Lucio Ildebrando Cocco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6800975/publications.pdf Version: 2024-02-01

		38742	39675
249	11,124	50	94
papers	citations	h-index	g-index
257 all docs	257 docs citations	257 times ranked	14193 citing authors

#	Article	IF	CITATIONS
1	Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging, 2011, 3, 192-222.	3.1	520
2	Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Inhibitors: Rationale and Importance to Inhibiting These Pathways in Human Health. Oncotarget, 2011, 2, 135-164.	1.8	509
3	Activated human NK and CD8+ T cells express both TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors but are resistant to TRAIL-mediated cytotoxicity. Blood, 2004, 104, 2418-2424.	1.4	422
4	Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Reports, 2008, 41, 415-434.	2.4	412
5	GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget, 2014, 5, 2881-2911.	1.8	407
6	Nuclear localization and signalling activity of phosphoinositidase Cβ in Swiss 3T3 cells. Nature, 1992, 358, 242-245.	27.8	329
7	Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance. Oncotarget, 2012, 3, 1068-1111.	1.8	279
8	NK Cells and Cancer. Journal of Immunology, 2007, 178, 4011-4016.	0.8	248
9	Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades Which Alter Therapy Response Oncotarget, 2012, 3, 954-987.	1.8	244
10	Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget, 2014, 5, 4603-4650.	1.8	231
11	Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging, 2017, 9, 1477-1536.	3.1	168
12	The emerging multiple roles of nuclear Akt. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 2168-2178.	4.1	165
13	Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. Journal of Cellular Physiology, 2011, 226, 2762-2781.	4.1	147
14	Targeting GSK3 and Associated Signaling Pathways Involved in Cancer. Cells, 2020, 9, 1110.	4.1	146
15	A Role for Nuclear Phospholipase Cl²1 in Cell Cycle Control. Journal of Biological Chemistry, 2000, 275, 30520-30524.	3.4	139
16	Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity—Diverse effects on cell growth, metabolism and cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2942-2976.	4.1	137
17	Intranuclear 3â€2-phosphoinositide metabolism and Akt signaling: New mechanisms for tumorigenesis and protection against apoptosis?. Cellular Signalling, 2006, 18, 1101-1107.	3.6	121
18	Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer and pacreatic cancer stem cells. Advances in Biological Regulation, 2015, 59, 65-81.	2.3	121

#	Article	IF	CITATIONS
19	Phosphoinositide-specific phospholipase C in health and disease. Journal of Lipid Research, 2015, 56, 1853-1860.	4.2	116
20	PLC and PI3K/Akt/mTOR signalling in disease and cancer. Advances in Biological Regulation, 2015, 57, 10-16.	2.3	111
21	Phosphorylation of Nuclear Phospholipase C β1 by Extracellular Signal-Regulated Kinase Mediates the Mitogenic Action of Insulin-Like Growth Factor I. Molecular and Cellular Biology, 2001, 21, 2981-2990.	2.3	107
22	Changes in nuclear inositol phospholipids induced in intact cells by insulin-like growth factor I. Biochemical and Biophysical Research Communications, 1989, 159, 720-725.	2.1	104
23	Toxicity of antimony trioxide nanoparticles on human hematopoietic progenitor cells and comparison to cell lines. Toxicology, 2009, 262, 121-129.	4.2	100
24	Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Advances in Biological Regulation, 2015, 57, 75-101.	2.3	100
25	Rapid changes in phospholipid metabolism in the nuclei of Swiss 3T3 cells induced by treatment of the cells with insulin-like growth factor I. Biochemical and Biophysical Research Communications, 1988, 154, 1266-1272.	2.1	99
26	Reduction of phosphoinositide-phospholipase C beta1 methylation predicts the responsiveness to azacitidine in high-risk MDS. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16811-16816.	7.1	98
27	The therapeutic potential of mTOR inhibitors in breast cancer. British Journal of Clinical Pharmacology, 2016, 82, 1189-1212.	2.4	93
28	The Akt/Mammalian Target of Rapamycin Signal Transduction Pathway Is Activated in High-Risk Myelodysplastic Syndromes and Influences Cell Survival and Proliferation. Cancer Research, 2007, 67, 4287-4294.	0.9	87
29	Molecular Mechanisms Underlying Psychological Stress and Cancer. Current Pharmaceutical Design, 2016, 22, 2389-2402.	1.9	87
30	Nuclear phospholipase C and signaling. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1530, 1-14.	2.4	86
31	Primary phospholipase C and brain disorders. Advances in Biological Regulation, 2016, 61, 80-85.	2.3	86
32	Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells. Oncotarget, 2017, 8, 14221-14250.	1.8	86
33	Synergistic Proapoptotic Activity of Recombinant TRAIL Plus the Akt Inhibitor Perifosine in Acute Myelogenous Leukemia Cells. Cancer Research, 2008, 68, 9394-9403.	0.9	84
34	The physiological roles of primary phospholipaseÂC. Advances in Biological Regulation, 2013, 53, 232-241.	2.3	83
35	Diverse roles of CSK-3: Tumor promoter–tumor suppressor, target in cancer therapy. Advances in Biological Regulation, 2014, 54, 176-196.	2.3	80
36	Lamin A Ser404 Is a Nuclear Target of Akt Phosphorylation in C2C12 Cells. Journal of Proteome Research, 2008, 7, 4727-4735.	3.7	79

#	Article	IF	CITATIONS
37	Roles of NGAL and MMP-9 in the tumor microenvironment and sensitivity to targeted therapy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 438-448.	4.1	79
38	Involvement of Akt and mTOR in chemotherapeutic- and hormonal-based drug resistance and response to radiation in breast cancer cells. Cell Cycle, 2011, 10, 3003-3015.	2.6	77
39	Nuclear inositides: facts and perspectives. , 2004, 101, 47-64.		74
40	The protein kinase Akt/PKB regulates both prelamin A degradation and <i>Lmna</i> gene expression. FASEB Journal, 2013, 27, 2145-2155.	0.5	73
41	Phosphoinositide-Phospholipase C β1 Mono-Allelic Deletion Is Associated With Myelodysplastic Syndromes Evolution Into Acute Myeloid Leukemia. Journal of Clinical Oncology, 2009, 27, 782-790.	1.6	70
42	Elevated O-GlcNAcylation promotes colonic inflammation and tumorigenesis by modulating NF-κB signaling. Oncotarget, 2015, 6, 12529-12542.	1.8	67
43	Protein kinase C involvement in cell cycle modulation. Biochemical Society Transactions, 2014, 42, 1471-1476.	3.4	62
44	Up-regulation of nuclear PLC?1 in myogenic differentiation. Journal of Cellular Physiology, 2003, 195, 446-452.	4.1	61
45	Involvement of nuclear PLCβl in lamin B1 phosphorylation and G 2 /M cell cycle progression. FASEB Journal, 2009, 23, 957-966.	0.5	61
46	Prospective Phase II Study on 5-Days Azacitidine for Treatment of Symptomatic and/or Erythropoietin Unresponsive Patients with Low/INT-1–Risk Myelodysplastic Syndromes. Clinical Cancer Research, 2013, 19, 3297-3308.	7.0	61
47	Preclinical testing of the Akt inhibitor triciribine in Tâ€cell acute lymphoblastic leukemia. Journal of Cellular Physiology, 2011, 226, 822-831.	4.1	59
48	Phosphoinositide 3-kinase/Akt involvement in arsenic trioxide resistance of human leukemia cells. Journal of Cellular Physiology, 2005, 202, 623-634.	4.1	58
49	Nuclear phospholipase C: Involvement in signal transduction. Progress in Lipid Research, 2005, 44, 185-206.	11.6	54
50	Inositide-Dependent Phospholipase C Signaling Mimics Insulin in Skeletal Muscle Differentiation by Affecting Specific Regions of the Cyclin D3 Promoter. Endocrinology, 2007, 148, 1108-1117.	2.8	53
51	PKCΪμ controls protection against TRAIL in erythroid progenitors. Blood, 2006, 107, 508-513.	1.4	52
52	Inositol lipid cycle in the nucleus. Cellular Signalling, 1994, 6, 481-485.	3.6	49
53	Nuclear Phosphatidylinositol Signaling: Focus on Phosphatidylinositol Phosphate Kinases and Phospholipases C. Journal of Cellular Physiology, 2016, 231, 1645-1655.	4.1	48
54	Phosphoinositide-Dependent Signaling in Cancer: A Focus on Phospholipase C Isozymes. International Journal of Molecular Sciences, 2020, 21, 2581.	4.1	47

Lucio Ildebrando Cocco

#	Article	IF	CITATIONS
55	Caspase-dependent cleavage of 170-kDa P-glycoprotein during apoptosis of human T-lymphoblastoid CEM cells. Journal of Cellular Physiology, 2006, 207, 836-844.	4.1	45
56	Forebrain-specific ablation of phospholipase CÎ ³ 1 causes manic-like behavior. Molecular Psychiatry, 2017, 22, 1473-1482.	7.9	45
57	Metformin influences drug sensitivity in pancreatic cancer cells. Advances in Biological Regulation, 2018, 68, 13-30.	2.3	45
58	Molecular characterization of protein kinase C-? binding to lamin A. Journal of Cellular Biochemistry, 2002, 86, 320-330.	2.6	44
59	Phosphoinositide-specific phospholipase C (PI-PLC) β1 and nuclear lipid-dependent signaling. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 509-521.	2.4	44
60	Ankrd2/ARPP is a novel Akt2 specific substrate and regulates myogenic differentiation upon cellular exposure to H ₂ O ₂ . Molecular Biology of the Cell, 2011, 22, 2946-2956.	2.1	44
61	PLCÎ ³ 1: Potential arbitrator of cancer progression. Advances in Biological Regulation, 2018, 67, 179-189.	2.3	44
62	Gingival Stromal Cells as an In Vitro Model: Cannabidiol Modulates Genes Linked With Amyotrophic Lateral Sclerosis. Journal of Cellular Biochemistry, 2017, 118, 819-828.	2.6	43
63	Expression of phospholipase C beta family isoenzymes in C2C12 myoblasts during terminal differentiation. Journal of Cellular Physiology, 2004, 200, 291-296.	4.1	42
64	Nuclear inositides: PI-PLC signaling in cell growth, differentiation and pathology. Advances in Enzyme Regulation, 2009, 49, 2-10.	2.6	42
65	Nuclear diacylglycerol kinaseâ€Î¶ is a negative regulator of cell cycle progression in C2C12 mouse myoblasts. FASEB Journal, 2007, 21, 3297-3307.	0.5	41
66	Advances in Targeting Signal Transduction Pathways. Oncotarget, 2012, 3, 1505-1521.	1.8	41
67	Nuclear PLCβ1 acts as a negative regulator of p45/NF-E2 expression levels in Friend erythroleukemia cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1589, 305-310.	4.1	40
68	Nuclear PLC Beta 1 is required for 3T3-L1 adipocyte differentiation and regulates expression of the cyclin D3–cdk4 complex. Cellular Signalling, 2009, 21, 926-935.	3.6	40
69	Nuclear translocation of PKCα isoenzyme is involved in neurogenic commitment of human neural crest-derived periodontal ligament stem cells. Cellular Signalling, 2016, 28, 1631-1641.	3.6	40
70	Targeting the Cancer Initiating Cell: The Ultimate Target for Cancer Therapy. Current Pharmaceutical Design, 2012, 18, 1784-1795.	1.9	39
71	Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases. Advances in Biological Regulation, 2017, 65, 77-88.	2.3	39
72	K562 cell proliferation is modulated by PLCβ1 through a PKCα-mediated pathway. Cell Cycle, 2013, 12, 1713-1721.	2.6	38

#	Article	IF	CITATIONS
73	Interleukinâ€2 activates nuclear phospholipaseâ€Cβ by mitogenâ€activated protein kinaseâ€dependent phosphorylation in human natural killer cells. FASEB Journal, 2001, 15, 1789-1791.	0.5	37
74	Catalytic activity of nuclear PLC-β1 is required for its signalling function during C2C12 differentiation. Cellular Signalling, 2008, 20, 2013-2021.	3.6	37
75	Conformational changes of nuclear chromatin related to phospholipid induced modifications of the template availability. Advances in Enzyme Regulation, 1984, 22, 447-464.	2.6	36
76	Inositides in the nucleus: presence and characterisation of the isozymes of phospholipase β family in NIH 3T3 cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1438, 295-299.	2.4	36
77	Nuclear inositol lipid metabolism: More than just second messenger generation?. Journal of Cellular Biochemistry, 2005, 96, 285-292.	2.6	36
78	Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Advances in Biological Regulation, 2017, 63, 32-48.	2.3	36
79	Insulin-like growth factor-I-dependent stimulation of nuclear phospholipase C-?1 activity in Swiss 3T3 cells requires an intact cytoskeleton and is paralleled by increased phosphorylation of the phospholipase. , 1999, 72, 339-348.		35
80	Expression of signal transduction proteins during the differentiation of primary human erythroblasts. Journal of Cellular Physiology, 2005, 202, 831-838.	4.1	35
81	Nuclear inositide specific phospholipase C signallingÂ - Âinteractions and activity. FEBS Journal, 2013, 280, 6311-6321.	4.7	35
82	Novel roles of androgen receptor, epidermal growth factor receptor, TP53, regulatory RNAs, NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, and matrix metalloproteinase-9 in prostate cancer and prostate cancer stem cells. Advances in Biological Regulation, 2016, 60, 64-87.	2.3	35
83	Role of CREB transcription factor in c-fos activation in natural killer cells. European Journal of Immunology, 2002, 32, 3358-3365.	2.9	34
84	PLC-β1 and cell differentiation: An insight into myogenesis and osteogenesis. Advances in Biological Regulation, 2017, 63, 1-5.	2.3	34
85	Abilities of berberine and chemically modified berberines to inhibit proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2019, 71, 172-182.	2.3	34
86	Nuclear Phosphoinositides: Location, Regulation and Function. Sub-Cellular Biochemistry, 2012, 59, 335-361.	2.4	34
87	Critical Roles of EGFR Family Members in Breast Cancer and Breast Cancer Stem Cells: Targets for Therapy. Current Pharmaceutical Design, 2016, 22, 2358-2388.	1.9	34
88	Proapoptotic Activity and Chemosensitizing Effect of the Novel Akt Inhibitor (2S)-1-(1H-Indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan2-amine (A443654) in T-Cell Acute Lymphoblastic Leukemia. Molecular Pharmacology, 2008, 74, 884-895.	2.3	33
89	Nuclear phospholipase C \hat{l}^21 signaling, epigenetics and treatments in MDS. Advances in Biological Regulation, 2013, 53, 2-7.	2.3	32
90	Nuclear PI-PLCÎ ² 1: An appraisal on targets and pathology. Advances in Biological Regulation, 2014, 54, 2-11.	2.3	32

#	Article	IF	CITATIONS
91	Targeting breast cancer initiating cells: Advances in breast cancer research and therapy. Advances in Biological Regulation, 2014, 56, 81-107.	2.3	32
92	Netrinâ€1/ <scp>DCC</scp> â€mediated <scp>PLC</scp> γ1 activation is required for axon guidance and brain structure development. EMBO Reports, 2018, 19, .	4.5	32
93	Identification and chromosomal localisation by fluorescence in situ hybridisation of human gene of phosphoinositide-specific phospholipase C β1. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1484, 175-182.	2.4	31
94	The physiology and pathology of inositide signaling in the nucleus. Journal of Cellular Physiology, 2011, 226, 14-20.	4.1	31
95	Effect of phospholipids on transcription and ribonucleoprotein processing in isolated nuclei. Advances in Enzyme Regulation, 1986, 25, 425-432.	2.6	30
96	Phosphoinositide Signalling in Nuclei of Friend Cells: DMSO-Induced Differentiation Reduces the Association of Phosphatidylinositol-Transfer Protein with the Nucleus. Biochemical and Biophysical Research Communications, 1997, 230, 302-305.	2.1	30
97	Proteomic-based analysis of nuclear signaling: PLCβ1 affects the expression of the splicing factor SRp20 in Friend erythroleukemia cells. Proteomics, 2006, 6, 5725-5734.	2.2	30
98	Nuclear phosphoinositides and their roles in cell biology and disease. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 436-457.	5.2	30
99	Nuclear inositide signaling and cell cycle. Advances in Biological Regulation, 2018, 67, 1-6.	2.3	30
100	Cancer therapy and treatments during COVID-19 era. Advances in Biological Regulation, 2020, 77, 100739.	2.3	30
101	Reversal of the glycolytic phenotype of primary effusion lymphoma cells by combined targeting of cellular metabolism and PI3K/Akt/ mTOR signaling. Oncotarget, 2016, 7, 5521-5537.	1.8	30
102	Nuclear phospholipase C beta1 and cellular differentiation. Frontiers in Bioscience - Landmark, 2008, 13, 2452.	3.0	30
103	Inositides in nuclei of friend cells: Changes of polyphosphoinositide and diacylglycerol levels accompany cell differentiation. Cellular Signalling, 1995, 7, 53-56.	3.6	29
104	Nuclear Phospholipase C β1 (PLCβ1) Affects CD24 Expression in Murine Erythroleukemia Cells. Journal of Biological Chemistry, 2005, 280, 24221-24226.	3.4	29
105	PKR activity is required for acute leukemic cell maintenance and growth: A role for PKRâ€mediated phosphatase activity to regulate GSKâ€3 phosphorylation. Journal of Cellular Physiology, 2009, 221, 232-241.	4.1	29
106	The wide and growing range of lamin B-related diseases: from laminopathies to cancer. Cellular and Molecular Life Sciences, 2022, 79, 126.	5.4	29
107	Expression of phosphoinositide-specific phospholipase C isoenzymes in cultured astrocytes. Journal of Cellular Biochemistry, 2007, 100, 952-959.	2.6	28
108	Prohibitin 2 represents a novel nuclear AKT substrate during all― <i>trans</i> retinoic acid–induced differentiation of acute promyelocytic leukemia cells. FASEB Journal, 2014, 28, 2009-2019.	0.5	28

#	Article	IF	CITATIONS
109	Nuclear Inositide Signaling Via Phospholipase C. Journal of Cellular Biochemistry, 2017, 118, 1969-1978.	2.6	28
110	Nuclear PLCs affect insulin secretion by targeting PPARÎ ³ in pancreatic Î ² cells. FASEB Journal, 2012, 26, 203-210.	0.5	27
111	Introduction of WT-TP53 into pancreatic cancer cells alters sensitivity to chemotherapeutic drugs, targeted therapeutics and nutraceuticals. Advances in Biological Regulation, 2018, 69, 16-34.	2.3	27
112	Inositides in the nucleus: regulation of nuclear PI-PLCβ1. Advances in Enzyme Regulation, 2002, 42, 181-193.	2.6	26
113	eEF1A Phosphorylation in the Nucleus of Insulin-stimulated C2C12 Myoblasts. Molecular and Cellular Proteomics, 2010, 9, 2719-2728.	3.8	26
114	Epigenetics in focus: Pathogenesis of myelodysplastic syndromes and the role of hypomethylating agents. Critical Reviews in Oncology/Hematology, 2013, 88, 231-245.	4.4	26
115	An increased expression of PI-PLCβ1 is associated with myeloid differentiation and a longer response to azacitidine in myelodysplastic syndromes. Journal of Leukocyte Biology, 2015, 98, 769-780.	3.3	26
116	BMPâ€2 Induced Expression of PLCβ1 That is a Positive Regulator of Osteoblast Differentiation. Journal of Cellular Physiology, 2016, 231, 623-629.	4.1	26
117	Nuclear Localization of Diacylglycerol Kinase Alpha in K562 Cells Is Involved in Cell Cycle Progression. Journal of Cellular Physiology, 2017, 232, 2550-2557.	4.1	26
118	Nuclear phospholipase C signaling through type 1 IGF receptor and its involvement in cell growth and differentiation. Anticancer Research, 2005, 25, 2039-41.	1.1	26
119	Inositol lipid cycle and autonomous nuclear signalling. Advances in Enzyme Regulation, 1996, 36, 101-114.	2.6	25
120	Nuclear inositol lipid signaling. Advances in Enzyme Regulation, 2001, 41, 361-384.	2.6	25
121	Nuclear inositide signaling in myelodysplastic syndromes. Journal of Cellular Biochemistry, 2010, 109, 1065-1071.	2.6	25
122	Modulation of nuclear PI-PLCbeta1 during cell differentiation. Advances in Biological Regulation, 2016, 60, 1-5.	2.3	25
123	Response of high-risk MDS to azacitidine and lenalidomide is impacted by baseline and acquired mutations in a cluster of three inositide-specific genes. Leukemia, 2019, 33, 2276-2290.	7.2	25
124	Nuclear phospholipase C isoenzyme imbalance leads to pathologies in brain, hematologic, neuromuscular, and fertility disorders. Journal of Lipid Research, 2019, 60, 312-317.	4.2	25
125	Noradrenergic and cholinergic innervation of the bone marrow. International Journal of Molecular Medicine, 2002, 10, 77.	4.0	24
126	A role for PLCβ1 in myotonic dystrophies type 1 and 2. FASEB Journal, 2012, 26, 3042-3048.	0.5	24

#	Article	IF	CITATIONS
127	Nuclear translocation of PKCâ€∙α is associated with cell cycle arrest and erythroid differentiation in myelodysplastic syndromes (MDSs). FASEB Journal, 2018, 32, 681-692.	0.5	24
128	Phosphoinositide 3 Kinase Signaling in Human Stem Cells from Reprogramming to Differentiation: A Tale in Cytoplasmic and Nuclear Compartments. International Journal of Molecular Sciences, 2019, 20, 2026.	4.1	24
129	Real-time PCR as a tool for quantitative analysis of PI-PLCbeta1 gene expression in myelodysplastic syndrome. International Journal of Molecular Medicine, 2006, 18, 267-71.	4.0	24
130	Significance of subnuclear localization of key players of inositol lipid cycle. Advances in Enzyme Regulation, 2004, 44, 51-60.	2.6	23
131	Identification of the PKR Nuclear Interactome Reveals Roles in Ribosome Biogenesis, mRNA Processing and Cell Division. Journal of Cellular Physiology, 2014, 229, 1047-1060.	4.1	23
132	Effects of berberine, curcumin, resveratrol alone and in combination with chemotherapeutic drugs and signal transduction inhibitors on cancer cells—Power of nutraceuticals. Advances in Biological Regulation, 2018, 67, 190-211.	2.3	23
133	Novel 2′-substituted, 3′-deoxy-phosphatidyl-myo-inositol analogues reduce drug resistance in human leukaemia cell lines with an activated phosphoinositide 3-kinase/Akt pathway. British Journal of Haematology, 2004, 126, 574-582.	2.5	22
134	Selective Activation of Nuclear PI-PLCbeta1 During Normal and Therapy-Related Differentiation. Current Pharmaceutical Design, 2016, 22, 2345-2348.	1.9	22
135	Molecular characterization of the human PLC \hat{I}^21 gene. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1584, 46-54.	2.4	21
136	A role for PKR in hematologic malignancies. Journal of Cellular Physiology, 2010, 223, 572-591.	4.1	21
137	Phosphoinositide-specific Phospholipase C β 1b (PI-PLCβ1b) Interactome: Affinity Purification-Mass Spectrometry Analysis of PI-PLCβ1b with Nuclear Protein. Molecular and Cellular Proteomics, 2013, 12, 2220-2235.	3.8	21
138	Roles of p53, NF-κB and the androgen receptor in controlling NGAL expression in prostate cancer cell lines. Advances in Biological Regulation, 2018, 69, 43-62.	2.3	21
139	Therapeutic resistance in breast cancer cells can result from deregulated EGFR signaling. Advances in Biological Regulation, 2020, 78, 100758.	2.3	21
140	Nuclear diacylglycerol kinase-Î, is activated in response to nerve growth factor stimulation of PC12 cells. Cellular Signalling, 2004, 16, 1263-1271.	3.6	20
141	Revisiting nuclear phospholipase C signalling in MDS. Advances in Biological Regulation, 2012, 52, 2-6.	2.3	20
142	AKTâ€dependent phosphorylation of the adenosine deaminases ADARâ€1 and â€2 inhibits deaminase activity. FASEB Journal, 2019, 33, 9044-9061.	0.5	20
143	Clusterin enhances AKT2â€mediated motility of normal and cancer prostate cells through a PTEN and PHLPP1 circuit. Journal of Cellular Physiology, 2019, 234, 11188-11199.	4.1	19
144	GSK-3Î ² Can Regulate the Sensitivity of MIA-PaCa-2 Pancreatic and MCF-7 Breast Cancer Cells to Chemotherapeutic Drugs, Targeted Therapeutics and Nutraceuticals. Cells, 2021, 10, 816.	4.1	19

#	Article	IF	CITATIONS
145	PLC-beta 1 regulates the expression of miR-210 during mithramycin-mediated erythroid differentiation in K562 cells. Oncotarget, 2014, 5, 4222-4231.	1.8	19
146	Strategic Role of Nuclear Inositide Signalling in Myelodysplastic Syndromes Therapy. Mini-Reviews in Medicinal Chemistry, 2014, 14, 873-883.	2.4	19
147	Inositides in the nucleus: taking stock of PLCl ² 1. Advances in Enzyme Regulation, 1998, 38, 351-363.	2.6	18
148	Nuclear phospholipase C l²1, regulation of the cell cycle and progression of acute myeloid leukemia. Advances in Enzyme Regulation, 2005, 45, 126-135.	2.6	18
149	Nuclear lipid-dependent signal transduction in human osteosarcoma cells. Advances in Enzyme Regulation, 1997, 37, 351-375.	2.6	17
150	Inositide signaling in the nucleus: From physiology to pathology. Advances in Enzyme Regulation, 2010, 50, 2-11.	2.6	17
151	Phospholipase C-β1 interacts with cyclin E in adipose- derived stem cells osteogenic differentiation. Advances in Biological Regulation, 2019, 71, 1-9.	2.3	17
152	Targeting signaling and apoptotic pathways involved in chemotherapeutic drug-resistance of hematopoietic cells. Oncotarget, 2017, 8, 76525-76557.	1.8	17
153	A novel DAG-dependent mechanism links PKCa and Cyclin B1 regulating cell cycle progression. Oncotarget, 2014, 5, 11526-11540.	1.8	17
154	Signal transduction within the nucleus: Revisiting phosphoinositide inositide–specific phospholipase Cβ1. Advances in Enzyme Regulation, 2006, 46, 2-11.	2.6	16
155	Physiology and pathology of nuclear phospholipase C β1. Advances in Enzyme Regulation, 2011, 51, 2-12.	2.6	16
156	Endoscopic endonasal anatomy of the ophthalmic artery in the optic canal. Acta Neurochirurgica, 2016, 158, 1343-1350.	1.7	16
157	Therapeutic potential of nvpâ€bkm120 in human osteosarcomas cells. Journal of Cellular Physiology, 2019, 234, 10907-10917.	4.1	16
158	Location-dependent role of phospholipase C signaling in the brain: Physiology and pathology. Advances in Biological Regulation, 2021, 79, 100771.	2.3	16
159	Nuclear Phospholipase C in Biological Control and Cancer. Critical Reviews in Eukaryotic Gene Expression, 2011, 21, 291-301.	0.9	15
160	Influences of TP53 and the anti-aging DDR1 receptor in controlling Raf/MEK/ERK and PI3K/Akt expression and chemotherapeutic drug sensitivity in prostate cancer cell lines. Aging, 2020, 12, 10194-10210.	3.1	15
161	Clinical Impact of Hypomethylating Agents in the Treatment of Myelodysplastic Syndromes. Current Pharmaceutical Design, 2016, 22, 2349-2357.	1.9	15
162	Anticancer agents sensitize osteosarcoma cells to TNF-related apoptosis-inducing ligand downmodulating IAP family proteins. International Journal of Oncology, 2006, 28, 127.	3.3	14

#	Article	IF	CITATIONS
163	A role for PKCε during C2C12 myogenic differentiation. Cellular Signalling, 2010, 22, 629-635.	3.6	14
164	Increased NGAL (Lnc2) expression after chemotherapeutic drug treatment. Advances in Biological Regulation, 2013, 53, 146-155.	2.3	14
165	Endoscopic endonasal approach to primitive Meckel's cave tumors: a clinical series. Acta Neurochirurgica, 2018, 160, 2349-2361.	1.7	14
166	Subcellular Localization Relevance and Cancer-Associated Mechanisms of Diacylglycerol Kinases. International Journal of Molecular Sciences, 2020, 21, 5297.	4.1	14
167	Inositide-dependent signaling pathways as new therapeutic targets in myelodysplastic syndromes. Expert Opinion on Therapeutic Targets, 2016, 20, 677-687.	3.4	13
168	Phospholipase Câ€Î²1 potentiates glucoseâ€stimulated insulin secretion. FASEB Journal, 2019, 33, 10668-10679.	0.5	13
169	The Italian law on body donation: A position paper of the Italian College of Anatomists. Annals of Anatomy, 2021, 238, 151761.	1.9	13
170	Cbl competitively inhibits epidermal growth factor-induced activation of phospholipase C-gamma1. Molecules and Cells, 2003, 15, 245-55.	2.6	13
171	Effects of TP53 Mutations and miRs on Immune Responses in the Tumor Microenvironment Important in Pancreatic Cancer Progression. Cells, 2022, 11, 2155.	4.1	13
172	Reverse-phase protein microarrays (RPPA) as a diagnostic and therapeutic guide in multidrug resistant leukemia. International Journal of Oncology, 2011, 38, 427-35.	3.3	12
173	Quantitative profiling of the endonuclear glycerophospholipidome of murine embryonic fibroblasts. Journal of Lipid Research, 2016, 57, 1492-1506.	4.2	12
174	Zafirlukast promotes insulin secretion by increasing calcium influx through Lâ€ŧype calcium channels. Journal of Cellular Physiology, 2018, 233, 8701-8710.	4.1	12
175	Clinical and Molecular Insights in Erythropoiesis Regulation of Signal Transduction Pathways in Myelodysplastic Syndromes and β-Thalassemia. International Journal of Molecular Sciences, 2021, 22, 827.	4.1	12
176	Impact of phospholipase C β1 in glioblastoma: a study on the main mechanisms of tumor aggressiveness. Cellular and Molecular Life Sciences, 2022, 79, 195.	5.4	12
177	Foreword: "The PI3-kinase/Akt pathway: From signaling to diseases― Advances in Biological Regulation, 2015, 59, 1-3.	2.3	11
178	PLCβ1a and PLCβ1b Selective Regulation and Cyclin D3 Modulation Reduced by Kinamycin F During K562 Cell Differentiation. Journal of Cellular Physiology, 2015, 230, 587-594.	4.1	11
179	Nuclear Inositides and Inositide-Dependent Signaling Pathways in Myelodysplastic Syndromes. Cells, 2020, 9, 697.	4.1	11
180	Nuclear inositol lipid cycle and differentiation. Advances in Enzyme Regulation, 1995, 35, 23-33.	2.6	10

#	Article	IF	CITATIONS
181	Mass Spectrometry-Based Identification of Y745 of Vav1 as a Tyrosine Residue Crucial in Maturation of Acute Promyelocytic Leukemia-Derived Cells. Journal of Proteome Research, 2010, 9, 752-760.	3.7	10
182	Plâ€PLCβ1b affects Akt activation, cyclin E expression, and caspase cleavage, promoting cell survival in proâ€Bâ€lymphoblastic cells exposed to oxidative stress. FASEB Journal, 2015, 29, 1383-1394.	0.5	10
183	Effects of the MDM-2 inhibitor Nutlin-3a on PDAC cells containing and lacking WT-TP53 on sensitivity to chemotherapy, signal transduction inhibitors and nutraceuticals. Advances in Biological Regulation, 2019, 72, 22-40.	2.3	10
184	Near-Peer Teaching in Human Anatomy from a Tutors' Perspective: An Eighteen-Year-Old Experience at the University of Bologna. International Journal of Environmental Research and Public Health, 2022, 19, 398.	2.6	10
185	Nuclear inositide signaling: An appraisal of phospholipase C β1 behavior in myelodysplastic and leukemia cells. Advances in Enzyme Regulation, 2007, 47, 2-9.	2.6	9
186	Hypoxia-induced down-modulation of PKCε promotes trail-mediated apoptosis of tumor cells. International Journal of Oncology, 2010, 37, 719-29.	3.3	9
187	PI-PLCÎ ² 1 gene copy number alterations in breast cancer. Oncology Reports, 2012, 27, 403-8.	2.6	9
188	Nuclear PI-PLCβ1 and Myelodysplastic Syndromes: Genetics and Epigenetics. Current Pharmaceutical Design, 2012, 18, 1751-1754.	1.9	9
189	GSK-3 signaling in health. Advances in Biological Regulation, 2017, 65, 1-4.	2.3	9
190	The regulation of insulin secretion via phosphoinositide-specific phospholipase CÎ ² signaling. Advances in Biological Regulation, 2019, 71, 10-18.	2.3	9
191	Abilities of β-Estradiol to interact with chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals and alter the proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2020, 75, 100672.	2.3	9
192	Nuclear PI-PLC β1 and Myelodysplastic Syndromes: From Bench to Clinics. Current Topics in Microbiology and Immunology, 2012, 362, 235-245.	1.1	9
193	Sensitization of multidrug resistant human ostesarcoma cells to Apo2 Ligand/TRAIL-induced apoptosis by inhibition of the Akt/PKB kinase. International Journal of Oncology, 2004, 25, 1599.	3.3	8
194	Expression of HLA class I antigen and proteasome subunits LMP-2 and LMP-10 in primary vs. metastatic breast carcinoma lesions. International Journal of Oncology, 2004, 25, 1625.	3.3	8
195	Inositide signaling: Nuclear targets and involvement in myelodysplastic syndromes. Advances in Enzyme Regulation, 2008, 48, 2-9.	2.6	8
196	Drug-resistance in doxorubicin-resistant FL5.12 hematopoietic cells: elevated MDR1, drug efflux and side-population positive and decreased BCL2-family member expression. Oncotarget, 2017, 8, 113013-113033.	1.8	8
197	Strategic Role of Nuclear Inositide Signalling in Myelodysplastic Syndromes Therapy. Mini-Reviews in Medicinal Chemistry, 2014, , .	2.4	8
198	Recent advances in MDS mutation landscape: Splicing and signalling. Advances in Biological Regulation, 2020, 75, 100673.	2.3	7

Lucio Ildebrando Cocco

#	Article	IF	CITATIONS
199	How Inflammation Pathways Contribute to Cell Death in Neuro-Muscular Disorders. Biomolecules, 2021, 11, 1109.	4.0	7
200	IPMK and β-catenin mediate PLC-β1-dependent signaling in myogenic differentiation. Oncotarget, 2016, 7, 84118-84127.	1.8	7
201	Quantitative phosphoproteome analysis of embryonic stem cell differentiation toward blood. Oncotarget, 2015, 6, 10924-10939.	1.8	7
202	Inositides and the nucleus: phospholipase CÎ ² family localization and signaling activity. Advances in Enzyme Regulation, 2000, 40, 83-95.	2.6	6
203	The function of PLCγ1 in developing mouse mDA system. Advances in Biological Regulation, 2020, 75, 100654.	2.3	6
204	Cell signaling pathways in autosomal-dominant leukodystrophyÂ(ADLD): the intriguing role of the astrocytes. Cellular and Molecular Life Sciences, 2021, 78, 2781-2795.	5.4	6
205	Sensitivity of pancreatic cancer cells to chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals can be regulated by WT-TP53. Advances in Biological Regulation, 2021, 79, 100780.	2.3	6
206	Azacitidine and Lenalidomide (Combined vs Sequential Treatment) in Higher-Risk Myelodysplastic Syndromes. Long-Term Results of a Randomized Phase II Multicenter Study. Blood, 2016, 128, 3169-3169.	1.4	6
207	Prediction of genetic alteration of phospholipase C isozymes in brain disorders: Studies with deep learning. Advances in Biological Regulation, 2021, 82, 100833.	2.3	6
208	Effects of the Mutant TP53 Reactivator APR-246 on Therapeutic Sensitivity of Pancreatic Cancer Cells in the Presence and Absence of WT-TP53. Cells, 2022, 11, 794.	4.1	6
209	Inositide-Dependent Nuclear Signalling in Health and Disease. Handbook of Experimental Pharmacology, 2019, 259, 291-308.	1.8	5
210	Phospholipase C beta1 (Plâ€PLCbeta1)/Cyclin D3/protein kinase C (PKC) alpha signaling modulation during ironâ€induced oxidative stress in myelodysplastic syndromes (MDS). FASEB Journal, 2020, 34, 15400-15416.	0.5	5
211	"Modulating Phosphoinositide Profiles as a Roadmap for Treatment in Acute Myeloid Leukemia― Frontiers in Oncology, 2021, 11, 678824.	2.8	5
212	Role of PLCγ1 in the modulation of cell migration and cell invasion in glioblastoma. Advances in Biological Regulation, 2022, 83, 100838.	2.3	5
213	Wild type and gain of function mutant TP53 can regulate the sensitivity of pancreatic cancer cells to chemotherapeutic drugs, EGFR/Ras/Raf/MEK, and PI3K/mTORC1/GSK-3 pathway inhibitors, nutraceuticals and alter metabolic properties. Aging, 2022, 14, 3365-3386.	3.1	5
214	In Memoriam of Prof. Giovanni Mazzotti. European Journal of Histochemistry, 2011, 55, rem3.	1.5	4
215	Effects of the MDM2 inhibitor Nutlin-3a on sensitivity of pancreatic cancer cells to berberine and modified berberines in the presence and absence of WT-TP53. Advances in Biological Regulation, 2021, , 100840.	2.3	4
216	APR-246—The Mutant TP53 Reactivator—Increases the Effectiveness of Berberine and Modified Berberines to Inhibit the Proliferation of Pancreatic Cancer Cells. Biomolecules, 2022, 12, 276.	4.0	4

#	Article	IF	CITATIONS
217	Application of flow cytometry to molecular medicine: Detection of tumor necrosis factor-related apoptosis-inducing ligand receptors in acute myeloid leukaemia blasts. International Journal of Molecular Medicine, 2005, 16, 1041.	4.0	3
218	The Phosphoinositide 3-Kinase (PI3K)/AKT Signaling Pathway as a Therapeutic Target for the Treatment of Human Acute Myeloid Leukemia (AML). Current Signal Transduction Therapy, 2007, 2, 246-256.	0.5	3
219	Phospholipid-related signaling in physiology and pathology. Advances in Biological Regulation, 2016, 61, 1.	2.3	3
220	Lamin B1 Accumulation's Effects on Autosomal Dominant Leukodystrophy (ADLD): Induction of Reactivity in the Astrocytes. Cells, 2021, 10, 2566.	4.1	3
221	Addition of Lenalidomide (LEN) to Azacitidine (AZA) (Combined vs Sequential Treatment) in High-Risk Myelodysplastic Syndromes (MDS): A Randomized Phase II Multicenter Study. Blood, 2014, 124, 4648-4648.	1.4	3
222	Microbiota-Gut-Brain Axis in Neurological Disorders: From Leaky Barriers Microanatomical Changes to Biochemical Processes. Mini-Reviews in Medicinal Chemistry, 2022, 22, .	2.4	3
223	Role of nuclear PLC and PI3K signaling in the development of cancer. Future Lipidology, 2007, 2, 303-311.	0.5	2
224	Association of Azacitidine and Lenalidomide (Combined vs Sequential Treatment) in High-Risk Myelodysplastic Syndromes. Final Results of a Randomized Phase II Multicenter Study. Blood, 2015, 126, 2871-2871.	1.4	2
225	Roles of PI3K/AKT/mTOR Axis in Arteriovenous Fistula. Biomolecules, 2022, 12, 350.	4.0	2
226	Reply to F. Damm et al. Journal of Clinical Oncology, 2010, 28, e388-e389.	1.6	1
227	Communication between median and musculocutaneous nerve at the level of cubital fossa - A case report. Translational Research in Anatomy, 2018, 11, 1-4.	0.6	1
228	Current therapy and new drugs: a road to personalized treatment of myelodysplastic syndromes. Expert Review of Precision Medicine and Drug Development, 2018, 3, 23-31.	0.7	1
229	Comparison of Two Different Therapeutic Regimens with Azacitidine and Lenalidomide (Combined) Tj ETQq1 1 0 Randomized Phase II Multicenter Study. Blood, 2018, 132, 4365-4365.	.784314 rg 1.4	gBT /Overloc 1
230	Epigenetic Regulation of Lipid Signalling Pathways In Low-Risk MDS Patients During Azacitidine Treatment. Blood, 2010, 116, 233-233.	1.4	1
231	Azacitidine Low-Dose Schedule In Low-Risk Myelodysplastic Syndromes. Preliminary Results of a Multicenter Phase II Study. Blood, 2010, 116, 4029-4029.	1.4	1
232	Phosphoinositide-Specific Phospholipase C \hat{I}^21 Signal Transduction in the Nucleus. Methods in Molecular Biology, 2010, 645, 143-164.	0.9	1
233	Phosphoinositide-Specific Phospholipase C (PI-PLC). , 2018, , 3973-3988.		1
234	Foreword. Advances in Enzyme Regulation, 2011, 51, vii.	2.6	0

#	Article	IF	CITATIONS
235	Foreword. Advances in Biological Regulation, 2012, 52, vii.	2.3	0
236	Editorial. Advances in Biological Regulation, 2012, 52, ix.	2.3	0
237	Editorial. Advances in Biological Regulation, 2020, 75, 100689.	2.3	0
238	Foreword. Advances in Biological Regulation, 2021, 79, 100785.	2.3	0
239	Effect of Erythropoietin Treatment on Lipid Signalling Pathways in Low-Risk MDS Patients Blood, 2009, 114, 2384-2384.	1.4	0
240	Early Increase of Phospholipase Cbeta1 (PI-PLCbeta1) Gene Expression Predicts Azacitidine Responsiveness in MDS Patients. Blood, 2012, 120, 1289-1289.	1.4	0
241	Azacitidine in Myelodysplastic Syndromes: Multicenter Retrospective Study of 34 Long-Responder Patients. Blood, 2012, 120, 4951-4951.	1.4	0
242	Clonal Effect Of Lenalidomide On Akt Activation In Low-Risk MDS Patients With Del(5q). Blood, 2013, 122, 5227-5227.	1.4	0
243	Aberrant expression of B203.13 antigen in acute lymphoid leukemia of B-cell origin. International Journal of Oncology, 1992, , .	3.3	0
244	Phosphoinositide-Specific Phospholipase C (PI-PLC). , 2016, , 1-16.		0
245	Role of Nuclear Inositide Signalling and microRNA Signature in Myelodysplastic Syndromes during Azacitidine and Lenalidomide Therapy. Blood, 2016, 128, 5091-5091.	1.4	0
246	Negative Prognostic Relevance of a Specific 3-Gene Cluster in Myelodysplastic Syndromes during Azacitidine and Lenalidomide Therapy. Blood, 2018, 132, 4347-4347.	1.4	0
247	Sequential Analysis of miRNA Profiling during Azacitidine and Lenalidomide Therapy in Myelodysplastic Syndromes. Blood, 2020, 136, 6-7.	1.4	0
248	Azacitidine and Lenalidomide in Higher-Risk Myelodysplastic Syndromes. Long-Term Results of a Randomized Phase II Multicenter Study and Impact of Cytogenetic Scores and Mutational Status on Long-Lasting Responses. Blood, 2020, 136, 45-45.	1.4	0
249	Foreword. Advances in Biological Regulation, 2022, 83, 100859.	2.3	0