
Zoheir N Farhat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6801273/publications.pdf Version: 2024-02-01

Ζομείο Ν Ελσμάτ

#	Article	IF	CITATIONS
1	Effect of grain size on friction and wear of nanocrystalline aluminum. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 206, 302-313.	5.6	232
2	Effect of impact angle and velocity on erosion of API X42 pipeline steel under high abrasive feed rate. Wear, 2014, 311, 180-190.	3.1	126
3	Early Failure of a Modular Femoral Neck Total Hip Arthroplasty Component. Journal of Bone and Joint Surgery - Series A, 2010, 92, 1514-1517.	3.0	91
4	Recent advances in electroless-plated Ni-P and its composites for erosion and corrosion applications: a review. Emergent Materials, 2018, 1, 3-24.	5.7	87
5	Erosion enhanced corrosion and corrosion enhanced erosion of API X-70 pipeline steel. Wear, 2013, 302, 1592-1601.	3.1	86
6	Sliding wear of superelastic TiNi alloy. Wear, 2009, 267, 394-400.	3.1	68
7	Erosion-corrosion mechanism and comparison of erosion-corrosion performance of API steels. Wear, 2017, 376-377, 533-541.	3.1	67
8	Indentation and erosion behavior of electroless Ni-P coating on pipeline steel. Wear, 2017, 376-377, 1630-1639.	3.1	57
9	Nanoindentation and friction studies on Ti-based nanolaminated films. Surface and Coatings Technology, 1997, 89, 24-30.	4.8	53
10	Effect of microstructure on the erosion behavior of carbon steel. Wear, 2015, 332-333, 1080-1089.	3.1	53
11	Wear mechanism of CBN cutting tool during high-speed machining of mold steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 361, 100-110.	5.6	51
12	The synergistic effect between erosion and corrosion of API pipeline in CO2 and saline medium. Tribology International, 2013, 68, 26-34.	5.9	51
13	Reciprocating wear behaviour of TiC-stainless steel cermets. Tribology International, 2017, 105, 250-263.	5.9	49
14	Effect of porosity on dry sliding wear of Al–Si alloys. Tribology International, 2011, 44, 498-504.	5.9	45
15	Contribution of crystallographic texturing to the sliding friction behaviour of fcc and hcp metals. Wear, 2001, 250, 401-408.	3.1	43
16	The reciprocating wear behaviour of TiC–304L stainless steel composites prepared by melt infiltration. Wear, 2013, 303, 321-333.	3.1	43
17	Fabrication and investigation of the scratch and indentation behaviour of new generation Ni-P-nano-NiTi composite coating for oil and gas pipelines. Wear, 2019, 426-427, 265-276.	3.1	41
18	Modeling of catalyst layer microstructural refinement and catalyst utilization in a PEM fuel cell. Journal of Power Sources, 2004, 138, 68-78.	7.8	40

ZOHEIR N FARHAT

#	Article	IF	CITATIONS
19	Wear and dent resistance of superelastic TiNi alloy. Wear, 2013, 301, 682-687.	3.1	40
20	The effects of TiC grain size and steel binder content on the reciprocating wear behaviour of TiC-316L stainless steel cermets. Wear, 2016, 350-351, 116-129.	3.1	37
21	Slurry Erosion of Pipeline Steel: Effect of Velocity and Microstructure. Journal of Tribology, 2016, 138, .	1.9	37
22	Slurry erosion surface damage under normal impact for pipeline steels. Engineering Failure Analysis, 2018, 90, 116-128.	4.0	35
23	Novel electroless deposited corrosion — resistant and anti-bacterial NiP–TiNi nanocomposite coatings. Surface and Coatings Technology, 2019, 369, 323-333.	4.8	35
24	The Role of Reversible Martensitic Transformation in the Wear Process of TiNi Shape Memory Alloy. Tribology Transactions, 2010, 53, 917-926.	2.0	34
25	The reciprocating wear behaviour of TiC–Ni3Al cermets. International Journal of Refractory Metals and Hard Materials, 2012, 33, 44-52.	3.8	34
26	The influence of porosity and hot isostatic pressing treatment on wear characteristics of cast and P/M aluminum alloys. Wear, 2011, 271, 1594-1601.	3.1	33
27	Mechanical damage of hard chromium coatings on 416 stainless steel. Engineering Failure Analysis, 2016, 66, 130-140.	4.0	33
28	Wear mechanisms of nitinol under reciprocating sliding contact. Wear, 2014, 315, 25-30.	3.1	32
29	Effect of electroless bath composition on the mechanical, chemical, and electrochemical properties of new NiP–C3N4 nanocomposite coatings. Surface and Coatings Technology, 2019, 362, 239-251.	4.8	31
30	Indentation and bending behavior of electroless Ni-P-Ti composite coatings on pipeline steel. Surface and Coatings Technology, 2018, 334, 243-252.	4.8	28
31	Synthesis, Characterization, and Application of Novel Ni-P-Carbon Nitride Nanocomposites. Coatings, 2018, 8, 37.	2.6	28
32	Preparation and tribological characterization of graphene incorporated electroless Ni-P composite coatings. Surface and Coatings Technology, 2019, 369, 334-346.	4.8	27
33	Effect of a moving automated shot peening and peening parameters on surface integrity of Low carbon steel. Journal of Materials Processing Technology, 2020, 277, 116399.	6.3	26
34	The effects of metal binder content and carbide grain size on the aqueous corrosion behaviour of TiC–316L stainless steel cermets. International Journal of Refractory Metals and Hard Materials, 2014, 44, 129-141.	3.8	25
35	Investigation of fracture behavior of annealed electroless Ni-P coating on pipeline steel using acoustic emission methodology. Surface and Coatings Technology, 2017, 326, 336-342.	4.8	25
36	Dent Resistance and Effect of Indentation Loading Rate on Superelastic TiNi Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 3544-3551.	2.2	24

ZOHEIR N FARHAT

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Scratch-Resistant Ni-P-Ti-Based Composite Coating. Tribology Transactions, 2019, 62, 880-896.	2.0	24
38	Fabrication Using High-Energy Ball-Milling Technique and Characterization of Pt-Co Electrocatalysts for Oxygen Reduction in Polymer Electrolyte Fuel Cells. Journal of Fuel Cell Science and Technology, 2005, 2, 171-178.	0.8	21
39	Construction of erosion mechanism maps for pipeline steels. Tribology International, 2016, 102, 161-173.	5.9	21
40	Characterization of the Corrosion Layer on Pipeline Steel in Sweet Environment. Journal of Materials Engineering and Performance, 2015, 24, 3142-3158.	2.5	19
41	Microstructural damage following reciprocating wear of TiC-stainless steel cermets. Tribology International, 2017, 105, 201-218.	5.9	18
42	On the Deformation of Superelastic TiNi Alloy. Tribology Letters, 2010, 37, 169-173.	2.6	16
43	Effects of temperature and loading rate on the deformation characteristics of superelastic TiNi shape memory alloys under localized compressive loads. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 628-632.	5.6	16
44	Mechanical and Electrochemical Synergism of API X42 Pipeline Steel During Erosion–Corrosion. Journal of Bio- and Tribo-Corrosion, 2015, 1, 1.	2.6	15
45	Hertzian Indentation Behavior of Electroless Ni-P-Ti Composite Coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3674-3691.	2.2	12
46	The effects of graphene nano-platelet additions on the sliding wear of TiC-Ni3Al cermets. Tribology International, 2019, 130, 119-132.	5.9	11
47	The processing and testing of new and advanced materials for wear resistant surface coatings. Journal of Materials Processing Technology, 1997, 63, 859-864.	6.3	10
48	Reciprocating wear response of Ti(C,N)–Ni ₃ Al cermets. Canadian Metallurgical Quarterly, 2013, 52, 69-80.	1.2	10
49	Microbiologically-influenced corrosion of the electroless-deposited NiP-TiNi – Coating. Arabian Journal of Chemistry, 2021, 14, 103445.	4.9	10
50	Aqueous corrosion behaviour of TiC-304L stainless steel cermets in a 3.5 wt% NaCl solution. International Journal of Refractory Metals and Hard Materials, 2017, 66, 234-243.	3.8	9
51	Thermal damage of conventional hard chromium coatings on 416 stainless steel. Engineering Failure Analysis, 2019, 105, 1118-1130.	4.0	9
52	Microstructural characterization of WC-TiC-Co cutting tools during high-speed machining of P20 mold steel. Materials Characterization, 2003, 51, 117-130.	4.4	8
53	Wear resistant composite coatings. Materials Characterization, 2009, 60, 337-345.	4.4	8
54	Effect of Graphene Nanoplatelets (GNPs) Addition on Erosion–Corrosion Resistance of Electroless Ni–P Coatings. Journal of Bio- and Tribo-Corrosion, 2020, 6, 1.	2.6	8

ZOHEIR N FARHAT

#	Article	IF	CITATIONS
55	Wear of A380M Aluminum Alloy Under Reciprocating Load. Journal of Materials Engineering and Performance, 2010, 19, 1208-1213.	2.5	7
56	Prediction of Indentation Behavior of Superelastic TiNi. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4350-4360.	2.2	7
57	Investigation into the Wear and Dent Resistance of Ni/Ti Nanolaminates and Superelastic NiTi Coating. Journal of Materials Engineering and Performance, 2019, 28, 6033-6041.	2.5	7
58	Investigation of Erosion–Corrosion Resistance of Electroless Ni–P–Ti Composite Coatings. Journal of Bio- and Tribo-Corrosion, 2020, 6, 1.	2.6	7
59	Effects of Ti Content and Annealing on Corrosion Resistance of Electroless Ni–P–Ti Composite Coatings. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	2.6	7
60	The Aqueous Electrochemical Response of TiC–Stainless Steel Cermets. Metals, 2018, 8, 398.	2.3	6
61	Investigation of Single-Particle Erosion Behavior of Electroless Ni-P-Ti Composite Coatings. Journal of Materials Engineering and Performance, 2020, 29, 1671-1685.	2.5	6
62	The Benefit of Superelastic NiTi Addition on Corrosion Performance of Electroless Ni–P Coating During an Accidental Scratch Event. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	2.6	6
63	Precipitation hardenable TiC-Steel cermets. Wear, 2021, 477, 203804.	3.1	6
64	Mechanical anisotropy and construction of flow stress diagrams during the annealing of Zr–1% Sn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 474, 96-103.	5.6	5
65	The influence of Mo 2 C additions on the microstructural development and sintering response of TiN-Ni 3 Al cermets. International Journal of Refractory Metals and Hard Materials, 2018, 71, 262-272.	3.8	5
66	High Pressure Water-Jet Technology for the Surface Treatment of Al-Si Alloys and Repercussion on Tribological Properties. Journal of Surface Engineered Materials and Advanced Technology, 2011, 01, 112-120.	0.2	5
67	High surface area mechanically alloyed Pt-based catalyst. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 476, 169-173.	5.6	4
68	Effects of superelastic nano-NiTi additions on electroless Ni –P coating properties under bending. Surface and Coatings Technology, 2019, 378, 125064.	4.8	4
69	Single Particle Erosion Behavior of NiTi-Based Nanolaminates and Superelastic NiTi Monolayer Coatings. Coatings, 2019, 9, 617.	2.6	3
70	Effects of Ti Content and Annealing on Fracture Toughness and Scratch Resistance of Electroless Ni-P-Ti Coatings. Journal of Materials Engineering and Performance, 2020, 29, 5807-5821.	2.5	3
71	Microstructure development and nanoindentation behaviour of annealed Ni-P-Ti coatings. Surface Engineering, 2021, 37, 527-535.	2.2	3
72	Investigation of the Mechanical Behavior of Electroless Ni–P–Ti Composite Coatings. Journal of Engineering Materials and Technology, Transactions of the ASME, 2020, 142, .	1.4	3

Zoheir N Farhat

#	Article	IF	CITATIONS
73	The effects of Ni ₃ Al binder content on the electrochemical response of melt-infiltration processed TiC–Ni ₃ Al cermets. Canadian Metallurgical Quarterly, 2016, 55, 138-146.	1.2	2
74	Fabrication, Characterization, and Evaluation of Monolithic NiTi Nanolaminate Coatings. Tribology Transactions, 2019, 62, 1007-1018.	2.0	2
75	The Effect of the Formation of Superelastic NiTi Phase on Static and Dynamic Corrosion Performance of Ni-P Coating. Solids, 2021, 2, 278-292.	2.4	2
76	Enhanced Erosion–Corrosion Resistance of Nickel–Phosphorus–Nitinol Coating. Journal of Bio- and Tribo-Corrosion, 2022, 8, 1.	2.6	1
77	Effect of Graphene Enrichment on Solid Particle Erosion Performance of Electroless Ni-P Composite Coatings. Materials Performance and Characterization, 2021, 10, 594-606.	0.3	Ο