Gino Cingolani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6801041/publications.pdf

Version: 2024-02-01

85 papers

5,443 citations

36 h-index 70 g-index

86 all docs 86 docs citations

86 times ranked 6180 citing authors

#	Article	IF	CITATIONS
1	Viral Ejection Proteins: Mosaically Conserved, Conformational Gymnasts. Microorganisms, 2022, 10, 504.	3.6	5
2	Differential recognition of canonical NF-κB dimers by Importin α3. Nature Communications, 2022, 13, 1207.	12.8	23
3	Cryo-EM Structure of a Kinetically Trapped Dodecameric Portal Protein from the Pseudomonas-phage PaP3. Journal of Molecular Biology, 2022, 434, 167537.	4.2	6
4	A periplasmic cinched protein is required for siderophore secretion and virulence of Mycobacterium tuberculosis. Nature Communications, 2022, 13, 2255.	12.8	8
5	Recognition of the TDP-43 nuclear localization signal by importin $\hat{l}\pm1/\hat{l}^2$. Cell Reports, 2022, 39, 111007.	6.4	32
6	Three-dimensional structure of human cyclooxygenase (hCOX)-1. Scientific Reports, 2021, 11, 4312.	3.3	29
7	Learning from Nature: From a Marine Natural Product to Synthetic Cyclooxygenase†Inhibitors by Automated De Novo Design. Advanced Science, 2021, 8, e2100832.	11.2	17
8	Cryo-EM structure of the periplasmic tunnel of T7 DNA-ejectosome at 2.7ÂÃ resolution. Molecular Cell, 2021, 81, 3145-3159.e7.	9.7	17
9	Expression and purification of phage T7 ejection proteins for cryo-EM analysis. STAR Protocols, 2021, 2, 100960.	1.2	4
10	Lyssavirus Vaccine with a Chimeric Glycoprotein Protects across Phylogroups. Cell Reports, 2020, 32, 107920.	6.4	10
11	Biophysical analysis of <i> Pseudomonas < /i > -phage PaP3 small terminase suggests a mechanism for sequence-specific DNA-binding by lateral interdigitation. Nucleic Acids Research, 2020, 48, 11721-11736.</i>	14.5	14
12	Recognition of an α-helical hairpin in P22 large terminase by a synthetic antibody fragment. Acta Crystallographica Section D: Structural Biology, 2020, 76, 876-888.	2.3	5
13	Selective inhibition of Ph-positive ALL cell growth through kinase-dependent and -independent effects by CDK6-specific PROTACs. Blood, 2020, 135, 1560-1573.	1.4	53
14	Portal Protein: The Orchestrator of Capsid Assembly for the dsDNA Tailed Bacteriophages and Herpesviruses. Annual Review of Virology, 2019, 6, 141-160.	6.7	64
15	Heme and hemoglobin utilization by Mycobacterium tuberculosis. Nature Communications, 2019, 10, 4260.	12.8	55
16	Structural basis for the homotypic fusion of chlamydial inclusions by the SNARE-like protein IncA. Nature Communications, 2019, 10, 2747.	12.8	16
17	DNA Conformational Changes Play a Force-Generating Role during Bacteriophage Genome Packaging. Biophysical Journal, 2019, 116, 2172-2180.	0.5	13
18	Molecular Architecture of the Inositol Phosphatase Siw14. Biochemistry, 2019, 58, 534-545.	2.5	7

#	Article	IF	CITATIONS
19	RNA Recognition-like Motifs Activate a Mitogen-Activated Protein Kinase. Biochemistry, 2018, 57, 6878-6887.	2.5	3
20	A Tail of Phage Adhesins. Structure, 2018, 26, 1565-1567.	3.3	3
21	Breaking Symmetry in Viral Icosahedral Capsids as Seen through the Lenses of X-ray Crystallography and Cryo-Electron Microscopy. Viruses, 2018, 10, 67.	3.3	34
22	Nuclear Pores Promote Lethal Prostate Cancer by Increasing POM121-Driven E2F1, MYC, and AR Nuclear Import. Cell, 2018, 174, 1200-1215.e20.	28.9	96
23	Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation. Nature Communications, 2017, 8, 14310.	12.8	90
24	Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nature Communications, 2017, 8, 14128.	12.8	953
25	Three-dimensional context rather than NLS amino acid sequence determines importin $\hat{I}\pm$ subtype specificity for RCC1. Nature Communications, 2017, 8, 979.	12.8	54
26	Synergy of two low-affinity NLSs determines the high avidity of influenza A virus nucleoprotein NP for human importin \hat{l}_{\pm} isoforms. Scientific Reports, 2017, 7, 11381.	3.3	20
27	Structural basis for selective inhibition of Cyclooxygenase-1 (COX-1) by diarylisoxazoles mofezolac and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6). European Journal of Medicinal Chemistry, 2017, 138, 661-668.	5.5	63
28	A viral scaffolding protein triggers portal ring oligomerization and incorporation during procapsid assembly. Science Advances, 2017, 3, e1700423.	10.3	36
29	Divergent Evolution of Nuclear Localization Signal Sequences in Herpesvirus Terminase Subunits. Journal of Biological Chemistry, 2016, 291, 11420-11433.	3.4	22
30	Structural Plasticity of the Protein Plug That Traps Newly Packaged Genomes in Podoviridae Virions. Journal of Biological Chemistry, 2016, 291, 215-226.	3.4	14
31	PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage. Nucleic Acids Research, 2016, 44, 1691-1702.	14.5	72
32	A Greasy Aid to Capsid Assembly: Lessons from a Salty Virus. Structure, 2015, 23, 1777-1779.	3.3	1
33	Conservation of inner nuclear membrane targeting sequences in mammalian Pom121 and yeast Heh2 membrane proteins. Molecular Biology of the Cell, 2015, 26, 3301-3312.	2.1	24
34	Dimeric Quaternary Structure of Human Laforin. Journal of Biological Chemistry, 2015, 290, 4552-4559.	3.4	18
35	Diversification of importin-α isoforms in cellular trafficking and disease states. Biochemical Journal, 2015, 466, 13-28.	3.7	187
36	Molecular Determinants for Nuclear Import of Influenza A PB2 by Importin \hat{l}_{\pm} Isoforms 3 and 7. Structure, 2015, 23, 374-384.	3.3	87

3

#	Article	IF	Citations
37	Distinctive Properties of the Nuclear Localization Signals of Inner Nuclear Membrane Proteins Hehl and Heh2. Structure, 2015, 23, 1305-1316.	3.3	31
38	The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD. Nature Structural and Molecular Biology, 2015, 22, 672-678.	8.2	114
39	IPO3-mediated Nonclassical Nuclear Import of NF-κB Essential Modulator (NEMO) Drives DNA Damage-dependent NF-κB Activation. Journal of Biological Chemistry, 2015, 290, 17967-17984.	3.4	26
40	Architecture of the Complex Formed by Large and Small Terminase Subunits from Bacteriophage P22. Journal of Molecular Biology, 2015, 427, 3285-3299.	4.2	30
41	Exploring the atomic structure and conformational flexibility of a 320â€Ã long engineered viral fiber using X-ray crystallography. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 342-353.	2.5	9
42	Architecture of viral genome-delivery molecular machines. Current Opinion in Structural Biology, 2014, 25, 1-8.	5.7	51
43	Structure of Human PIR1, an Atypical Dual-Specificity Phosphatase. Biochemistry, 2014, 53, 862-871.	2.5	15
44	Jamming Up the "β-Staple― Regulation of SIRT1 Activity by Its C-Terminal Regulatory Segment (CTR). Journal of Molecular Biology, 2014, 426, 507-509.	4.2	1
45	Atomic Structure of Dual-Specificity Phosphatase 26, a Novel p53 Phosphatase. Biochemistry, 2013, 52, 938-948.	2.5	22
46	The Tip of the Tail Needle Affects the Rate of DNA Delivery by Bacteriophage P22. PLoS ONE, 2013, 8, e70936.	2.5	26
47	Nucleoporin Nup50 Stabilizes Closed Conformation of Armadillo repeat 10 in Importin $\hat{l}\pm 5$. Journal of Biological Chemistry, 2012, 287, 2022-2031.	3.4	22
48	Structure of P22 Headful Packaging Nuclease. Journal of Biological Chemistry, 2012, 287, 28196-28205.	3.4	50
49	Improved crystallization ofEscherichia coliATP synthase catalytic complex (F1) by introducing a phosphomimetic mutation in subunit â^Š. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1229-1233.	0.7	16
50	Small Terminase Couples Viral DNA Binding to Genome-Packaging ATPase Activity. Structure, 2012, 20, 1403-1413.	3.3	60
51	Three-dimensional structure of a viral genome-delivery portal vertex. Nature Structural and Molecular Biology, 2011, 18, 597-603.	8.2	142
52	Structure of the ATP synthase catalytic complex (F1) from Escherichia coli in an autoinhibited conformation. Nature Structural and Molecular Biology, 2011, 18, 701-707.	8.2	219
53	Peering Down the Barrel of a Bacteriophage Portal: The Genome Packaging and Release Valve in P22. Structure, 2011, 19, 496-502.	3.3	101
54	The importin \hat{l}^2 binding domain as a master regulator of nucleocytoplasmic transport. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1578-1592.	4.1	155

#	Article	lF	Citations
55	Crystallization of the nonameric small terminase subunit of bacteriophage P22. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 104-110.	0.7	17
56	Atomic Structure of Bacteriophage Sf6 Tail Needle Knob. Journal of Biological Chemistry, 2011, 286, 30867-30877.	3.4	33
57	A Minimal Nuclear Localization Signal (NLS) in Human Phospholipid Scramblase 4 That Binds Only the Minor NLS-binding Site of Importin $\hat{l}\pm 1$. Journal of Biological Chemistry, 2011, 286, 28160-28169.	3.4	57
58	Dimerization of Vaccinia Virus VH1 Is Essential for Dephosphorylation of STAT1 at Tyrosine 701. Journal of Biological Chemistry, 2011, 286, 14373-14382.	3.4	29
59	Phosphorylation meets nuclear import: a review. Cell Communication and Signaling, 2010, 8, 32.	6.5	196
60	The Importin \hat{l}^2 Binding Domain Modulates the Avidity of Importin \hat{l}^2 for the Nuclear Pore Complex. Journal of Biological Chemistry, 2010, 285, 13769-13780.	3.4	38
61	Molecular Basis for the Recognition of Phosphorylated STAT1 by Importin $\hat{l}\pm 5$. Journal of Molecular Biology, 2010, 402, 83-100.	4.2	70
62	Dimeric Quaternary Structure of the Prototypical Dual Specificity Phosphatase VH1. Journal of Biological Chemistry, 2009, 284, 10129-10137.	3.4	38
63	Structural plasticity of the phage P22 tail needle gp26 probed with xenon gas. Protein Science, 2009, 18, 537-548.	7.6	24
64	An Evolutionarily Conserved Family of Virion Tail Needles Related to Bacteriophage P22 gp26: Correlation between Structural Stability and Length of the \hat{l} ±-Helical Trimeric Coiled Coil. Journal of Molecular Biology, 2009, 391, 227-245.	4.2	15
65	A unique conformation of the inhibitory Îμ subunit in a crystal structure of the Escherichia coli F 1 â€ATPase. FASEB Journal, 2009, 23, 504.6.	0.5	0
66	Foldonâ€guided selfâ€assembly of ultraâ€stable protein fibers. Protein Science, 2008, 17, 1475-1485.	7.6	30
67	Determination of Stoichiometry and Conformational Changes in the First Step of the P22 Tail Assembly. Journal of Molecular Biology, 2008, 379, 385-396.	4.2	68
68	A Conformational Switch in Bacteriophage P22 Portal Protein Primes Genome Injection. Molecular Cell, 2008, 29, 376-383.	9.7	40
69	Molecular Basis for the Recognition of Snurportin 1 by Importin \hat{l}^2 . Journal of Biological Chemistry, 2008, 283, 7877-7884.	3.4	65
70	Domain Organization and Polarity of Tail Needle GP26 in the Portal Vertex Structure of Bacteriophage P22. Journal of Molecular Biology, 2007, 371, 374-387.	4.2	32
71	Role of Gene 10 Protein in the Hierarchical Assembly of the Bacteriophage P22 Portal Vertex Structure. Biochemistry, 2007, 46, 8776-8784.	2.5	36
72	Structure of phage P22 cell envelope–penetrating needle. Nature Structural and Molecular Biology, 2007, 14, 1221-1226.	8.2	74

#	Article	IF	CITATIONS
73	Binding-induced Stabilization and Assembly of the Phage P22 Tail Accessory Factor Gp4. Journal of Molecular Biology, 2006, 363, 558-576.	4.2	47
74	Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 477-482.	0.7	5
75	Three-dimensional structure of the bacteriophage P22 tail machine. EMBO Journal, 2005, 24, 2087-2095.	7.8	76
76	Bacteriophage P22 Tail Accessory Factor GP26 Is a Long Triple-stranded Coiled-coil. Journal of Biological Chemistry, 2005, 280, 5929-5933.	3.4	27
77	Phospholipid Scramblase 1 Contains a Nonclassical Nuclear Localization Signal with Unique Binding Site in Importin α. Journal of Biological Chemistry, 2005, 280, 10599-10606.	3.4	97
78	Nucleocytoplasmic Transport: Navigating the Channel. Traffic, 2003, 4, 127-135.	2.7	137
79	Synergy of Silent and Hot Spot Mutations in Importin \hat{l}^2 Reveals a Dynamic Mechanism for Recognition of a Nuclear Localization Signal. Journal of Biological Chemistry, 2003, 278, 16216-16221.	3.4	19
80	Importin \hat{l}^2 contains a COOH-terminal nucleoporin binding region important for nuclear transport. Journal of Cell Biology, 2003, 162, 391-401.	5.2	126
81	Molecular Basis for Nucleocytoplasmic Transport. , 2003, , 419-430.		1
82	Preliminary crystallographic analysis of the bacteriophage P22 portal protein. Journal of Structural Biology, 2002, 139, 46-54.	2.8	46
83	Molecular Basis for the Recognition of a Nonclassical Nuclear Localization Signal by Importin \hat{l}^2 . Molecular Cell, 2002, 10, 1345-1353.	9.7	177
84	Nuclear import factors importin \hat{l}_{\pm} and importin \hat{l}_{2} undergo mutually induced conformational changes upon association. FEBS Letters, 2000, 484, 291-298.	2.8	48
85	Structure of importin-β bound to the IBB domain of importin-α. Nature, 1999, 399, 221-229.	27.8	530