LoÃ⁻c Leclercq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6800777/publications.pdf Version: 2024-02-01

LOÃ-CLECIERCO

#	Article	IF	CITATIONS
1	Pickering Interfacial Catalysis for Biphasic Systems: From Emulsion Design to Green Reactions. Angewandte Chemie - International Edition, 2015, 54, 2006-2021.	7.2	376
2	Pickering Emulsion Stabilized by Catalytic Polyoxometalate Nanoparticles: A New Effective Medium for Oxidation Reactions. Chemistry - A European Journal, 2012, 18, 14352-14358.	1.7	99
3	Pickering emulsions based on cyclodextrins: A smart solution for antifungal azole derivatives topical delivery. European Journal of Pharmaceutical Sciences, 2016, 82, 126-137.	1.9	78
4	Biphasic aqueous organometallic catalysis promoted by cyclodextrins: Can surface tension measurements explain the efficiency of chemically modified cyclodextrins?. Journal of Colloid and Interface Science, 2007, 307, 481-487.	5.0	77
5	Eco-friendly solvents and amphiphilic catalytic polyoxometalate nanoparticles: a winning combination for olefin epoxidation. Green Chemistry, 2014, 16, 269-278.	4.6	70
6	Acidic/amphiphilic silica nanoparticles: new eco-friendly Pickering interfacial catalysis for biodiesel production. Green Chemistry, 2017, 19, 4552-4562.	4.6	68
7	Sulfonated Xantphos Ligand and Methylated Cyclodextrin:Â A Winning Combination for Rhodium-Catalyzed Hydroformylation of Higher Olefins in Aqueous Medium. Organometallics, 2005, 24, 2070-2075.	1.1	66
8	Supramolecular effects involving the incorporation of guest substrates in imidazolium ionic liquid networks: Recent advances and future developments. Supramolecular Chemistry, 2009, 21, 245-263.	1.5	59
9	Versatile Ecoâ€friendly Pickering Emulsions Based on Substrate/Native Cyclodextrin Complexes: A Winning Approach for Solventâ€Free Oxidations. ChemSusChem, 2013, 6, 1533-1540.	3.6	53
10	Halide-free highly-pure imidazolium triflate ionic liquids: Preparation and use in palladium-catalysed allylic alkylation. Green Chemistry, 2007, 9, 1097.	4.6	52
11	Transition of cellulose crystalline structure in biodegradable mixtures of renewably-sourced levulinate alkyl ammonium ionic liquids, Î ³ -valerolactone and water. Green Chemistry, 2014, 16, 2463-2471.	4.6	52
12	Multiphase Microreactors Based on Liquid–Liquid and Gas–Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
13	Rhodium-Catalyzed Hydroformylation Promoted by Modified Cyclodextrins:Current Scope and Future Developments. Current Organic Synthesis, 2008, 5, 162-172.	0.7	50
14	Interactions between cyclodextrins and cellular components: Towards greener medical applications?. Beilstein Journal of Organic Chemistry, 2016, 12, 2644-2662.	1.3	49
15	N,N'-Disubstituted Methylenediimidazolium Salts: A Versatile Guest for Various Macrocycles. Journal of Organic Chemistry, 2008, 73, 3784-3790.	1.7	45
16	Two-Phase Hydroformylation of Higher Olefins Using Randomly Methylated ?-Cyclodextrin as Mass Transfer Promoter: A Smart Solution for Preserving the Intrinsic Properties of the Rhodium/Trisulfonated Triphenylphosphine Catalytic System. Advanced Synthesis and Catalysis, 2005, 347, 55-59.	2.1	41
17	Heptakis(2,3-di-O-methyl-6-O-sulfopropyl)-β-cyclodextrin: A Genuine Supramolecular Carrier for Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2006, 348, 379-386.	2.1	38
18	Study of the Supramolecular Cooperativity in the Multirecognition Mechanism of Cyclodextrins/Cucurbituril/Disubstituted Diimidazolium Bromides. Journal of Physical Chemistry B, 2008, 112, 14176-14184.	1.2	38

LoÃ⁻c Leclercq

#	Article	IF	CITATIONS
19	Thermoregulated Microemulsions by Cyclodextrin Sequestration: A New Approach to Efficient Catalyst Recovery. Chemistry - A European Journal, 2009, 15, 6327-6331.	1.7	36
20	Encapsulation of biocides by cyclodextrins: toward synergistic effects against pathogens. Beilstein Journal of Organic Chemistry, 2014, 10, 2603-2622.	1.3	36
21	Biphasic hydroformylation in ionic liquids: interaction between phosphane ligands and imidazolium triflate, toward an asymmetric process. Chemical Communications, 2008, , 311-313.	2.2	33
22	Rhodium Complexes Non-Covalently Bound to Cyclodextrins: Novel Water-Soluble Supramolecular Catalysts for the Biphasic Hydroformylation of Higher Olefins. Chemistry - A European Journal, 2005, 11, 6228-6236.	1.7	31
23	Colloidal tectonics for tandem synergistic Pickering interfacial catalysis: oxidative cleavage of cyclohexene oxide into adipic acid. Chemical Science, 2019, 10, 501-507.	3.7	30
24	Development of <i>N,N′</i> -Diaromatic Diimidazolium Cations: Arene Interactions for Highly Organized Crystalline Materials. Crystal Growth and Design, 2009, 9, 4784-4792.	1.4	29
25	Imidazolium Cations in Organic Chemistry: From Chemzymes to Supramolecular Building Blocs. Current Organic Chemistry, 2010, 14, 1500-1516.	0.9	28
26	Stepwise Aggregation of Dimethyl-di- <i>n</i> -octylammonium Chloride in Aqueous Solutions: From Dimers to Vesicles. Langmuir, 2010, 26, 1716-1723.	1.6	27
27	Fine tuning of sulfoalkylated cyclodextrin structures to improve their mass-transfer properties in an aqueous biphasic hydroformylation reaction. Journal of Molecular Catalysis A, 2008, 286, 11-20.	4.8	26
28	Structure–activity relationship of cyclodextrin/biocidal double-tailed ammonium surfactant host–guest complexes: Towards a delivery molecular mechanism?. European Journal of Pharmaceutical Sciences, 2010, 41, 265-275.	1.9	25
29	Aqueous mixtures of di-n-decyldimethylammonium chloride/polyoxyethylene alkyl ether: Dramatic influence of tail/tail and head/head interactions on co-micellization and biocidal activity. Journal of Colloid and Interface Science, 2012, 374, 176-186.	5.0	25
30	Supramolecular effects on the antifungal activity of cyclodextrin/di-n-decyldimethylammonium chloride mixtures. European Journal of Pharmaceutical Sciences, 2012, 46, 336-345.	1.9	24
31	β-Cyclodextrins modified by alkyl and poly(ethylene oxide) chains: A novel class of mass transfer additives for aqueous organometallic catalysis. Journal of Molecular Catalysis A, 2010, 318, 8-14.	4.8	23
32	Self-Assembled Polyoxometalates Nanoparticles as Pickering Emulsion Stabilizers. Journal of Physical Chemistry B, 2015, 119, 6326-6337.	1.2	23
33	Recognition of 1,4-Xylylene Binding Sites in Polyimidazolium Cations by Cucurbit[7]uril: Toward Pseudorotaxane Assembly. Journal of Physical Chemistry B, 2009, 113, 9493-9498.	1.2	22
34	Supramolecular Chemistry and Self-Organization: A Veritable Playground for Catalysis. Catalysts, 2019, 9, 163.	1.6	22
35	<i>N</i> , <i>N′</i> â€Methylenediimidazolium Salts: From Selfâ€Assembly to an Efficient DNAse Protection System. Chemistry - A European Journal, 2010, 16, 4686-4692.	1.7	20
36	Dibenzylimidazolium Halides: From Complex Molecular Network in Solid State to Simple Dimer in Solution and in Gas Phase. Journal of Physical Chemistry A, 2008, 112, 4996-5001.	1.1	19

LoÃ⁻c Leclercq

#	Article	IF	CITATIONS
37	1,3-Dibenzylimidazolium salts: A paradigm of water and anion effect on the supramolecular H-bonds network. Journal of Molecular Structure, 2009, 918, 101-107.	1.8	19
38	Assembly of Tunable Supramolecular Organometallic Catalysts with Cyclodextrins. Organometallics, 2010, 29, 3442-3449.	1.1	17
39	Phytochemical- and Cyclodextrin-Based Pickering Emulsions: Natural Potentiators of Antibacterial, Antifungal, and Antibiofilm Activity. Langmuir, 2020, 36, 4317-4323.	1.6	17
40	Multiple Equilibria in the Complexation of Dibenzylimidazolium Bromide Salts by Cyclodextrins: Toward Controlled Self-Assembly. Journal of Physical Chemistry B, 2008, 112, 11064-11070.	1.2	16
41	Modeling of Multiple Equilibria in the Self-Aggregation of Di- <i>n</i> -decyldimethylammonium Chloride/Octaethylene Glycol Monododecyl Ether/Cyclodextrin Ternary Systems. Langmuir, 2013, 29, 6242-6252.	1.6	16
42	Supramolecular encapsulation of 1,3â€bis(1â€adamantyl)imidazolium chloride by βâ€cyclodextrins: towards inhibition of C(2)â€H/D exchange. Journal of Physical Organic Chemistry, 2009, 22, 91-95.	0.9	15
43	Kinetic Resolution of Racemic Secondary Alcohols Mediated by <i>N</i> â€Methylimidazole in the Presence of Optically Active Acyl Chlorides. European Journal of Organic Chemistry, 2010, 2010, 2696-2700.	1.2	15
44	Influence of the Flexibility of the Diimidazolium Cations on Their Organization into Crystalline Materials. Crystal Growth and Design, 2011, 11, 3828-3836.	1.4	14
45	Acidic Threeâ€Liquidâ€Phase Microemulsion Systems Based on Balanced Catalytic Surfactant for Epoxidation and Sulfide Oxidation under Mild Conditions. Advanced Synthesis and Catalysis, 2013, 355, 409-420.	2.1	14
46	Get Beyond Limits: From Colloidal Tectonics Concept to the Engineering of Eco-Friendly Catalytic Systems. Frontiers in Chemistry, 2018, 6, 168.	1.8	14
47	Counter Anion Effect on the Self-Aggregation of Dimethyl-di- <i>N</i> -octylammonium Cation: A Dual Behavior between Hydrotropes and Surfactants. Journal of Physical Chemistry B, 2011, 115, 11619-11630.	1.2	13
48	Inclusion of tetrabutylammonium cations in a chiral thiazolium/triflate network: Solid state and solution structural investigation. Journal of Molecular Structure, 2012, 1010, 152-157.	1.8	12
49	Binary and Ternary Phase Behaviors of Short Double-Chain Quaternary Ammonium Amphiphiles: Surface Tension, Polarized Optical Microscopy, and SAXS Investigations. Journal of Physical Chemistry B, 2013, 117, 14732-14742.	1.2	12
50	Supramolecular Colloidosomes Based on Tri(dodecyltrimethylammonium) Phosphotungstate: A Bottom-Up Approach. Langmuir, 2014, 30, 5386-5393.	1.6	12
51	Hybrid Core–Shell Nanoparticles by "Plug and Play―Selfâ€Assembly. Chemistry - A European Journal, 2018, 24, 17672-17676.	1.7	11
52	On the solid state inclusion of tetrabutylammonium cation in the imidazolium/trifluoromethanesulfonate H-bonds network observed in ionic co-crystals. Journal of Molecular Structure, 2008, 892, 433-437.	1.8	10
53	Supramolecular assistance between cyclodextrins and didecyldimethylammonium chloride against enveloped viruses: Toward eco-biocidal formulations. International Journal of Pharmaceutics, 2016, 512, 273-281.	2.6	9
54	How to improve the chemical disinfection of contaminated surfaces by viruses, bacteria and fungus?. European Journal of Pharmaceutical Sciences, 2020, 155, 105559.	1.9	9

LoÃ⁻c Leclercq

#	Article	IF	CITATIONS
55	Synergy between bis(dimethyldioctylammonium) molybdate and tetraethylene glycol monooctyl ether: A winning combination for interfacial catalysis in thermo-controlled and switchable microemulsions. Journal of Molecular Catalysis A, 2015, 397, 142-149.	4.8	8
56	Aqueous solutions of didecyldimethylammonium chloride and octaethylene glycol monododecyl ether: Toward synergistic formulations against enveloped viruses. International Journal of Pharmaceutics, 2016, 511, 550-559.	2.6	8
57	Highly Active, Entirely Biobased Antimicrobial Pickering Emulsions. ChemMedChem, 2021, 16, 2223-2230.	1.6	8
58	Smart medical textiles based on cyclodextrins for curative or preventive patient care. , 2016, , 391-427.		6
59	Supramolecular "Big Bang―in a Single-Ionic Surfactant/Water System Driven by Electrostatic Repulsion: From Vesicles to Micelles. Langmuir, 2017, 33, 3395-3403.	1.6	6
60	In vitro study of versatile drug formulations based on α-cyclodextrin and polyethylene glycol using colloidal tectonics. Journal of Drug Delivery Science and Technology, 2020, 59, 101913.	1.4	5
61	One-pot oxidative cleavage of cyclic olefins for the green synthesis of dicarboxylic acids in Pickering emulsions in the presence of acid phosphate additives. Catalysis Science and Technology, 2020, 10, 6723-6728.	2.1	5
62	Multiphase Microreactors Based on Liquid–Liquid and Gas–Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angewandte Chemie, 2022, 134, .	1.6	4
63	Cross-linked poly(4â€vinylpyridine) particles for pH- and ionic strength-responsive "on–off―Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127705.	2.3	4
64	Rhodium-Catalyzed Hydroformylation Promoted by Modified Cyclodextrins: Current Scope and Future Developments. , 2013, , 36-63.		2
65	The liquid crystal state: An intermediate state to obtain crystal packing. Journal of Molecular Liquids, 2014, 200, 283-288.	2.3	1
66	Importance of Dialkyldimethyl Ammonium Chloride / Polyoxyethylene Alkyl Etherinteractions: Application to Detergent/disinfectant Formulations. , 0, , .		0
67	16 Pickering emulsions and biomass. , 2021, , 537-580.		0