#	Article	IF	CITATIONS
37	Nanocrystalline n-Type Silicon Oxide Front Contacts for Silicon Heterojunction Solar Cells: Photocurrent Enhancement on Planar and Textured Substrates. IEEE Journal of Photovoltaics, 2018, 8, 70-78.	2.5	51
38	Polycrystalline silicon heterojunction thin-film solar cells on glass exhibiting 582mV open-circuit voltage. Solar Energy Materials and Solar Cells, 2013, 115, 7-10.	6.2	50
39	Inorganic photovoltaics – Planar and nanostructured devices. Progress in Materials Science, 2016, 82, 294-404.	32.8	50
40	Sputtered Tungsten Oxide as Hole Contact for Silicon Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 1209-1215.	2.5	48
41	Infrared photocurrent management in monolithic perovskite/silicon heterojunction tandem solar cells by using a nanocrystalline silicon oxide interlayer. Optics Express, 2018, 26, A487.	3.4	48
42	Valence band alignment and hole transport in amorphous/crystalline silicon heterojunction solar cells. Applied Physics Letters, 2015, 107, 013902.	3.3	47
43	From Bulk to Surface: Sodium Treatment Reduces Recombination at the Nickel Oxide/Perovskite Interface. Advanced Materials Interfaces, 2019, 6, 1900789.	3.7	45
44	Doping type and thickness dependence of band offsets at the amorphous/crystalline silicon heterojunction. Journal of Applied Physics, 2011, 109, 063714.	2.5	44
45	Over 20% conversion efficiency on silicon heterojunction solar cells by IPA-free substrate texturization. Applied Surface Science, 2014, 301, 56-62.	6.1	44
46	Band bending and determination of band offsets in amorphous/crystalline silicon heterostructures from planar conductance measurements. Journal of Applied Physics, 2012, 112, .	2.5	43
47	Interface Molecular Engineering for Laminated Monolithic Perovskite/Silicon Tandem Solar Cells with 80.4% Fill Factor. Advanced Functional Materials, 2019, 29, 1901476.	14.9	43
48	Toward Annealing‧table Molybdenumâ€Oxideâ€Based Hole‧elective Contacts For Silicon Photovoltaics. Solar Rrl, 2018, 2, 1700227.	5.8	42
49	Cs <i>_x</i> FA _{1–<i>x</i>} Pb(I _{1–<i>y</i>} Br <i>_y</i>) _{ Perovskite Compositions: the Appearance of Wrinkled Morphology and its Impact on Solar Cell Performance. Journal of Physical Chemistry C, 2018, 122, 17123-17135.}	3 3.1	42
50	Density distribution of gap states in extremely thin a-Si:H layers on crystalline silicon wafers. Journal of Non-Crystalline Solids, 2004, 338-340, 211-214.	3.1	40
51	Electronic states in a-Si:H/c-Si heterostructures. Journal of Non-Crystalline Solids, 2006, 352, 1217-1220.	3.1	40
52	Silicon heterojunction solar cells: Optimization of emitter and contact properties from analytical calculation and numerical simulation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 593-598.	3.5	39
53	Passivation of textured substrates for a-Si:H/c-Si hetero-junction solar cells: Effect of wet-chemical smoothing and intrinsic a-Si:H interlayer. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 159-160, 219-223.	3.5	38
54	Determination of the complex refractive index and optical bandgap of CH3NH3PbI3 thin films. Journal of Applied Physics, 2017, 121, .	2.5	38

#	Article	IF	CITATIONS
55	Accelerated interface defect removal in amorphous/crystalline silicon heterostructures using pulsed annealing and microwave heating. Applied Physics Letters, 2009, 95, .	3.3	37
56	The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations. Energy Procedia, 2015, 77, 725-732.	1.8	37
57	Nanocrystalline silicon emitter optimization for Si-HJ solar cells: Substrate selectivity and CO ₂ plasma treatment effect. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1532958.	1.8	36
58	Valence band offset in heterojunctions between crystalline silicon and amorphous silicon (sub)oxides (a-SiOx:H, 0 < x < 2). Applied Physics Letters, 2015, 106, .	3.3	34
59	Passivation of Textured Silicon Wafers:Influence of Pyramid Size Distribution, a-Si:H Deposition Temperature, and Post-treatment. Energy Procedia, 2013, 38, 881-889.	1.8	33
60	A recombination model for aâ€6i:H/câ€6i heterostructures. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1005-1010.	0.8	32
61	Impact of Fermi-level dependent defect equilibration on Voc of amorphous/crystalline silicon heterojunction solar cells. Energy Procedia, 2011, 8, 282-287.	1.8	32
62	PECVD-AlOx/SiNx Passivation Stacks on Silicon: Effective Charge Dynamics and Interface Defect State Spectroscopy. Energy Procedia, 2014, 55, 845-854.	1.8	31
63	PECVD-AlOx/SiNx passivation stacks on wet chemically oxidized silicon: Constant voltage stress investigations of charge dynamics and interface defect states. Solar Energy Materials and Solar Cells, 2015, 135, 49-56.	6.2	30
64	Plasma-enhanced atomic-layer-deposited MoO x emitters for silicon heterojunction solar cells. Applied Physics A: Materials Science and Processing, 2015, 120, 811-816.	2.3	30
65	Atomic Structure of Interface States in Silicon Heterojunction Solar Cells. Physical Review Letters, 2013, 110, 136803.	7.8	29
66	Mixtures of Dopant-Free Spiro-OMeTAD and Water-Free PEDOT as a Passivating Hole Contact in Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 9172-9181.	8.0	28
67	Planar rear emitter back contact silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 1900-1903.	6.2	27
68	Silicon Heterojunction Solar Cells With Nanocrystalline Silicon Oxide Emitter: Insights Into Charge Carrier Transport. IEEE Journal of Photovoltaics, 2015, 5, 1601-1605.	2.5	25
69	Optical characterization and bandgap engineering of flat and wrinkle-textured FA0.83Cs0.17Pb(I1– <i>x</i> Br <i>x</i>)3 perovskite thin films. Journal of Applied Physics, 2018, 123, .	2.5	25
70	High mobility In2O3:H as contact layer for a-Si:H/c-Si heterojunction and μc-Si:H thin film solar cells. Thin Solid Films, 2015, 594, 316-322.	1.8	24
71	Nondestructive Probing of Perovskite Silicon Tandem Solar Cells Using Multiwavelength Photoluminescence Mapping. IEEE Journal of Photovoltaics, 2017, 7, 1081-1086.	2.5	24
72	Aluminum-Doped Zinc Oxide as Front Electrode for Rear Emitter Silicon Heterojunction Solar Cells with High Efficiency. Applied Sciences (Switzerland), 2019, 9, 862.	2.5	24

#	Article	IF	CITATIONS
73	Exploring co-sputtering of ZnO:Al and SiO2 for efficient electron-selective contacts on silicon solar cells. Solar Energy Materials and Solar Cells, 2019, 194, 67-73.	6.2	23
74	Low-Temperature Atomic Layer Deposited Magnesium Oxide as a Passivating Electron Contact for c-Si-Based Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 398-406.	2.5	22
75	Revealing Fundamental Efficiency Limits of Monolithic Perovskite/Silicon Tandem Photovoltaics through Subcell Characterization. ACS Energy Letters, 2021, 6, 3982-3991.	17.4	22
76	Characterization and optimization of the interface quality in amorphous/crystalline silicon heterojunction solar cells. Journal of Non-Crystalline Solids, 2006, 352, 1958-1961.	3.1	21
77	CuInS2–CdS heterojunction valence band offset measured with near-UV constant final state yield spectroscopy. Journal of Applied Physics, 2009, 106, 073712.	2.5	20
78	Impact of a-Si:H hydrogen depth profiles on passivation properties in a-Si:H/c-Si heterojunctions. Thin Solid Films, 2012, 520, 4439-4444.	1.8	20
79	Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: a dimensionless joint density of states analysis. Journal Physics D: Applied Physics, 2019, 52, 105303.	2.8	20
80	Revisiting the Determination of the Valence Band Maximum and Defect Formation in Halide Perovskites for Solar Cells: Insights from Highly Sensitive Near–UV Photoemission Spectroscopy. ACS Applied Materials & Interfaces, 2021, 13, 43540-43553.	8.0	20
81	Effect of wetâ€chemical substrate pretreatment on electronic interface properties and recombination losses of <i>a</i> ‣i:H/ <i>c</i> ‣i and <i>a</i> ‣iN _x :H/ <i>c</i> ‣i heteroâ€interfaces. Phy Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 879-882.	ysic ə .8	18
82	Monolithic Perovskite/Silicon Tandem Solar Cells Fabricated Using Industrial p‶ype Polycrystalline Silicon on Oxide/Passivated Emitter and Rear Cell Silicon Bottom Cell Technology. Solar Rrl, 2022, 6, .	5.8	17
83	Nanocrystalline Silicon Oxide Emitters for Silicon Hetero Junction Solar Cells. Energy Procedia, 2015, 77, 304-310.	1.8	16
84	Hydrogen Plasma Treatments of Amorphous/Crystalline Silicon Heterojunctions. Energy Procedia, 2014, 55, 827-833.	1.8	15
85	Back- and Front-side Texturing for Light-management in Perovskite / Silicon-heterojunction Tandem Solar Cells. Energy Procedia, 2016, 102, 43-48.	1.8	14
86	Interdigitated Back-Contacted Silicon Heterojunction Solar Cells With Improved Fill Factor and Efficiency. IEEE Journal of Photovoltaics, 2011, 1, 130-134.	2.5	13
87	Solution-processed amorphous silicon surface passivation layers. Applied Physics Letters, 2014, 105, 122113.	3.3	13
88	Amorphous/crystalline silicon heterojunction solar cells with black silicon texture. Physica Status Solidi - Rapid Research Letters, 2014, 8, 831-835.	2.4	13
89	Emitter Patterning for Back-Contacted Si Heterojunction Solar Cells Using Laser Written Mask Layers for Etching and Self-Aligned Passivation (LEAP). IEEE Journal of Photovoltaics, 2016, 6, 894-899.	2.5	13
90	Improved Surface Passivation by Wet Texturing, Ozoneâ€Based Cleaning, and Plasmaâ€Enhanced Chemical Vapor Deposition Processes for Highâ€Efficiency Silicon Heterojunction Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900518.	1.8	13

#	Article	IF	CITATIONS
91	Direct determination of the band offset in atomic layer deposited ZnO/hydrogenated amorphous silicon heterojunctions from X-ray photoelectron spectroscopy valence band spectra. Journal of Applied Physics, 2014, 115, .	2.5	12
92	Comparison of TMB and B2H6 as Precursors for Emitter Doping in High Efficiency Silicon Hetero Junction Solar Cells. Energy Procedia, 2014, 60, 123-128.	1.8	12
93	Optimized Metallization for Interdigitated Back Contact Silicon Heterojunction Solar Cells. Solar Rrl, 2017, 1, 1700021.	5.8	12
94	<i>In situ</i> graphene doping as a route toward efficient perovskite tandem solar cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1989-1996.	1.8	11
95	Wild band edges: The role of bandgap grading and band-edge fluctuations in high-efficiency chalcogenide devices. , 2016, , .		11
96	Amorphous Silicon Passivation of Surfaces Promoting Epitaxy. Energy Procedia, 2013, 38, 855-861.	1.8	10
97	Evolution of the Charge Carrier Lifetime Characteristics in Crystalline Silicon Wafers During Processing of Heterojunction Solar Cells. Energy Procedia, 2014, 55, 219-228.	1.8	10
98	Influence of black silicon surfaces on the performance of back-contacted back silicon heterojunction solar cells. Optics Express, 2014, 22, A1469.	3.4	10
99	Hybrid Perovskite Degradation from an Optical Perspective: A Spectroscopic Ellipsometry Study from the Deep Ultraviolet to the Middle Infrared. Advanced Optical Materials, 2022, 10, 2101553.	7.3	10
100	Physical and Technological Aspects of a-Si:H/c-Si Hetero-Junction Solar Cells. , 2006, , .		9
101	Measurements of effective optical reflectivity using a conventional flatbed scanner—Fast assessment of optical layer properties. Solar Energy Materials and Solar Cells, 2008, 92, 844-850.	6.2	9
102	Approach for a Simplified Fabrication Process for IBC-SHJ Solar Cells with High Fill Factors. Energy Procedia, 2013, 38, 732-736.	1.8	9
103	Simulation of Contact Schemes for Silicon Heterostructure Rear Contact Solar Cells. Energy Procedia, 2013, 38, 677-683.	1.8	9
104	High-forward-bias transport mechanism in a-Si:H/c-Si heterojunction solar cells. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 657-660.	1.8	8
105	Photoconductivity and optical properties of silicon coated by thin TiO ₂ film <i>in situ</i> doped by Au nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 687-694.	1.8	8
106	Passivation Properties of Subnanometer Thin Interfacial Silicon Oxide Films. Energy Procedia, 2014, 55, 805-812.	1.8	8
107	In-system photoelectron spectroscopy study of tin oxide layers produced from tetrakis(dimethylamino)tin by plasma enhanced atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	8
108	Versatility of Nanocrystalline Silicon Films: from Thin-Film to Perovskite/c-Si Tandem Solar Cell Applications. Coatings, 2020, 10, 759.	2.6	8

#	Article	IF	CITATIONS
109	Surface photovoltage investigation of recombination at the a-Si/c-Si heterojunction. Thin Solid Films, 2009, 517, 6396-6400.	1.8	7
110	An effective medium approach for modeling polycrystalline silicon thin film solar cells. Solar Energy Materials and Solar Cells, 2013, 117, 152-160.	6.2	7
111	<i>In Situ</i> PL and SPV Monitored Charge Carrier Injection During Metal Assisted Etching of Intrinsic a-Si Layers on c-Si. ACS Applied Materials & amp; Interfaces, 2015, 7, 11654-11659.	8.0	7
112	Wet-Chemical Preparation of Textured Silicon Solar Cell Substrates: Surface Conditioning and Electronic Interface Properties. Solid State Phenomena, 2012, 187, 349-352.	0.3	6
113	Electronic structure of indium-tungsten-oxide alloys and their energy band alignment at the heterojunction to crystalline silicon. Applied Physics Letters, 2018, 112, .	3.3	6
114	Electronic Properties of Ultrathin a-Si:H Layers and the a-Si:H/c-Si Interface. Engineering Materials, 2012, , 161-221.	0.6	6
115	Structural investigations of silicon nanostructures grown by self-organized island formation for photovoltaic applications. Applied Physics A: Materials Science and Processing, 2012, 108, 719-726.	2.3	5
116	Interdigitated back contact silicon heterojunction solar cells: Towards an industrially applicable structuring method. AIP Conference Proceedings, 2018, , .	0.4	5
117	Low-Resistance Hole Contact Stacks for Interdigitated Rear-Contact Silicon Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 2021, 11, 914-925.	2.5	5
118	Etching of a-Si:H on c-Si absorber monitored by in situ photoluminescence measurements. Energy Procedia, 2011, 8, 269-274.	1.8	4
119	Comparison of growth methods for Si/SiO2 nanostructures as nanodot hetero-emitters for photovoltaic applications. Journal of Non-Crystalline Solids, 2012, 358, 2253-2256.	3.1	4
120	Field-effect passivation and degradation analyzed with photoconductance decay measurements. Applied Physics Letters, 2014, 104, 193504.	3.3	4
121	Optimization of PECVD process for ultra-thin tunnel SiO <inf>x</inf> film as passivation layer for silicon heterojunction solar cells. , 2016, , .		4
122	ITO-free metallization for interdigitated back contact silicon heterojunction solar cells. Energy Procedia, 2017, 124, 379-383.	1.8	4
123	Aluminium metallisation for interdigitated back-contact silicon heterojunction solar cells. Japanese Journal of Applied Physics, 2017, 56, 08MB22.	1.5	4
124	Indirect excitation and luminescence activation of Tb doped indium tin oxide and its impact on the host's optical and electrical properties. Journal Physics D: Applied Physics, 2022, 55, 210002.	2.8	4
125	AFORS-HET, an open-source on demand numerical PC program for simulation of (thin film) heterojunction solar cells, version 1.2. , 0, , .		3
126	Influence of the amorphous/crystalline silicon heterostructure properties on planar conductance measurements. Journal of Non-Crystalline Solids, 2012, 358, 2236-2240.	3.1	3

LARS KORTE

#	Article	IF	CITATIONS
127	The influence of space charge regions on effective charge carrier lifetime in thin films and resulting opportunities for materials characterization. Journal of Applied Physics, 2013, 113, 044510.	2.5	3
128	ZnO:Al with tuned properties for photovoltaic applications: thin layers and high mobility material. Proceedings of SPIE, 2013, , .	0.8	3
129	Towards solar cell emitters based on colloidal Si nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 156-161.	1.8	3
130	Oxidation of Si Surfaces: Effect of Ambient Air and Water Treatments on Surface Charge and Interface State Density. Solid State Phenomena, 2016, 255, 331-337.	0.3	3
131	Surface Optimization of Random Pyramid Textured Silicon Substrates for Improving Heterojunction Solar Cells. Solid State Phenomena, 0, 255, 338-343.	0.3	3
132	Electrical and optical simulation of perovskite/silicon tandem solar cells using Tcad-Sentaurus. , 2021, , ,		3
133	Optimization of Silicon Heterojunction Interface Passivation on p―and nâ€Type Wafers Using Optical Emission Spectroscopy. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100511.	1.8	3
134	Impact of a-Si:H structural properties on the annealing behavior of a-Si:H/c-Si heterostructures used as precursors for high-efficiency solar cells. Materials Research Society Symposia Proceedings, 2010, 1268, 1.	0.1	2
135	Band alignment at amorphous/crystalline silicon hetero-interfaces. Materials Research Society Symposia Proceedings, 2011, 1321, 323.	0.1	2
136	Nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with total current density >39 mA/cm ² .,2018,,.		2
137	Imaging of Bandtail States in Silicon Heterojunction Solar Cells: Nanoscopic Current Effects on Photovoltaics. ACS Applied Nano Materials, 2021, 4, 2404-2412.	5.0	2
138	Optoelectronic Inactivity of Dislocations in Cu(In,Ga)Se ₂ Thin Films. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100042.	2.4	2
139	Silicon heterojunction solar cells with nanocrystalline Silicon Oxide emitter: Insights into charge carrier transport. , 2015, , .		1
140	Evolution of Optical, Electrical, and Structural Properties of Indium Tungsten Oxide upon High Temperature Annealing. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000165.	1.8	1
141	Silicon interface passivation studied by modulated surface photovoltage spectroscopy. Journal of Physics: Conference Series, 2021, 1841, 012003.	0.4	1
142	Structural properties of Si/SiO ₂ nanostructures grown by decomposition of substoichiometric SiO _{<i>x</i>} N _{<i>y</i>} layers for photovoltaic applications. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 676-681.	1.8	0
143	2D modelling of polycrystalline silicon thin film solar cells. EPJ Photovoltaics, 2013, 4, 45104.	1.6	0
144	Numerical Optical Optimization of Planar Monolithic Perovskite-Silicon Tandem Solar Cells. , 2016, , .		0

#	Article	IF	CITATIONS
145	Determination of the complex refractive index, optical bandgap and Urbach energy of CH3NH3PbI3 and FA1â^'yCsyPb(I1â^'xBrx)3 perovskite thin films. , 2018, , .		Ο
146	Implementation of ALD-grown MgO layers as electron-selective contact for silicon solar cells. , 2020,		0