Yinlong Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6801173/publications.pdf

Version: 2024-02-01

74163 57758 7,373 73 44 75 citations h-index g-index papers 81 81 81 6789 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhancing Electrocatalytic Activity of Perovskite Oxides by Tuning Cation Deficiency for Oxygen Reduction and Evolution Reactions. Chemistry of Materials, 2016, 28, 1691-1697.	6.7	635
2	SrNb _{0.1} Co _{0.7} Fe _{0.2} O _{3â^'<i>Î</i>} Perovskite as a Nextâ€Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2015, 54, 3897-3901.	13.8	400
3	Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy and Environmental Science, 2020, 13, 3361-3392.	30.8	370
4	A Perovskite Nanorod as Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1602122.	19.5	369
5	Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis. Small, 2017, 13, 1603793.	10.0	277
6	Simultaneously Tuning Charge Separation and Oxygen Reduction Pathway on Graphitic Carbon Nitride by Polyethylenimine for Boosted Photocatalytic Hydrogen Peroxide Production. ACS Catalysis, 2020, 10, 3697-3706.	11.2	275
7	Phosphorusâ€Doped Perovskite Oxide as Highly Efficient Water Oxidation Electrocatalyst in Alkaline Solution. Advanced Functional Materials, 2016, 26, 5862-5872.	14.9	271
8	A Highâ€Performance Electrocatalyst for Oxygen Evolution Reaction: LiCo _{0.8} Fe _{0.2} O ₂ . Advanced Materials, 2015, 27, 7150-7155.	21.0	249
9	Coâ€doping Strategy for Developing Perovskite Oxides as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Advanced Science, 2016, 3, 1500187.	11.2	245
10	Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells. Nano Letters, 2016, 16, 512-518.	9.1	202
11	Anion Doping: A New Strategy for Developing Highâ€Performance Perovskiteâ€Type Cathode Materials of Solid Oxide Fuel Cells. Advanced Energy Materials, 2017, 7, 1700242.	19.5	198
12	Boosting Oxygen Evolution Reaction by Creating Both Metal Ion and Latticeâ€Oxygen Active Sites in a Complex Oxide. Advanced Materials, 2020, 32, e1905025.	21.0	190
13	Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy and Environmental Science, 2021, 14, 2954-3009.	30.8	188
14	Unusual synergistic effect in layered Ruddlesdenâ^Popper oxide enables ultrafast hydrogen evolution. Nature Communications, 2019, 10, 149.	12.8	187
15	Anion Etching for Accessing Rapid and Deep Self-Reconstruction of Precatalysts for Water Oxidation. Matter, 2020, 3, 2124-2137.	10.0	177
16	Systematic Study of Oxygen Evolution Activity and Stability on La _{1â€"<i>x</i>} Sr _{<i>x</i>} FeO _{3â°Î} Perovskite Electrocatalysts in Alkaline Media. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11715-11721.	8.0	173
17	Toward Reducing the Operation Temperature of Solid Oxide Fuel Cells: Our Past 15 Years of Efforts in Cathode Development. Energy & Samp; Fuels, 2020, 34, 15169-15194.	5.1	152
18	Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nature Communications, 2020, 11, 5657.	12.8	134

#	Article	IF	Citations
19	Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nature Communications, 2022, 13, 1189.	12.8	122
20	Boosting Oxygen Reduction Reaction Activity of Palladium by Stabilizing Its Unusual Oxidation States in Perovskite. Chemistry of Materials, 2015, 27, 3048-3054.	6.7	117
21	Cobalt Oxide and Cobaltâ€Graphitic Carbon Core–Shell Based Catalysts with Remarkably High Oxygen Reduction Reaction Activity. Advanced Science, 2016, 3, 1600060.	11.2	109
22	Probing CO2 reaction mechanisms and effects on the SrNb0.1Co0.9â^'xFexO3â^'Î^cathodes for solid oxide fuel cells. Applied Catalysis B: Environmental, 2015, 172-173, 52-57.	20.2	93
23	An Aâ€Siteâ€Deficient Perovskite offers High Activity and Stability for Lowâ€Temperature Solidâ€Oxide Fuel Cells. ChemSusChem, 2013, 6, 2249-2254.	6.8	90
24	Activity and Stability of Ruddlesden–Popperâ€Type La _{<i>n</i>+1} Ni _{<i>n</i>} O _{3<i>n</i>+1} (<i>n</i> =1, 2, 3, and â^ž) Electrocatalysts for Oxygen Reduction and Evolution Reactions in Alkaline Media. Chemistry - A European Journal, 2016, 22, 2719-2727.	3.3	90
25	Voltage-Gated Ion Transport in Two-Dimensional Sub-1 nm Nanofluidic Channels. ACS Nano, 2019, 13, 11793-11799.	14.6	89
26	A Universal and Facile Way for the Development of Superior Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions Utilizing the Synergistic Effect. Chemistry - A European Journal, 2014, 20, 15533-15542.	3.3	87
27	Enabling High and Stable Electrocatalytic Activity of Ironâ€Based Perovskite Oxides for Water Splitting by Combined Bulk Doping and Morphology Designing. Advanced Materials Interfaces, 2019, 6, 1801317.	3.7	87
28	A General Strategy to Boost Electrocatalytic Nitrogen Reduction on Perovskite Oxides via the Oxygen Vacancies Derived from Aâ€Site Deficiency. Advanced Energy Materials, 2021, 11, 2003799.	19.5	86
29	Synergistically enhanced hydrogen evolution electrocatalysis by <i>in situ</i> exsolution of metallic nanoparticles on perovskites. Journal of Materials Chemistry A, 2018, 6, 13582-13587.	10.3	85
30	High-performance non-enzymatic perovskite sensor for hydrogen peroxide and glucose electrochemical detection. Sensors and Actuators B: Chemical, 2017, 244, 482-491.	7.8	82
31	Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites. Advanced Energy Materials, 2019, 9, 1900429.	19.5	76
32	High-performance SrNb _{0.1} Co _{0.9â^'x} Fe _x O _{3â^'Î} perovskite cathodes for low-temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 15454-15462.	10.3	71
33	RuCo alloy bimodal nanoparticles embedded in N-doped carbon: a superior pH-universal electrocatalyst outperforms benchmark Pt for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 12810-12820.	10.3	69
34	Chlorine-anion doping induced multi-factor optimization in perovskties for boosting intrinsic oxygen evolution. Journal of Energy Chemistry, 2021, 52, 115-120.	12.9	69
35	Superâ€Exchange Interaction Induced Overall Optimization in Ferromagnetic Perovskite Oxides Enables Ultrafast Water Oxidation. Small, 2019, 15, e1903120.	10.0	67
36	An Aurivillius Oxide Based Cathode with Excellent CO ₂ Tolerance for Intermediateâ€Temperature Solid Oxide Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 8988-8993.	13.8	61

#	Article	IF	CITATIONS
37	Bâ€Site Cation Ordered Double Perovskites as Efficient and Stable Electrocatalysts for Oxygen Evolution Reaction. Chemistry - A European Journal, 2017, 23, 5722-5728.	3.3	61
38	Selfâ€Assembled Ruddlesden–Popper/Perovskite Hybrid with Latticeâ€Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst. Small, 2020, 16, e2001204.	10.0	61
39	Boosting oxygen evolution reaction by activation of latticeâ€oxygen sites in layered Ruddlesdenâ€Popper oxide. EcoMat, 2020, 2, e12021.	11.9	58
40	Highâ€Efficiency Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction Enabled by a Tungsten Single Atom Catalyst with Unique Terdentate N ₁ O ₂ Coordination. Advanced Functional Materials, 2022, 32, .	14.9	55
41	Ultraselective Monovalent Metal Ion Conduction in a Three-Dimensional Sub-1 nm Nanofluidic Device Constructed by Metal–Organic Frameworks. ACS Nano, 2021, 15, 1240-1249.	14.6	52
42	Pyrite-type ruthenium disulfide with tunable disorder and defects enables ultra-efficient overall water splitting. Journal of Materials Chemistry A, 2019, 7, 14222-14232.	10.3	50
43	Ultrafast rectifying counter-directional transport of proton and metal ions in metal-organic framework–based nanochannels. Science Advances, 2022, 8, eabl5070.	10.3	48
44	Emerging Homochiral Porous Materials for Enantiomer Separation. Advanced Functional Materials, 2021, 31, 2101335.	14.9	43
45	Sulfonated Sub-1-nm Metal–Organic Framework Channels with Ultrahigh Proton Selectivity. Journal of the American Chemical Society, 2020, 142, 9827-9833.	13.7	41
46	Influence of crystal structure on the electrochemical performance of A-site-deficient Sr _{1â^'s} Nb _{0.1} Co _{0.9} O _{3â^'Î} perovskite cathodes. RSC Advances, 2014, 4, 40865-40872.	3.6	40
47	Efficient Water Splitting Actualized through an Electrochemistryâ€Induced Heteroâ€Structured Antiperovskite/(Oxy)Hydroxide Hybrid. Small, 2020, 16, e2006800.	10.0	36
48	New Phosphorusâ€Doped Perovskite Oxide as an Oxygen Reduction Reaction Electrocatalyst in an Alkaline Solution. Chemistry - A European Journal, 2018, 24, 6950-6957.	3.3	34
49	Cationâ€Deficiencyâ€Dependent CO ₂ Electroreduction over Copperâ€Based Ruddlesden–Popper Perovskite Oxides. Angewandte Chemie - International Edition, 2022, 61, .	13.8	33
50	Boosting the oxygen evolution catalytic performance of perovskites <i>via</i> optimizing calcination temperature. Journal of Materials Chemistry A, 2020, 8, 6480-6486.	10.3	32
51	Tailored Brownmillerite Oxide Catalyst with Multiple Electronic Functionalities Enables Ultrafast Water Oxidation. Chemistry of Materials, 2021, 33, 5233-5241.	6.7	32
52	Modified template synthesis and electrochemical performance of a Co ₃ O ₄ /mesoporous cathode for lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 16132-16141.	10.3	31
53	One-dimensional CoS ₂ –MoS ₂ nano-flakes decorated MoO ₂ sub-micro-wires for synergistically enhanced hydrogen evolution. Nanoscale, 2019, 11, 3500-3505.	5.6	31
54	Realizing High and Stable Electrocatalytic Oxygen Evolution for Ironâ€Based Perovskites by Coâ€Dopingâ€Induced Structural and Electronic Modulation. Advanced Functional Materials, 2022, 32, .	14.9	28

#	Article	IF	CITATIONS
55	Fructoseâ€Derived Hollow Carbon Nanospheres with Ultrathin and Ordered Mesoporous Shells as Cathodes in Lithium–Sulfur Batteries for Fast Energy Storage. Advanced Sustainable Systems, 2017, 1, 1700081.	5.3	27
56	Three-Dimensional Hierarchical Porous Nanotubes Derived from Metal-Organic Frameworks for Highly Efficient Overall Water Splitting. IScience, 2020, 23, 100761.	4.1	26
57	Structural Anisotropy Determining the Oxygen Evolution Mechanism of Strongly Correlated Perovskite Nickelate Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 4262-4270.	6.7	26
58	Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells. Chemical Engineering Journal, 2022, 450, 137787.	12.7	23
59	Na _{0.86} Co _{0.95} Fe _{0.05} O ₂ Layered Oxide As Highly Efficient Water Oxidation Electrocatalyst in Alkaline Media. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21587-21592.	8.0	21
60	Effect of Anion Species on Ion Current Rectification Properties of Positively Charged Nanochannels. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28915-28922.	8.0	21
61	A molecular-level strategy to boost the mass transport of perovskite electrocatalyst for enhanced oxygen evolution. Applied Physics Reviews, 2021, 8, .	11.3	20
62	The Origin of the Electrocatalytic Activity for CO ₂ Reduction Associated with Metalâ€Organic Frameworks. ChemSusChem, 2020, 13, 2552-2556.	6.8	17
63	An Aurivillius Oxide Based Cathode with Excellent CO ₂ Tolerance for Intermediate‶emperature Solid Oxide Fuel Cells. Angewandte Chemie, 2016, 128, 9134-9139.	2.0	14
64	Graphene decorated with multiple nanosized active species as dual function electrocatalysts for lithium-oxygen batteries. Electrochimica Acta, 2016, 188, 718-726.	5.2	14
65	Tuning Reconstruction Level of Precatalysts to Design Advanced Oxygen Evolution Electrocatalysts. Molecules, 2021, 26, 5476.	3.8	14
66	Silver-Perovskite Hybrid Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. Journal of the Electrochemical Society, 2018, 165, H524-H529.	2.9	12
67	Porous 2D carbon nanosheets synthesized via organic groups triggered polymer particles exfoliation: An effective cathode catalyst for polymer electrolyte membrane fuel cells. Electrochimica Acta, 2020, 332, 135397.	5.2	10
68	Metal–Organic Frameworks as a Subnanometer Platform for Ion–Ion Selectivity. Accounts of Materials Research, 2022, 3, 735-747.	11.7	9
69	Perovskites: Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites (Adv. Energy Mater. 20/2019). Advanced Energy Materials, 2019, 9, 1970071.	19.5	7
70	Atomic cerium modulated palladium nanoclusters exsolved ferrite catalysts for lean methane conversion. Exploration, 2022, 2, .	11.0	5
71	Electrocatalysis: Coâ€doping Strategy for Developing Perovskite Oxides as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction (Adv. Sci. 2/2016). Advanced Science, 2016, 3, .	11.2	1
72	Frontispiece: New Phosphorus-Doped Perovskite Oxide as an Oxygen Reduction Reaction Electrocatalyst in an Alkaline Solution. Chemistry - A European Journal, 2018, 24, .	3.3	0

#	Article	IF	CITATIONS
73	Cationâ€Deficiencyâ€Dependent CO2 Electroreduction over Copperâ€Based Ruddlesdenâ€Popper Perovskite Oxides. Angewandte Chemie, 2022, 134, e202111670.	2.0	0