James A Slavin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6800922/publications.pdf

Version: 2024-02-01

426 papers 21,822 citations

75 h-index 123 g-index

453 all docs

453 docs citations

times ranked

453

4616 citing authors

#	Article	IF	CITATIONS
1	Energetic Ions Downtail of the Reconnection Site. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	O
2	Observational evidence of ring current in the magnetosphere of Mercury. Nature Communications, 2022, 13, 924.	12.8	12
3	Particles and Photons as Drivers for Particle Release from the Surfaces of the Moon and Mercury. Space Science Reviews, 2022, 218, 1.	8.1	19
4	Properties of Ionâ€Inertial Scale Plasmoids Observed by the Juno Spacecraft in the Jovian Magnetotail. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	3
5	Neptune's Pole-on Magnetosphere: Dayside Reconnection Observations by Voyager 2. Planetary Science Journal, 2022, 3, 76.	3.6	2
6	Review of Mercury's dynamic magnetosphere: Post-MESSENGER era and comparative magnetospheres. Science China Earth Sciences, 2022, 65, 25-74.	5.2	19
7	MESSENGER Observations of Planetary Ion Enhancements at Mercury's Northern Magnetospheric Cusp During Flux Transfer Event Showers. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	7
8	Dayside magnetopause reconnection and flux transfer events under radial interplanetary magnetic field (IMF): BepiColombo Earth-flyby observations. Annales Geophysicae, 2022, 40, 217-229.	1.6	2
9	An Eastward Current Encircling Mercury. Geophysical Research Letters, 2022, 49, .	4.0	8
10	Juno Observations of Ionâ€Inertial Scale Flux Ropes in the Jovian Magnetotail. Geophysical Research Letters, 2021, 48, e2020GL089721.	4.0	3
11	SERENA: Particle Instrument Suite for Determining the Sun-Mercury Interaction from BepiColombo. Space Science Reviews, 2021, 217, 11.	8.1	26
12	BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury. Space Science Reviews, 2021, 217, 1.	8.1	25
13	Flux Transfer Events at a Reconnectionâ€Suppressed Magnetopause: Cassini Observations at Saturn. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028786.	2.4	10
14	Photoionization Loss of Mercury's Sodium Exosphere: Seasonal Observations by MESSENGER and the THEMIS Telescope. Geophysical Research Letters, 2021, 48, e2021GL092980.	4.0	9
15	Multiâ€Fluid MHD Simulations of Europa's Plasma Interaction Under Different Magnetospheric Conditions. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028888.	2.4	18
16	The BepiColombo Planetary Magnetometer MPO-MAG: What Can We Learn from the Hermean Magnetic Field?. Space Science Reviews, 2021, 217, 1.	8.1	45
17	Physicsâ€Based Analytical Model of the Planetary Bow Shock Position and Shape. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029104.	2.4	3
18	MAVEN Survey of Magnetic Flux Rope Properties in the Martian Ionosphere: Comparison With Three Types of Formation Mechanisms. Geophysical Research Letters, 2021, 48, e2021GL093296.	4.0	13

#	Article	IF	CITATIONS
19	MMS Observations of Field Line Resonances Under Disturbed Solar Wind Conditions. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028936.	2.4	2
20	A 3D MHDâ€Particle Tracing Model of Na ⁺ Energization on Mercury's Dayside. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029587.	2.4	2
21	Characteristics of the Martian Magnetosphere according to the Data of the Mars 3 and Phobos 2 Satellites: Comparison with MGS and MAVEN Results. Cosmic Research, 2021, 59, 478-492.	0.6	0
22	Crossâ€Scale Quantification of Stormâ€Time Dayside Magnetospheric Magnetic Flux Content. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028027.	2.4	7
23	Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	8.1	71
24	Flux Transfer Event Showers at Mercury: Dependence on Plasma $\langle i \rangle \hat{l}^2 \langle i \rangle$ and Magnetic Shear and Their Contribution to the Dungey Cycle. Geophysical Research Letters, 2020, 47, e2020GL089784.	4.0	23
25	A transient enhancement of Mercury's exosphere at extremely high altitudes inferred from pickup ions. Nature Communications, 2020, 11, 4350.	12.8	14
26	MESSENGER Observations of Flow Braking and Flux Pileup of Dipolarizations in Mercury's Magnetotail: Evidence for Current Wedge Formation. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028112.	2.4	13
27	Proton Properties in Mercury's Magnetotail: A Statistical Study. Geophysical Research Letters, 2020, 47, e2020GL088075.	4.0	11
28	Effects of Orbital Eccentricity and IMF Cone Angle on the Dimensions of Mercury's Magnetosphere. Astrophysical Journal, 2020, 892, 2.	4.5	10
29	Formation of Macroscale Flux Transfer Events at Mercury. Astrophysical Journal Letters, 2020, 893, L18.	8.3	15
30	Largeâ€Amplitude Oscillatory Motion of Mercury's Crossâ€Tail Current Sheet. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027783.	2.4	8
31	Comparative Analysis of the Vlasiator Simulations and MMS Observations of Multiple Xâ€Line Reconnection and Flux Transfer Events. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027410.	2.4	18
32	MESSENGER Observations of Mercury's Nightside Magnetosphere Under Extreme Solar Wind Conditions: Reconnectionâ€Generated Structures and Steady Convection. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027490.	2.4	14
33	Upstream Ultra‣ow Frequency Waves Observed by MESSENGER's Magnetometer: Implications for Particle Acceleration at Mercury's Bow Shock. Geophysical Research Letters, 2020, 47, e2020GL087350.	4.0	9
34	Particle-in-cell Simulations of Secondary Magnetic Islands: Ion-scale Flux Ropes and Plasmoids. Astrophysical Journal, 2020, 900, 145.	4.5	10
35	Examining the Magnetic Geometry of Magnetic Flux Ropes from the View of Single-point Analysis. Astrophysical Journal, 2020, 903, 53.	4.5	3
36	MESSENGER Observations of Disappearing Dayside Magnetosphere Events at Mercury. Journal of Geophysical Research: Space Physics, 2019, 124, 6613-6635.	2.4	53

#	Article	IF	CITATIONS
37	MMS Multiâ€Point Analysis of FTE Evolution: Physical Characteristics and Dynamics. Journal of Geophysical Research: Space Physics, 2019, 124, 5376-5395.	2.4	17
38	Global Tenâ€Moment Multifluid Simulations of the Solar Wind Interaction with Mercury: From the Planetary Conducting Core to the Dynamic Magnetosphere. Geophysical Research Letters, 2019, 46, 11584-11596.	4.0	44
39	A Statistical Study of the Force Balance and Structure in the Flux Ropes in Mercury's Magnetotail. Journal of Geophysical Research: Space Physics, 2019, 124, 5143-5157.	2.4	9
40	Studying Dawnâ€Dusk Asymmetries of Mercury's Magnetotail Using MHDâ€EPIC Simulations. Journal of Geophysical Research: Space Physics, 2019, 124, 8954-8973.	2.4	26
41	Dissipation of Earthward Propagating Flux Rope Through Reâ€reconnection with Geomagnetic Field: An MMS Case Study. Journal of Geophysical Research: Space Physics, 2019, 124, 7477-7493.	2.4	15
42	MMS Study of the Structure of Ionâ€Scale Flux Ropes in the Earth's Crossâ€Tail Current Sheet. Geophysical Research Letters, 2019, 46, 6168-6177.	4.0	30
43	Threeâ€Dimensional Magnetic Reconnection With a Spatially Confined Xâ€Line Extent: Implications for Dipolarizing Flux Bundles and the Dawnâ€Dusk Asymmetry. Journal of Geophysical Research: Space Physics, 2019, 124, 2819-2830.	2.4	34
44	MESSENGER Observations and Global Simulations of Highly Compressed Magnetosphere Events at Mercury. Journal of Geophysical Research: Space Physics, 2019, 124, 229-247.	2.4	49
45	Response of the Geospace System to the Solar Wind Dynamic Pressure Decrease on 11 June 2017: Numerical Models and Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 2613-2627.	2.4	4
46	MESSENGER Observations of Giant Plasmoids in Mercury's Magnetotail. Astrophysical Journal Letters, 2019, 886, L32.	8.3	5
47	MMS Observations of Plasma Heating Associated With FTE Growth. Geophysical Research Letters, 2019, 46, 12654-12664.	4.0	22
48	MMS Examination of FTEs at the Earth's Subsolar Magnetopause. Journal of Geophysical Research: Space Physics, 2018, 123, 1224-1241.	2.4	39
49	The Magnetic Field Structure of Mercury's Magnetotail. Journal of Geophysical Research: Space Physics, 2018, 123, 548-566.	2.4	31
50	Modeling Study of the Geospace System Response to the Solar Wind Dynamic Pressure Enhancement on 17 March 2015. Journal of Geophysical Research: Space Physics, 2018, 123, 2974-2989.	2.4	10
51	Evaluating Singleâ€Spacecraft Observations of Planetary Magnetotails With Simple Monte Carlo Simulations: 1. Spatial Distributions of the Neutral Line. Journal of Geophysical Research: Space Physics, 2018, 123, 10109-10123.	2.4	5
52	Evaluating Single Spacecraft Observations of Planetary Magnetotails With Simple Monte Carlo Simulations: 2. Magnetic Flux Rope Signature Selection Effects. Journal of Geophysical Research: Space Physics, 2018, 123, 10124-10138.	2.4	7
53	Multiscale Currents Observed by MMS in the Flow Braking Region. Journal of Geophysical Research: Space Physics, 2018, 123, 1260-1278.	2.4	32
54	MESSENGER Observations of Rapid and Impulsive Magnetic Reconnection in Mercury's Magnetotail. Astrophysical Journal Letters, 2018, 860, L20.	8.3	15

#	Article	IF	Citations
55	Transport of Mass and Energy in Mercury's Plasma Sheet. Geophysical Research Letters, 2018, 45, 12,163.	4.0	14
56	Structure and Configuration of Mercury's Magnetosphere. , 2018, , 430-460.		7
57	Mercury's Dynamic Magnetosphere. , 2018, , 461-496.		8
58	MESSENGER Observations of Fast Plasma Flows in Mercury's Magnetotail. Geophysical Research Letters, 2018, 45, 10,110.	4.0	22
59	Driftâ€Bounce Resonance Between Pc5 Pulsations and Ions at Multiple Energies in the Nightside Magnetosphere: Arase and MMS Observations. Geophysical Research Letters, 2018, 45, 7277-7286.	4.0	14
60	A Comparative Study of the Proton Properties of Magnetospheric Substorms at Earth and Mercury in the Near Magnetotail. Geophysical Research Letters, 2018, 45, 7933-7941.	4.0	14
61	Automated forceâ€free flux rope identification. Journal of Geophysical Research: Space Physics, 2017, 122, 780-791.	2.4	15
62	Mercury's crossâ€ŧail current sheet: Structure, Xâ€line location and stress balance. Geophysical Research Letters, 2017, 44, 678-686.	4.0	53
63	Global observations of magnetospheric highâ€ <i>m</i> poloidal waves during the 22 June 2015 magnetic storm. Geophysical Research Letters, 2017, 44, 3456-3464.	4.0	43
64	Structure, force balance, and topology of Earth's magnetopause. Science, 2017, 356, 960-963.	12.6	10
65	Solar Cycle Occurrence of Alfvénic Fluctuations and Related Geoâ€Efficiency. Journal of Geophysical Research: Space Physics, 2017, 122, 9848-9857.	2.4	6
66	Global Threeâ€Dimensional Simulation of Earth's Dayside Reconnection Using a Twoâ€Way Coupled Magnetohydrodynamics With Embedded Particleâ€inâ€Cell Model: Initial Results. Journal of Geophysical Research: Space Physics, 2017, 122, 10,318.	2.4	62
67	MESSENGER Observations of Magnetotail Loading and Unloading: Implications for Substorms at Mercury. Journal of Geophysical Research: Space Physics, 2017, 122, 11,402.	2.4	38
68	MESSENGER observations of the energization and heating of protons in the nearâ€Mercury magnetotail. Geophysical Research Letters, 2017, 44, 8149-8158.	4.0	27
69	Interplanetary magnetic field properties and variability near Mercury's orbit. Journal of Geophysical Research: Space Physics, 2017, 122, 7907-7924.	2.4	39
70	Coupling between Mercury and its nightside magnetosphere: Crossâ€ŧail current sheet asymmetry and substorm current wedge formation. Journal of Geophysical Research: Space Physics, 2017, 122, 8419-8433.	2.4	29
71	Flux ropes in the Hermean magnetotail: Distribution, properties, and formation. Journal of Geophysical Research: Space Physics, 2017, 122, 8136-8153.	2.4	23
72	Plasma Sheet Pressure Variations in the Nearâ€Earth Magnetotail During Substorm Growth Phase: THEMIS Observations. Journal of Geophysical Research: Space Physics, 2017, 122, 12,212.	2.4	22

#	Article	IF	CITATIONS
73	The Influence of IMF Clock Angle on Dayside Flux Transfer Events at Mercury. Geophysical Research Letters, 2017, 44, 10,829.	4.0	9
74	Mercury's Solar Wind Interaction as Characterized by Magnetospheric Plasma Mantle Observations With MESSENGER. Journal of Geophysical Research: Space Physics, 2017, 122, 12,153.	2.4	25
75	Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail. Journal of Geophysical Research: Space Physics, 2017, 122, 12,170.	2.4	36
76	Near-Earth plasma sheet boundary dynamics during substorm dipolarization. Earth, Planets and Space, 2017, 69, 129.	2.5	15
77	IMF <i>B</i> _{<i>y</i>} effects on ground magnetometer response to increased solar wind dynamic pressure derived from global MHD simulations. Journal of Geophysical Research: Space Physics, 2017, 122, 5028-5042.	2.4	9
78	Optimized merging of search coil and fluxgate data for MMS. Geoscientific Instrumentation, Methods and Data Systems, 2016, 5, 521-530.	1.6	22
79	Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with highâ€resolution observations from MESSENGER. Journal of Geophysical Research: Space Physics, 2016, 121, 2171-2184.	2.4	31
80	Magnetopause erosion during the 17 March 2015 magnetic storm: Combined fieldâ€aligned currents, auroral oval, and magnetopause observations. Geophysical Research Letters, 2016, 43, 2396-2404.	4.0	36
81	Ionâ€scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS. Geophysical Research Letters, 2016, 43, 4716-4724.	4.0	95
82	Flux transfer event observation at Saturn's dayside magnetopause by the Cassini spacecraft. Geophysical Research Letters, 2016, 43, 6713-6723.	4.0	38
83	MESSENGER observations of cusp plasma filaments at Mercury. Journal of Geophysical Research: Space Physics, 2016, 121, 8260-8285.	2.4	29
84	Transient, smallâ€scale fieldâ€aligned currents in the plasma sheet boundary layer during storm time substorms. Geophysical Research Letters, 2016, 43, 4841-4849.	4.0	30
85	Wave telescope technique for MMS magnetometer. Geophysical Research Letters, 2016, 43, 4774-4780.	4.0	15
86	Steepening of waves at the duskside magnetopause. Geophysical Research Letters, 2016, 43, 7373-7380.	4.0	14
87	Stepwise tailward retreat of magnetic reconnection: THEMIS observations of an auroral substorm. Journal of Geophysical Research: Space Physics, 2016, 121, 4548-4568.	2.4	9
88	Isolated magnetic field structures in Mercury's magnetosheath as possible analogues for terrestrial magnetosheath plasmoids and jets. Planetary and Space Science, 2016, 129, 61-73.	1.7	25
89	Force balance at the magnetopause determined with MMS: Application to flux transfer events. Geophysical Research Letters, 2016, 43, 11,941.	4.0	27
90	Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data. Geophysical Research Letters, 2016, 43, 7279-7286.	4.0	49

#	Article	IF	CITATIONS
91	A comparative study of dipolarization fronts at MMS and Cluster. Geophysical Research Letters, 2016, 43, 6012-6019.	4.0	37
92	Spatial distribution of Mercury's flux ropes and reconnection fronts: MESSENGER observations. Journal of Geophysical Research: Space Physics, 2016, 121, 7590-7607.	2.4	55
93	lonâ€scale structure in Mercury's magnetopause reconnection diffusion region. Geophysical Research Letters, 2016, 43, 5935-5942.	4.0	11
94	The Magnetospheric Multiscale Magnetometers. Space Science Reviews, 2016, 199, 189-256.	8.1	896
95	Cassini in situ observations of long-duration magnetic reconnection in Saturn's magnetotail. Nature Physics, 2016, 12, 268-271.	16.7	35
96	The Earth: Plasma Sources, Losses, and Transport Processes. Space Sciences Series of ISSI, 2016, , 145-208.	0.0	3
97	A Review of General Physical and Chemical Processes Related to Plasma Sources and Losses for Solar System Magnetospheres. Space Sciences Series of ISSI, 2016, , 27-89.	0.0	0
98	Plasma Sources in Planetary Magnetospheres: Mercury. Space Sciences Series of ISSI, 2016, , 91-144.	0.0	0
99	A largeâ€scale view of Space Technology 5 magnetometer response to solar wind drivers. Earth and Space Science, 2015, 2, 115-124.	2.6	5
100	Global MHD simulations of Mercury's magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. Journal of Geophysical Research: Space Physics, 2015, 120, 4763-4775.	2.4	89
101	MESSENGER observations of magnetospheric substorm activity in Mercury's near magnetotail. Geophysical Research Letters, 2015, 42, 3692-3699.	4.0	50
102	First observations of Mercury's plasma mantle by MESSENGER. Geophysical Research Letters, 2015, 42, 9666-9675.	4.0	29
103	Improving solar wind modeling at Mercury: Incorporating transient solar phenomena into the WSAâ€ENLIL model with the Cone extension. Journal of Geophysical Research: Space Physics, 2015, 120, 5667-5685.	2.4	16
104	Compressibility of Mercury's dayside magnetosphere. Geophysical Research Letters, 2015, 42, 10,135.	4.0	36
105	Coherent wave activity in Mercury's magnetosheath. Journal of Geophysical Research: Space Physics, 2015, 120, 7342-7356.	2.4	13
106	MESSENGER observations of solar energetic electrons within Mercury's magnetosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 8559-8571.	2.4	16
107	MESSENGER observations of the dayside lowâ€latitude boundary layer in Mercury's magnetosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 8387-8400.	2.4	13
108	MESSENGER observations of multiscale Kelvinâ€Helmholtz vortices at Mercury. Journal of Geophysical Research: Space Physics, 2015, 120, 4354-4368.	2.4	40

#	Article	IF	CITATIONS
109	Interpreting ~1 Hz magnetic compressional waves in Mercury's inner magnetosphere in terms of propagating ionâ€Bernstein waves. Journal of Geophysical Research: Space Physics, 2015, 120, 4213-4228.	2.4	21
110	Response of reverse convection to fast IMF transitions. Journal of Geophysical Research: Space Physics, 2015, 120, 4020-4037.	2.4	4
111	MESSENGER observations of Alfv \tilde{A} ©nic and compressional waves during Mercury's substorms. Geophysical Research Letters, 2015, 42, 6189-6198.	4.0	19
112	Mercury's threeâ€dimensional asymmetric magnetopause. Journal of Geophysical Research: Space Physics, 2015, 120, 7658-7671.	2.4	48
113	Plasma Sources in Planetary Magnetospheres: Mercury. Space Science Reviews, 2015, 192, 91-144.	8.1	39
114	Challenges in Measuring External Currents Driven by the Solar Wind-Magnetosphere Interaction. Terrestrial, Atmospheric and Oceanic Sciences, 2015, 26, 11.	0.6	0
115	MESSENGER observations of flux ropes in Mercury's magnetotail. Planetary and Space Science, 2015, 115, 77-89.	1.7	71
116	The Earth: Plasma Sources, Losses, and Transport Processes. Space Science Reviews, 2015, 192, 145-208.	8.1	54
117	A Review of General Physical and Chemical Processes Related to Plasma Sources and Losses for Solar System Magnetospheres. Space Science Reviews, 2015, 192, 27-89.	8.1	16
118	RADIAL EVOLUTION OF A MAGNETIC CLOUD: <i>MESSENGER </i> , <i>STEREO </i> , AND <i>VENUS EXPRESS </i> OBSERVATIONS. Astrophysical Journal, 2015, 807, 177.	4.5	34
119	Observations of upstream ultra-low-frequency waves in the Mercury's foreshock. , 2014, , .		0
120	THE VELOCITY DISTRIBUTION OF PICKUP He ⁺ MEASURED AT 0.3 AU BY <i>MESSENGER</i> Astrophysical Journal, 2014, 788, 124.	4.5	7
121	Large-Scale Structure and Dynamics of the Magnetotails of Mercury, Earth, Jupiter and Saturn. Space Science Reviews, 2014, 182, 85-154.	8.1	41
122	lon kinetic properties in Mercury's preâ€midnight plasma sheet. Geophysical Research Letters, 2014, 41, 5740-5747.	4.0	50
123	Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies. Space Science Reviews, 2014, 181, 121-214.	8.1	108
124	MESSENGER at Mercury: Early orbital operations. Acta Astronautica, 2014, 93, 509-515.	3.2	4
125	Structure and statistical properties of plasmoids in Jupiter's magnetotail. Journal of Geophysical Research: Space Physics, 2014, 119, 821-843.	2.4	54
126	Structure and dynamics of Mercury's magnetospheric cusp: MESSENGER measurements of protons and planetary ions. Journal of Geophysical Research: Space Physics, 2014, 119, 6587-6602.	2.4	79

#	Article	IF	CITATIONS
127	Steadyâ€state fieldâ€aligned currents at Mercury. Geophysical Research Letters, 2014, 41, 7444-7452.	4.0	55
128	Saturn's dynamic magnetotail: A comprehensive magnetic field and plasma survey of plasmoids and traveling compression regions and their role in global magnetospheric dynamics. Journal of Geophysical Research: Space Physics, 2014, 119, 5465-5494.	2.4	69
129	MESSENGER observations of large dayside flux transfer events: Do they drive Mercury's substorm cycle?. Journal of Geophysical Research: Space Physics, 2014, 119, 5613-5623.	2.4	54
130	A survey of hot flow anomalies at Venus. Journal of Geophysical Research: Space Physics, 2014, 119, 978-991.	2.4	21
131	Active current sheets and candidate hot flow anomalies upstream of Mercury's bow shock. Journal of Geophysical Research: Space Physics, 2014, 119, 853-876.	2.4	22
132	Plasma distribution in Mercury's magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations. Journal of Geophysical Research: Space Physics, 2014, 119, 2917-2932.	2.4	46
133	Mercury's surface magnetic field determined from protonâ€reflection magnetometry. Geophysical Research Letters, 2014, 41, 4463-4470.	4.0	39
134	The current system associated with the boundary of plasma bubbles. Geophysical Research Letters, 2014, 41, 8169-8175.	4.0	13
135	MESSENGER observations of Mercury's dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 2014, 119, 8087-8116.	2.4	125
136	Upstream ultraâ€low frequency waves in Mercury's foreshock region: MESSENGER magnetic field observations. Journal of Geophysical Research: Space Physics, 2013, 118, 2809-2823.	2.4	40
137	Magnetic flux pileup and plasma depletion in Mercury's subsolar magnetosheath. Journal of Geophysical Research: Space Physics, 2013, 118, 7181-7199.	2.4	96
138	Cyclic reformation of a quasiâ€parallel bow shock at Mercury: MESSENGER observations. Journal of Geophysical Research: Space Physics, 2013, 118, 6457-6464.	2.4	25
139	Solar wind forcing at Mercury: WSAâ€ENLIL model results. Journal of Geophysical Research: Space Physics, 2013, 118, 45-57.	2.4	46
140	A comparison of magnetic overshoots at the bow shocks of Mercury and Saturn. Journal of Geophysical Research: Space Physics, 2013, 118, 4381-4390.	2.4	17
141	Distribution and compositional variations of plasma ions in Mercury's space environment: The first three Mercury years of MESSENGER observations. Journal of Geophysical Research: Space Physics, 2013, 118, 1604-1619.	2.4	85
142	Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations. Journal of Geophysical Research: Space Physics, 2013, 118, 2213-2227.	2.4	182
143	MESSENGER observations of magnetopause structure and dynamics at Mercury. Journal of Geophysical Research: Space Physics, 2013, 118, 997-1008.	2.4	141
144	Flux estimates of ions from the lunar exosphere. Geophysical Research Letters, 2012, 39, .	4.0	29

#	Article	IF	CITATIONS
145	MESSENGER observations of dipolarization events in Mercury's magnetotail. Journal of Geophysical Research, 2012, 117, .	3.3	72
146	Spatial distribution and spectral characteristics of energetic electrons in Mercury's magnetosphere. Journal of Geophysical Research, 2012, 117, .	3.3	28
147	Survey of coherent \hat{a}^4 1 Hz waves in Mercury's inner magnetosphere from MESSENGER observations. Journal of Geophysical Research, 2012, 117, .	3.3	39
148	MESSENGER observations of a fluxâ€transferâ€event shower at Mercury. Journal of Geophysical Research, 2012, 117, .	3.3	85
149	Characteristics of the plasma distribution in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations. Journal of Geophysical Research, 2012, 117, .	3.3	23
150	A Dynamic Twist in the Tail. Science, 2012, 336, 548-549.	12.6	0
151	MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. Journal of Geophysical Research, 2012, 117, .	3.3	86
152	MESSENGER orbital observations of largeâ€amplitude Kelvinâ€Helmholtz waves at Mercury's magnetopause. Journal of Geophysical Research, 2012, 117, .	3.3	69
153	Hot flow anomalies at Venus. Journal of Geophysical Research, 2012, 117, .	3.3	35
154	Observations of Mercury's northern cusp region with MESSENGER's Magnetometer. Geophysical Research Letters, 2012, 39, .	4.0	86
155	Lowâ€degree structure in Mercury's planetary magnetic field. Journal of Geophysical Research, 2012, 117,	3.3	131
156	MESSENGER observations of Mercury's magnetic field structure. Journal of Geophysical Research, 2012, 117, .	3.3	109
157	From space weather toward space climate time scales: Substorm analysis from 1993 to 2008. Journal of Geophysical Research, 2011, 116, .	3.3	43
158	Space Technology 5 multipoint observations of transpolar arc-related field-aligned currents. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	6
159	A THEMIS survey of flux ropes and traveling compression regions: Location of the near-Earth reconnection site during solar minimum. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	91
160	Plasma pressure in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	38
161	Quasi-trapped ion and electron populations at Mercury. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	40
162	Observations of a unique type of ULF wave by low-altitude Space Technology 5 satellites. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	18

#	Article	IF	CITATIONS
163	Cassini observations of plasmoid structure and dynamics: Implications for the role of magnetic reconnection in magnetospheric circulation at Saturn. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	73
164	Kinetic-scale magnetic turbulence and finite Larmor radius effects at Mercury. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	39
165	The interplanetary magnetic field environment at Mercury's orbit. Planetary and Space Science, 2011, 59, 2075-2085.	1.7	35
166	The dayside magnetospheric boundary layer at Mercury. Planetary and Space Science, 2011, 59, 2037-2050.	1.7	33
167	Observations of suprathermal electrons in Mercury's magnetosphere during the three MESSENGER flybys. Planetary and Space Science, 2011, 59, 2016-2025.	1.7	31
168	The space environment of Mercury at the times of the second and third MESSENGER flybys. Planetary and Space Science, 2011, 59, 2066-2074.	1.7	28
169	MESSENGER observations of the plasma environment near Mercury. Planetary and Space Science, 2011, 59, 2004-2015.	1.7	78
170	Electron transport and precipitation at Mercury during the MESSENGER flybys: Implications for electron-stimulated desorption. Planetary and Space Science, 2011, 59, 2026-2036.	1.7	30
171	Limits to Mercury's magnesium exosphere from MESSENGER second flyby observations. Planetary and Space Science, 2011, 59, 1992-2003.	1.7	36
172	Reconstruction of propagating Kelvin–Helmholtz vortices at Mercury's magnetopause. Planetary and Space Science, 2011, 59, 2051-2057.	1.7	24
173	ARTEMIS Science Objectives. Space Science Reviews, 2011, 165, 59-91.	8.1	47
174	MESSENGER Observations of Transient Bursts of Energetic Electrons in Mercury's Magnetosphere. Science, 2011, 333, 1865-1868.	12.6	35
175	MESSENGER Observations of the Spatial Distribution of Planetary Ions Near Mercury. Science, 2011, 333, 1862-1865.	12.6	102
176	The Global Magnetic Field of Mercury from MESSENGER Orbital Observations. Science, 2011, 333, 1859-1862.	12.6	301
177	Characteristics of the terrestrial field-aligned current system. Annales Geophysicae, 2011, 29, 1713-1729.	1.6	54
178	ARTEMIS Science Objectives., 2011,, 27-59.		4
179	Sources of sodium in the lunar exosphere: Modeling using ground-based observations of sodium emission and spacecraft data of the plasma. Icarus, 2010, 205, 364-374.	2.5	52
180	Alfven Wave Reflection model of field-aligned currents at Mercury. Icarus, 2010, 209, 40-45.	2.5	13

#	Article	IF	Citations
181	Mercury's magnetospheric magnetic field after the first two MESSENGER flybys. Icarus, 2010, 209, 23-39.	2.5	110
182	The Magnetic Field of Mercury. Space Science Reviews, 2010, 152, 307-339.	8.1	94
183	Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby. Icarus, 2010, 209, 3-10.	2.5	67
184	Mercury's magnetosphere–solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulation results. Icarus, 2010, 209, 11-22.	2.5	66
185	MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail. Science, 2010, 329, 665-668.	12.6	172
186	MESSENGER observations of large flux transfer events at Mercury. Geophysical Research Letters, 2010, 37, .	4.0	57
187	Evidence for extended acceleration of solar flare ions from $1\hat{a}\in$ MeV solar neutrons detected with the MESSENGER Neutron Spectrometer. Journal of Geophysical Research, 2010, 115, .	3.3	26
188	Space Technology 5 observations of the imbalance of regions 1 and 2 fieldâ€aligned currents and its implication to the crossâ€polar cap Pedersen currents. Journal of Geophysical Research, 2010, 115, .	3.3	24
189	Saturation of the electric field transmitted to the magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	8
190	Observations of Kelvinâ€Helmholtz waves along the duskâ€side boundary of Mercury's magnetosphere during MESSENGER's third flyby. Geophysical Research Letters, 2010, 37, .	4.0	50
191	In situ observations of the effect of a solar wind compression on Saturn's magnetotail. Journal of Geophysical Research, 2010, 115 , .	3.3	33
192	MESSENGER Observations of Magnetic Reconnection in Mercury's Magnetosphere. Science, 2009, 324, 606-610.	12.6	234
193	MESSENGER and Venus Express observations of the solar wind interaction with Venus. Geophysical Research Letters, 2009, 36, .	4.0	37
194	Comparison of ultraâ€lowâ€frequency waves at Mercury under northward and southward IMF. Geophysical Research Letters, 2009, 36, .	4.0	17
195	Space Technology 5 multipoint observations of temporal and spatial variability of fieldâ€aligned currents. Journal of Geophysical Research, 2009, 114, .	3.3	15
196	Space environment of Mercury at the time of the first MESSENGER flyby: Solar wind and interplanetary magnetic field modeling of upstream conditions. Journal of Geophysical Research, 2009, 114, .	3.3	37
197	Space Technology 5 measurements of auroral fieldâ€aligned current sheet motion. Geophysical Research Letters, 2009, 36, .	4.0	8
198	Narrowâ€band ultraâ€lowâ€frequency wave observations by MESSENGER during its January 2008 flyby through Mercury's magnetosphere. Geophysical Research Letters, 2009, 36, .	4.0	26

#	Article	IF	CITATIONS
199	MESSENGER observations of Mercury's magnetosphere during northward IMF. Geophysical Research Letters, 2009, 36, .	4.0	55
200	Sodiumâ€ion pickup observed above the magnetopause during MESSENGER's first Mercury flyby: Constraints on neutral exospheric models. Geophysical Research Letters, 2009, 36, .	4.0	26
201	Kinetic instabilities in Mercury's magnetosphere: Threeâ€dimensional simulation results. Geophysical Research Letters, 2009, 36, .	4.0	38
202	Modeling the response of the induced magnetosphere of Venus to changing IMF direction using MESSENGER and Venus Express observations. Geophysical Research Letters, 2009, 36, .	4.0	9
203	On the possible formation of Alfv \tilde{A} ©n wings at Mercury during encounters with coronal mass ejections. Geophysical Research Letters, 2009, 36, .	4.0	19
204	The Magnetic Field of Mercury. Space Sciences Series of ISSI, 2009, , 307-339.	0.0	2
205	Space Technology 5 multiâ€point measurements of nearâ€Earth magnetic fields: Initial results. Geophysical Research Letters, 2008, 35, .	4.0	40
206	Influence of plasma ions on source rates for the lunar exosphere during passage through the Earth's magnetosphere. Geophysical Research Letters, 2008, 35, .	4.0	44
207	Flux transfer events simultaneously observed by Polar and Cluster: Flux rope in the subsolar region and flux tube addition to the polar cusp. Journal of Geophysical Research, 2008, 113, .	3.3	13
208	Longitudinal association between magnetotail reconnection and auroral breakup based on Geotail and Polar observations. Journal of Geophysical Research, 2008, 113 , .	3.3	26
209	Temporal and spatial characteristics of Pc1 waves observed by ST5. Journal of Geophysical Research, 2008, 113, .	3.3	55
210	Paraboloid model of Mercury's magnetosphere. Journal of Geophysical Research, 2008, 113, .	3.3	59
211	Transient and localized processes in the magnetotail: a review. Annales Geophysicae, 2008, 26, 955-1006.	1.6	112
212	Mercury's Magnetosphere After MESSENGER's First Flyby. Science, 2008, 321, 85-89.	12.6	166
213	The Structure of Mercury's Magnetic Field from MESSENGER's First Flyby. Science, 2008, 321, 82-85.	12.6	194
214	MESSENGER Observations of the Composition of Mercury's Ionized Exosphere and Plasma Environment. Science, 2008, 321, 90-92.	12.6	121
215	Return to Mercury: A Global Perspective on MESSENGER's First Mercury Flyby. Science, 2008, 321, 59-62.	12.6	170
216	An empirical model of Saturn's bow shock: Cassini observations of shock location and shape. Journal of Geophysical Research, 2008, 113, .	3.3	51

#	Article	IF	CITATIONS
217	lonospheric signatures during a magnetospheric flux rope event. Annales Geophysicae, 2008, 26, 3967-3977.	1.6	3
218	Hermean Magnetosphere-Solar Wind Interaction. Space Sciences Series of ISSI, 2008, , 347-368.	0.0	3
219	Magnetosphere–Exosphere–Surface Coupling at Mercury. Space Sciences Series of ISSI, 2008, , 369-391.	0.0	0
220	Earthward flowing plasmoid: Structure and its related ionospheric signature. Journal of Geophysical Research, 2007, 112 , .	3.3	27
221	Search for pickâ€up ion generated Na ⁺ cyclotron waves at Mercury. Geophysical Research Letters, 2007, 34, .	4.0	19
222	Magnetic field gradients from the STâ€5 constellation: Improving magnetic and thermal models of the lithosphere. Geophysical Research Letters, 2007, 34, .	4.0	21
223	MESSENGER: Exploring Mercury's Magnetosphere. Space Science Reviews, 2007, 131, 133-160.	8.1	55
224	Magnetosphere–Exosphere–Surface Coupling at Mercury. Space Science Reviews, 2007, 132, 551-573.	8.1	13
225	Hermean Magnetosphere-Solar Wind Interaction. Space Science Reviews, 2007, 132, 529-550.	8.1	48
226	The Magnetometer Instrument on MESSENGER. Space Science Reviews, 2007, 131, 417-450.	8.1	254
227	The Magnetometer Instrument on MESSENGER. , 2007, , 417-450.		8
228	MESSENGER: Exploring Mercury's Magnetosphere. , 2007, , 133-160.		3
229	Magnetospheric current systems during stormtime sawtooth events. Journal of Geophysical Research, 2006, 111, .	3.3	43
230	Cluster encounter with an energetic electron beam during a substorm. Journal of Geophysical Research, 2006, 111 , .	3.3	16
231	Cluster observations of flux rope structures in the near-tail. Annales Geophysicae, 2006, 24, 651-666.	1.6	33
232	Flux closure during a substorm observed by Cluster, Double Star, IMAGE FUV, SuperDARN, and Greenland magnetometers. Annales Geophysicae, 2006, 24, 751-767.	1.6	8
233	Bow shock observations by Prognoz–Prognoz 11 data: analysis and model comparison. Advances in Space Research, 2005, 36, 1958-1963.	2.6	8
234	Correlation between ground-based observations of substorm signatures and magnetotail dynamics. Annales Geophysicae, 2005, 23, 997-1011.	1.6	4

#	Article	IF	Citations
235	Cluster observation of continuous reconnection at dayside magnetopause in the vicinity of cusp. Annales Geophysicae, 2005, 23, 2199-2215.	1.6	11
236	Statistical and superposed epoch study of dipolarization events using data from Wind perigee passes. Annales Geophysicae, 2005, 23, 831-851.	1.6	15
237	Cluster observations of sudden impulses in the magnetotail caused by interplanetary shocks and pressure increases. Annales Geophysicae, 2005, 23, 609-624.	1.6	32
238	Transition from substorm growth to substorm expansion phase as observed with a radial configuration of ISTP and Cluster spacecraft. Annales Geophysicae, 2005, 23, 2183-2198.	1.6	33
239	Heavy ion mass loading of the geomagnetic field near the plasmapause and ULF wave implications. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	83
240	Cluster electron observations of the separatrix layer during traveling compression regions. Geophysical Research Letters, 2005, 32, .	4.0	17
241	Magnetotail response to prolonged southward IMFBzintervals: Loading, unloading, and continuous magnetospheric dissipation. Journal of Geophysical Research, 2005, 110 , .	3.3	30
242	Structure of the magnetic pileup boundary at Mars and Venus. Journal of Geophysical Research, 2005, 110, .	3.3	63
243	Cluster observations of traveling compression regions in the near-tail. Journal of Geophysical Research, 2005, 110, .	3.3	79
244	Three-dimensional position and shape of the bow shock and their variation with upstream Mach numbers and interplanetary magnetic field orientation. Journal of Geophysical Research, 2005, 110, .	3.3	79
245	Observations of multiple X-line structure in the Earth's magnetotail current sheet: A Cluster case study. Geophysical Research Letters, 2005, 32, .	4.0	108
246	Magnetospheric substorms are strongly modulated by interplanetary high-speed streams. Geophysical Research Letters, 2005, 32, .	4.0	61
247	Coordinated polar spacecraft, geosynchronous spacecraft, and ground-based observations of magnetopause processes and their coupling to the ionosphere. Annales Geophysicae, 2004, 22, 4329-4350.	1.6	8
248	Unusually Distant Bow Shock Encounters at Mars: Analysis of March 24, 1989 event. Space Science Reviews, 2004, 111, 233-243.	8.1	12
249	Bow Shock and Upstream Phenomena at Mars. Space Science Reviews, 2004, 111, 115-181.	8.1	129
250	Martian obstacle and bow shock: origins of boundaries anisotropy. Advances in Space Research, 2004, 33, 2222-2227.	2.6	14
251	Determination of the properties of Mercury's magnetic field by the MESSENGER mission. Planetary and Space Science, 2004, 52, 733-746.	1.7	61
252	Response of the magnetotail to changes in the open flux content of the magnetosphere. Journal of Geophysical Research, 2004, 109, .	3.3	83

#	Article	IF	CITATIONS
253	Bow Shock and Upstream Phenomena at Mars. Space Sciences Series of ISSI, 2004, , 115-181.	0.0	12
254	Unusually Distant Bow Shock Encounters at Mars: Analysis of March 24, 1989 Event. Space Sciences Series of ISSI, 2004, , 233-243.	0.0	1
255	Nano/Micro Satellite Constellations for Earth and Space Science. Acta Astronautica, 2003, 52, 785-791.	3.2	30
256	Magnetotail flows can consume as much solar wind energy as a substorm. Journal of Geophysical Research, 2003, 108, .	3.3	3
257	Cluster electric current density measurements within a magnetic flux rope in the plasma sheet. Geophysical Research Letters, 2003, 30, .	4.0	77
258	Geotail observations of magnetic flux ropes in the plasma sheet. Journal of Geophysical Research, 2003, 108, SMP 10-1.	3.3	285
259	Planetary bow shocks: Gasdynamic analytic approach. Journal of Geophysical Research, 2003, 108, .	3.3	34
260	Magnetic field draping enhancement at Venus: Evidence for a magnetic pileup boundary. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	29
261	Cluster four spacecraft measurements of small traveling compression regions in the near-tail. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	33
262	A proxy for determining solar wind dynamic pressure at Mars using Mars Global Surveyor data. Journal of Geophysical Research, 2003, 108, .	3.3	92
263	Tomographic imaging of electron distributions: Leveraging computing power advances to produce inexpensive, low-power, lightweight, and robust instrumentation. Review of Scientific Instruments, 2003, 74, 1002-1007.	1.3	0
264	Planetary bow shocks: Asymptotic MHD Mach cones. Earth, Planets and Space, 2003, 55, 33-38.	2.5	31
265	Substorm energy budget during low and high solar activity: 1997 and 1999 compared. Journal of Geophysical Research, 2002, 107, SMP 15-1.	3.3	116
266	Simultaneous observations of earthward flow bursts and plasmoid ejection during magnetospheric substorms. Journal of Geophysical Research, 2002, 107, SMP 13-1.	3.3	65
267	On the origin of reverse polarity TCRs. Geophysical Research Letters, 2001, 28, 1925-1928.	4.0	7
268	Reconnection remnants in the magnetic cloud of October 18-19, 1995: A shock, monochromatic wave, heat flux dropout, and energetic ion beam. Journal of Geophysical Research, 2001, 106, 15985-16000.	3.3	18
269	Global simulation of the Geospace Environment Modeling substorm challenge event. Journal of Geophysical Research, 2001, 106, 381-395.	3.3	232
270	Evidence of different magnetotail responses to small solar wind pressure pulses depending on IMF Bz polarity. Geophysical Research Letters, 2001, 28, 4163-4166.	4.0	3

#	Article	IF	CITATIONS
271	Wind observations of the terrestrial bow shock: 3-D shape and motion. Earth, Planets and Space, 2001, 53, 1001-1009.	2.5	41
272	Analysis of the 3-D shape of the terrestrial bow shock by interball/magion 4 observations. Advances in Space Research, 2001, 28, 857-862.	2.6	47
273	Evidence of the influence of equatorial martian crustal magnetization on the position of the planetary magnetotail boundary by phobos 2 data. Advances in Space Research, 2001, 28, 885-889.	2.6	12
274	The MESSENGER mission to Mercury: scientific objectives and implementation. Planetary and Space Science, 2001, 49, 1445-1465.	1.7	361
275	Magnetotail currents during the growth phase and local auroral breakup. Geophysical Monograph Series, 2000, , 81-89.	0.1	4
276	Loading-unloading processes in the nightside ionosphere. Geophysical Research Letters, 2000, 27, 1627-1630.	4.0	55
277	Small-scale magnetic flux ropes in the solar wind. Geophysical Research Letters, 2000, 27, 57-60.	4.0	157
278	lonospheric current signatures of transient plasma sheet flows. Journal of Geophysical Research, 2000, 105, 10677-10690.	3.3	87
279	Mirror mode structures and ELF plasma waves in the Giacobini-Zinner magnetosheath. Nonlinear Processes in Geophysics, 1999, 6, 229-234.	1.3	34
280	Dual spacecraft observations of lobe magnetic field perturbations before, during and after plasmoid release. Geophysical Research Letters, 1999, 26, 2897-2900.	4.0	24
281	Spatial extent and dynamics of a thin current sheet during the substorm growth phase on December 10, 1996. Journal of Geophysical Research, 1999, 104, 28475-28490.	3.3	25
282	ISTP observations of plasmoid ejection: IMP 8 and Geotail. Journal of Geophysical Research, 1998, 103, 119-133.	3.3	36
283	Multispacecraft observations of sudden impulses in the magnetotail caused by solar wind pressure discontinuities: Wind and IMP 8. Journal of Geophysical Research, 1998, 103, 17293-17305.	3.3	39
284	Global configuration of the magnetotail current sheet as derived from Geotail, Wind, IMP 8 and ISEE 1/2 data. Journal of Geophysical Research, 1998, 103, 6827-6841.	3.3	53
285	Timing accuracy for the simple planar propagation of magnetic field structures in the solar wind. Geophysical Research Letters, 1998, 25, 2509-2512.	4.0	107
286	Electron precipitation accompanying Pc 5 pulsations observed by the DE satellites and at a ground station. Journal of Geophysical Research, 1998, 103, 17587-17604.	3.3	28
287	Traveling compression regions in the midtail: Fifteen years of IMP 8 observations. Journal of Geophysical Research, 1998, 103, 17641-17650.	3.3	18
288	Temporal relationship between midtail traveling compression regions and substorm onset: Evidence for near-Earth neutral line formation in the late growth phase. Journal of Geophysical Research, 1998, 103, 26607-26612.	3.3	13

#	Article	IF	Citations
289	A statistical study of the magnetic field structure in the inner magnetosphere. Journal of Geophysical Research, 1997, 102, 17571-17582.	3.3	13
290	IMP 8 observations of traveling compression regions in the mid-tail near substorm expansion phase onset. Geophysical Research Letters, 1997, 24, 353-356.	4.0	15
291	Boundary layer formation in the magnetotail: Geotail observations and comparisons with a global MHD simulation. Geophysical Research Letters, 1997, 24, 951-954.	4.0	95
292	WIND, GEOTAIL, and GOES 9 observations of magnetic field dipolarization and bursty bulk flows in the near-tail. Geophysical Research Letters, 1997, 24, 971-974.	4.0	45
293	Solar wind-magnetosphere coupling during an isolated substorm event: A multispacecraft ISTP study. Geophysical Research Letters, 1997, 24, 983-986.	4.0	15
294	Quantitative model of the Martian magnetopause shape and its variation with the solar wind ram pressure based on Phobos 2 observations. Journal of Geophysical Research, 1997, 102, 2147-2155.	3.3	30
295	Study of the solar wind deceleration upstream of the Martian terminator bow shock. Journal of Geophysical Research, 1997, 102, 2165-2173.	3.3	26
296	THE CLUSTER MAGNETIC FIELD INVESTIGATION. Space Science Reviews, 1997, 79, 65-91.	8.1	287
297	MHD simulations of the transition of magnetic reconnection from closed to open field lines. Journal of Geophysical Research, 1996, 101, 10805-10816.	3.3	32
298	Energetic (>0.2 MeV) electron bursts in the deep geomagnetic tail observed by the Goddard Space Flight Center experiment on ISEE 3: Association with geomagnetic substorms. Journal of Geophysical Research, 1996, 101, 2723-2740.	3.3	13
299	lonospheric signature of the tail neutral line during the growth phase of a substorm. Journal of Geophysical Research, 1996, 101, 5067-5073.	3.3	1
300	Near-simultaneous bow shock crossings by WIND and IMP 8 on December 1, 1994. Geophysical Research Letters, 1996, 23, 1207-1210.	4.0	29
301	The lunar wake at 6.8 RL: WIND magnetic field observations. Geophysical Research Letters, 1996, 23, 1263-1266.	4.0	61
302	A Model for the Distant Tail Field: ISEE 3 Revisited. Journal of Geomagnetism and Geoelectricity, 1996, 48, 455-471.	0.9	15
303	Analysis of Magnetotail Flux Ropes with Strong Core Fields: ISEE 3 Observations. Journal of Geomagnetism and Geoelectricity, 1996, 48, 589-601.	0.9	22
304	Energetic (>0.2 MeV) Electron Bursts in the Deep Geomagnetic Tail Observed by ISEE 3: Association with Substorms and Magnetotail Structures. Journal of Geomagnetism and Geoelectricity, 1996, 48, 657-673.	0.9	5
305	The WIND magnetic field investigation. Space Science Reviews, 1995, 71, 207-229.	8.1	1,225
306	Average motion, structure and orientation of the distant magnetotail determined from remote sensing of the edge of the plasma sheet boundary layer with E> 35 keV ions. Journal of Geophysical Research, 1995, 100, 185.	3.3	62

#	Article	IF	CITATIONS
307	Three-dimensional position and shape of the bow shock and their variation with Alfvénic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation. Journal of Geophysical Research, 1995, 100, 7907.	3.3	210
308	Highly structured ionospheric convection for northward interplanetary magnetic field: A case study with DE 2 observations. Journal of Geophysical Research, 1995, 100, 14743.	3.3	10
309	A strong dawn/dusk asymmetry in Pc5 pulsation occurrence observed by the DE-1 satellite. Geophysical Research Letters, 1995, 22, 2053-2056.	4.0	46
310	ISEE 3 observations of plasmoids with flux rope magnectic topologies. Geophysical Research Letters, 1995, 22, 2061-2064.	4.0	65
311	Polar cap potential distributions during periods of positive IMF By and Bz. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 209-221.	0.9	13
312	Fine structure of low-energy H+in the nightside auroral region. Journal of Geophysical Research, 1994, 99, 4131.	3.3	8
313	Auroral ionospheric signatures of the plasma sheet boundary layer in the evening sector. Journal of Geophysical Research, 1994, 99, 2489.	3.3	31
314	By-controlled convection and field-aligned currents near midnight auroral oval for northward interplanetary magnetic field. Journal of Geophysical Research, 1994, 99, 6027.	3.3	24
315	Localized injection of large-amplitude Pc 1 waves and electron temperature enhancement near the plasmapause observed by DE 2 in the upper ionosphere. Journal of Geophysical Research, 1994, 99, 6187.	3.3	9
316	Field-aligned Poynting Flux observations in the high-latitude ionosphere. Journal of Geophysical Research, 1994, 99, 11417.	3.3	43
317	Evolution of the plasmoid-lobe interaction with downtail distance. Geophysical Research Letters, 1994, 21, 2765-2768.	4.0	13
318	Modeling ionospheric convection during a major geomagnetic storm on October 22-23, 1981. Journal of Geophysical Research, 1994, 99, 11017.	3.3	3
319	The relationship between the magnetic field in the Martian magnetotail and upstream solar wind parameters. Journal of Geophysical Research, 1994, 99, 17199.	3.3	8
320	Ground-based studies of ionospheric convection associated with substorm expansion. Journal of Geophysical Research, 1994, 99, 19451.	3.3	39
321	Satellite measurements through the center of a substorm surge. Journal of Geophysical Research, 1994, 99, 23639.	3.3	35
322	Characterization of the IMF <i>B_y</i> êdependent fieldâ€aligned currents in the cleft region based on DE 2 observations. Journal of Geophysical Research, 1993, 98, 1393-1407.	3.3	99
323	The effects of neutral inertia on ionospheric currents in the highâ€katitude thermosphere following a geomagnetic storm. Journal of Geophysical Research, 1993, 98, 7775-7790.	3.3	53
324	Simultaneous observations of subauroral electron temperature enhancements and electromagnetic ion cyclotron waves. Geophysical Research Letters, 1993, 20, 1723-1726.	4.0	20

#	Article	IF	CITATIONS
325	Energetic (>0.2 MeV) electron bursts observed by ISEE 3 in the deep (<240 <i>R_E</i> geomagnetic tail. Journal of Geophysical Research, 1993, 98, 13441-13451.	3.3	8
326	ISEE 3 observations of traveling compression regions in the Earth's magnetotail. Journal of Geophysical Research, 1993, 98, 15425-15446.	3.3	141
327	Correlation between magnetic and electric field perturbations in the fieldâ€∎ligned current regions deduced from DE 2 observations. Journal of Geophysical Research, 1992, 97, 13877-13887.	3.3	65
328	ISEE 3 plasmoid and TCR observations during an extended interval of substorm activity. Geophysical Research Letters, 1992, 19, 825-828.	4.0	63
329	Viscously driven plasma flows in the deep geomagnetic tail. Geophysical Research Letters, 1992, 19, 1443-1446.	4.0	18
330	Equatorial bubbles updrafting at supersonic speeds. Journal of Geophysical Research, 1992, 97, 8581-8590.	3.3	65
331	Field and thermal plasma observations of ULF pulsations during a magnetically disturbed interval. Journal of Geophysical Research, 1992, 97, 14859-14875.	3.3	9
332	Dynamics Explorer Measurements of Particles, Fields, and Plasma Drifts Over a Horse-Collar Auroral Pattern Journal of Geomagnetism and Geoelectricity, 1992, 44, 1225-1237.	0.9	6
333	Sources of fieldâ€aligned currents in the auroral plasma. Geophysical Research Letters, 1991, 18, 45-48.	4.0	14
334	lon cyclotron waves near <i>L</i> = 4.6: A groundâ€satellite correlation study. Journal of Geophysical Research, 1991, 96, 1451-1466.	3.3	15
335	The solar wind interaction with Mars: Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 observations of bow shock position and shape. Journal of Geophysical Research, 1991, 96, 11235-11241.	3.3	89
336	Interaction of the solar wind with the planet Mars: Phobos 2 magnetic field observations. Planetary and Space Science, 1991, 39, 75-81.	1.7	33
337	DE-2 observations of filamentary currents at ionospheric altitudes. Geophysical Monograph Series, 1990, , 591-598.	0.1	4
338	Robert E. Holzer: In celebration of his 80th birthday. History of Geophysics, 1990, , 267-270.	0.0	0
339	The Mercury dual orbiter mission. AIP Conference Proceedings, 1990, , .	0.4	0
340	The solar probe mission. AIP Conference Proceedings, 1990, , .	0.4	3
341	Observations of the flank of Earth's bow shock to â^'110 R _E by ISEE 3/ICE. Geophysical Research Letters, 1990, 17, 753-756.	4.0	41
342	IMPâ€8 observations of traveling compression regions: New evidence for nearâ€Earth plasmoids and neutral lines. Geophysical Research Letters, 1990, 17, 913-916.	4.0	35

#	Article	IF	CITATIONS
343	Spatial gradients in the heliospheric magnetic field: Pioneer 11 observations between 1 AU and 24 AU, and over solar cycle 21. Journal of Geophysical Research, 1990, 95, 1-11.	3.3	40
344	Dayside auroral particle acceleration mechanisms derived from dynamics explorer data Journal of Geomagnetism and Geoelectricity, 1990, 42, 1365-1378.	0.9	7
345	"Substorms, plasmoids, flux ropes, and magnetotail flux loss on March 25, 1983: CDAW 8"". Journal of Geophysical Research, 1989, 94, 15135-15152.	3.3	23
346	Analysis of an extended period of earthward plasma sheet flow at â^1/4220 <i>R_E</i> : CDAW 8. Journal of Geophysical Research, 1989, 94, 15177-15188.	3.3	20
347	Magnetic fields near Mars: first results. Nature, 1989, 341, 604-607.	27.8	246
348	Pioneer Venus Orbiter magnetic field and plasma observations in the Venus magnetotail. Journal of Geophysical Research, 1989, 94, 2383-2398.	3.3	59
349	A three dimensional gasdynamic model for solar wind flow past nonaxisymmetric magnetospheres: Application to Jupiter and Saturn. Journal of Geophysical Research, 1989, 94, 13353-13365.	3.3	43
350	CDAW 8 observations of plasmoid signatures in the geomagnetic tail: An assessment. Journal of Geophysical Research, 1989, 94, 15153-15175.	3.3	108
351	ISEE 3 observations during the CDAW 8 intervals: Case studies of the distant geomagnetic tail covering a wide range of geomagnetic activity. Journal of Geophysical Research, 1989, 94, 15189-15220.	3.3	44
352	THE MAGNETOSPHERE OF MERCURY., 1989, , 514-561.		17
353	DE 1 observations of return current regions in the nightside auroral oval. Journal of Geophysical Research, 1988, 93, 14542-14548.	3.3	11
354	Particle acceleration and wave emissions associated with the formation of auroral cavities and enhancements. Journal of Geophysical Research, 1988, 93, 14567-14590.	3.3	20
355	The cause of two plasma-tail disconnection events in comet P/Halley during the ICE-Halley radial period., 1988,, 267-275.		2
356	Enhancements of energetic ions associated with travelling compression regions in the deep geomagnetic tail. Journal of Geophysical Research, 1987, 92, 64-70.	3.3	21
357	Average plasma and magnetic field variations in the distant magnetotail associated with nearâ€Earth substorm effects. Journal of Geophysical Research, 1987, 92, 71-81.	3.3	119
358	The Giacobiniâ€Zinner magnetotail: Tail configuration and current sheet. Journal of Geophysical Research, 1987, 92, 1139-1152.	3.3	18
359	Magnetotails at unmagnetized bodies: Comparison of comet Giacobiniâ€Zinner and Venus. Journal of Geophysical Research, 1987, 92, 10111-10117.	3.3	23
360	A 3-D computational model for solar wind/magnetosphere interactions - Prediction of polar flattening of Jupiter and Saturn magnetospheres. , 1987 , , .		0

#	Article	IF	CITATIONS
361	Major flattening of the distant geomagnetic tail. Journal of Geophysical Research, 1986, 91, 4223-4237.	3.3	53
362	Strong electron bidirectional anisotropies in the distant tail: ISEE 3 observations of polar rain. Journal of Geophysical Research, 1986, 91, 5637-5662.	3.3	43
363	Giacobiniâ€Zinner magnetotail: ICE magnetic field observations. Geophysical Research Letters, 1986, 13, 283-286.	4.0	90
364	Cometâ€solar wind interaction: Dynamical length scales and models. Geophysical Research Letters, 1986, 13, 239-242.	4.0	64
365	The bow wave of comet Giacobiniâ€Zinner: Ice magnetic field observations. Geophysical Research Letters, 1986, 13, 243-246.	4.0	34
366	Statics and dynamics of Giacobiniâ€Zinner magnetic tail. Geophysical Research Letters, 1986, 13, 287-290.	4.0	28
367	The interplanetary magnetic field during solar cycle 21: ISEEâ€3/ICE observations. Geophysical Research Letters, 1986, 13, 513-516.	4.0	67
368	The structure of a cometary Type I tail: Groundâ€based and ice observations of P/Giacobiniâ€Zinner. Geophysical Research Letters, 1986, 13, 1085-1088.	4.0	22
369	Radial and latitudinal gradients in the interplanetary magnetic field: Evidence for meridional flux transport. Journal of Geophysical Research, 1986, 91, 6760-6764.	3.3	20
370	Shocks and Storm Sudden Commencements. Astrophysics and Space Science Library, 1986, , 345-365.	2.7	60
371	Solar Wind-Magnetosphere Coupling and the Distant Magnetotail: ISEE-3 Observations. Astrophysics and Space Science Library, 1986, , 717-730.	2.7	10
372	Twisting of the Geomagnetic Tail. Astrophysics and Space Science Library, 1986, , 731-738.	2.7	17
373	An ISEE 3 study of average and substorm conditions in the distant magnetotail. Journal of Geophysical Research, 1985, 90, 10875-10895.	3.3	292
374	Coupling between the solar wind and the magnetosphere: CDAW 6. Journal of Geophysical Research, 1985, 90, 1191-1199.	3.3	44
375	The distant magnetotail's response to a strong interplanetary magnetic field B _y : Twisting, flattening, and field line bending. Journal of Geophysical Research, 1985, 90, 4011-4019.	3.3	123
376	Solar wind flow about the outer planets: Gas dynamic modeling of the Jupiter and Saturn bow shocks. Journal of Geophysical Research, 1985, 90, 6275-6286.	3.3	119
377	Magnetic field properties of the distant magnetotail magnetopause and boundary layer. Journal of Geophysical Research, 1985, 90, 9561-9575.	3.3	38
378	ISEE 3 magnetic field observations in the mgnetotail: Implications for reconnection. Geophysical Monograph Series, 1984, , 240-248.	0.1	22

#	Article	IF	Citations
379	Magnetic structure of the distant geotail from â^'60 to â^'220 R _e : ISEEâ€3. Geophysical Research Letters, 1984, 11, 1-4.	4.0	69
380	Structure of the magnetotail at 220 R $<$ sub $>$ E $<$ /sub $>$ and its response to geomagnetic activity. Geophysical Research Letters, 1984, 11, 5-7.	4.0	256
381	Energetic ion regimes in the deep geomagnetic tail: ISEEâ€3. Geophysical Research Letters, 1984, 11, 275-278.	4.0	78
382	Large scale temporal and radial gradients in the IMF: Helios 1, 2, ISEEâ€3, and Pioneer 10, 11. Geophysical Research Letters, 1984, 11, 279-282.	4.0	52
383	Evidence for slowâ€mode shocks in the deep geomagnetic tail. Geophysical Research Letters, 1984, 11, 599-602.	4.0	134
384	Substorm associated traveling compression regions in the distant tail: Iseeâ€3 Geotail observations. Geophysical Research Letters, 1984, 11, 657-660.	4.0	190
385	Direct observations of passages of the distant neutral line (80â€140 R _E) following substorm pnsets: ISEEâ€3. Geophysical Research Letters, 1984, 11, 1042-1045.	4.0	29
386	Detailed examination of a plasmoid in the distant magnetotail with ISEE 3. Geophysical Research Letters, 1984, 11, 1046-1049.	4.0	91
387	Plasma wave spectra near slow mode shocks in the distant magnetotail. Geophysical Research Letters, 1984, 11, 1050-1053.	4.0	73
388	Slow mode shocks in the Earth' magnetotail: ISEEâ€3. Geophysical Research Letters, 1984, 11, 1054-1057.	4.0	77
389	Plasmasheet magnetic fields in the distant tail. Geophysical Research Letters, 1984, 11, 1062-1065.	4.0	38
390	A comparative study of distant magnetotail structure at Venus and Earth. Geophysical Research Letters, 1984, 11, 1074-1077.	4.0	27
391	Plasma entry into the distant tail lobes: ISEEâ€3. Geophysical Research Letters, 1984, 11, 1078-1081.	4.0	71
392	Magnetotail flux ropes. Geophysical Research Letters, 1984, 11, 1090-1093.	4.0	99
393	Planetary Mach cones: Theory and observation. Journal of Geophysical Research, 1984, 89, 2708-2714.	3.3	73
394	Evolution of the Earth's distant magnetotail: ISEE 3 electron plasma results. Journal of Geophysical Research, 1984, 89, 11007-11012.	3.3	125
395	Average configuration of the distant (<220 R _e) magnetotail: Initial ISEEâ€3 magnetic field results. Geophysical Research Letters, 1983, 10, 973-976.	4.0	117
396	A Pioneerâ€Voyager study of the solar wind interaction with Saturn. Geophysical Research Letters, 1983, 10, 9-12.	4.0	35

#	Article	IF	CITATIONS
397	Solar wind flow about the terrestrial planets: 2. Comparison with gas dynamic theory and implications for solarâ€planetary interactions. Journal of Geophysical Research, 1983, 88, 19-35.	3.3	92
398	Reply [to "Comment on  An evaluation of three predictors of geomagnetic activity' by R. E. Holzer and J. A. Slavinâ€]. Journal of Geophysical Research, 1983, 88, 4955-4958.	3.3	8
399	The solar wind interaction with Mars revisited. Journal of Geophysical Research, 1982, 87, 10285-10296.	3.3	77
400	An evaluation of three predictors of geomagnetic activity. Journal of Geophysical Research, 1982, 87, 2558-2562.	3.3	54
401	A quantitative model of geomagnetic activity. Journal of Geophysical Research, 1982, 87, 9054-9058.	3.3	19
402	Observations of large scale steady magnetic fields in the nightside Venus ionosphere and near wake. Geophysical Research Letters, 1981, 8, 517-520.	4.0	42
403	The effect of solar wind structure on magnetospheric energy supply during solar cycle 20. Journal of Geophysical Research, 1981, 86, 675-680.	3.3	11
404	Processes influencing the diurnal variation of the <i>AL</i> index and its reliability. Journal of Geophysical Research, 1981, 86, 8977-8980.	3.3	10
405	Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape. Journal of Geophysical Research, 1981, 86, 11401-11418.	3.3	283
406	The location of the dayside ionopause of Venus: Pioneer Venus Orbiter Magnetometer observations. Geophysical Research Letters, 1980, 7, 561-564.	4.0	29
407	Io and its plasma environment. Journal of Geophysical Research, 1980, 85, 5959-5968.	3.3	119
408	The solar wind interaction with Venus: Pioneer Venus observations of bow shock location and structure. Journal of Geophysical Research, 1980, 85, 7625-7641.	3.3	95
409	Observations of the dayside ionopause and ionosphere of Venus. Journal of Geophysical Research, 1980, 85, 7679-7696.	3.3	170
410	Limits on the possible intrinsic magnetic field of Venus. Journal of Geophysical Research, 1980, 85, 8319-8332.	3.3	73
411	Initial Pioneer Venus Magnetic Field Results: Dayside Observations. Science, 1979, 203, 745-748.	12.6	148
412	Initial Pioneer Venus Magnetic Field Results: Nightside Observations. Science, 1979, 205, 114-116.	12.6	56
413	Magnetospheres of the Galilean Satellites. Science, 1979, 205, 491-493.	12.6	51
414	Pioneer magnetometer observations of the Venus bow shock. Nature, 1979, 282, 815-816.	27.8	24

#	Article	IF	CITATIONS
415	On the determination of the Hermaean magnetic moment: A critical review. Physics of the Earth and Planetary Interiors, 1979, 20, 231-236.	1.9	19
416	Position and shape of the Venus bow shock: Pioneer Venus Orbiter observations. Geophysical Research Letters, 1979, 6, 901-904.	4.0	38
417	A comparison of Pioneer Venus and Venera bow shock observations: Evidence for a solar cycle variation. Geophysical Research Letters, 1979, 6, 905-908.	4.0	30
418	The effect of erosion on the solar wind standâ€off distance at Mercury. Journal of Geophysical Research, 1979, 84, 2076-2082.	3.3	156
419	A correlative study of magnetic flux transfer in the magnetosphere. Journal of Geophysical Research, 1979, 84, 2573-2578.	3.3	58
420	Planetary magnetospheres. Reviews of Geophysics, 1979, 17, 1677-1693.	23.0	17
421	Reactions to APS support of ERA. Physics Today, 1979, 32, 11-82.	0.3	0
422	Magnetic flux transfer associated with expansions and contractions of the dayside magnetosphere. Journal of Geophysical Research, 1978, 83, 3831-3839.	3.3	183
423	Postoperative metabolic patterns following immediate total nutritional support: Hormone levels, DNA synthesis, nitrogen balance, and accelerated wound healing. Journal of Surgical Research, 1976, 21, 383-393.	1.6	31
424	Empirical Relationships Between Interplanetary Conditions, Magnetospheric Flux Transfer, and the Al Index. Geophysical Monograph Series, 0, , 423-435.	0.1	5
425	Electric and Magnetic Field Fluctuations at High Latitudes in the Dayside Ionosphere During Southward IMF. Geophysical Monograph Series, 0, , 387-397.	0.1	0
426	Traveling Compressions Regions. Geophysical Monograph Series, 0, , 225-240.	0.1	4