
## Ernesto Mesto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6800335/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                             | IF       | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 1  | Investigation of the effects of plasma treatments on biodeteriorated ancient paper. Applied Surface<br>Science, 2005, 252, 1159-1166.                                                                                                               | 6.1      | 59           |
| 2  | DBUâ€Promoted Nucleophilic Activation of Carbonic Acid Diesters. European Journal of Organic Chemistry, 2011, 2011, 2458-2465.                                                                                                                      | 2.4      | 52           |
| 3  | Preparation of plasma-polymerized SiOx-like thin films from a mixture of hexamethyldisiloxane and oxygen to improve the corrosion behaviour. Surface and Coatings Technology, 2006, 200, 3035-3040.                                                 | 4.8      | 39           |
| 4  | Mechanochemical degradation of pentachlorophenol onto birnessite. Journal of Hazardous<br>Materials, 2013, 244-245, 303-310.                                                                                                                        | 12.4     | 37           |
| 5  | Use of natural clays as sorbent materials for rare earth ions: Materials characterization and set up of the operative parameters. Waste Management, 2015, 46, 546-556.                                                                              | 7.4      | 37           |
| 6  | Effect of Methyl-β-Cyclodextrin on the antimicrobial activity of a new series of poorly water-soluble<br>benzothiazoles. Carbohydrate Polymers, 2019, 207, 720-728.                                                                                 | 10.2     | 31           |
| 7  | Influence of electronic and steric effects of substituted ligands coordinated to Ir( <scp>iii</scp> )<br>complexes on the solution processed OLED properties. Journal of Materials Chemistry C, 2015, 3,<br>7506-7512.                              | 5.5      | 29           |
| 8  | Cation-site partitioning in Ti-rich micas from Black Hill (australia): a multi-technical approach. Clays<br>and Clay Minerals, 2005, 53, 179-189.                                                                                                   | 1.3      | 27           |
| 9  | An electron microprobe analysis, secondary ion mass spectrometry, and single-crystal X-ray<br>diffraction study of phlogopites from Mt. Vulture, Potenza, Italy: Consideration of cation<br>partitioning. American Mineralogist, 2006, 91, 182-190. | 1.9      | 27           |
| 10 | Sorption of arsenate and dichromate on polymerin, Fe(OH)x–polymerin complex and ferrihydrite.<br>Journal of Hazardous Materials, 2009, 166, 1174-1179.                                                                                              | 12.4     | 26           |
| 11 | Interaction of PdCl2-2-(β-diphenylphosphine)ethylpyridine Complex with Diols and CO: Synthesis of New<br>Alkoxycarbonyl Complexes, Key Intermediates to Cyclic Carbonates. Organometallics, 2006, 25,<br>2872-2879.                                 | 2.3      | 25           |
| 12 | Deposition of Super-Hydrophobic and Oleophobic Fluorocarbon Films in Radio Frequency Glow<br>Discharges. Macromolecular Symposia, 2007, 247, 295-302.                                                                                               | 0.7      | 23           |
| 13 | Croconaines as molecular materials for organic electronics: synthesis, solid state structure and use in transistor devices. Journal of Materials Chemistry C, 2016, 4, 3138-3142.                                                                   | 5.5      | 23           |
| 14 | Recycling contaminated marine sediments as filling materials by pilot scale stabilization/solidification with lime, organoclay and activated carbon. Journal of Cleaner Production, 2020, 269, 122416.                                              | 9.3      | 22           |
| 15 | Tobelite and NH4+-rich muscovite single crystals from Ordovician Armorican sandstones (Brittany,) Tj ETQq1 1 (                                                                                                                                      | 0.784314 | rgBT/Overloo |
| 16 | Crystal chemistry and light elements analysis of Ti-rich garnets. American Mineralogist, 2016, 101,<br>371-384.                                                                                                                                     | 1.9      | 20           |
| 17 | Interaction between the photosynthetic anoxygenic microorganism Rhodobacter sphaeroides and<br>soluble gold compounds. From toxicity to gold nanoparticle synthesis. Colloids and Surfaces B:<br>Biointerfaces, 2018, 172, 362-371.                 | 5.0      | 18           |
| 18 | Using a natural chlorite as catalyst in chemical recycling of waste plastics: Hydrolytic<br>depolymerization of poly-[bisphenol A carbonate] promoted by clinochlore. Waste Management, 2021,<br>120, 642-649.                                      | 7.4      | 18           |

Ernesto Mesto

| #  | Article                                                                                                                                                                                | lF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | 3T-phlogopite from Kasenyi kamafugite (SW Uganda): EPMA, XPS, FTIR, and SCXRD study. American<br>Mineralogist, 2013, 98, 709-717.                                                      | 1.9  | 16        |
| 20 | Synthesis and Structure of Conjugated Molecules with the Benzofulvene Core. Organic Letters, 2014, 16, 3424-3427.                                                                      | 4.6  | 16        |
| 21 | Chemical and structural study of 1M- and 2M 1-phlogopites coexisting in the same Kasenyi kamafugitic rock (SW Uganda). Physics and Chemistry of Minerals, 2012, 39, 601-611.           | 0.8  | 15        |
| 22 | Mechanochemical transformation of an organic ligand on mineral surfaces: The efficiency of birnessite in catechol degradation. Journal of Hazardous Materials, 2012, 201-202, 148-154. | 12.4 | 15        |
| 23 | Spectroscopy and crystal chemical properties of NaCa2[Si4O10]F natural agrellite with tubular structure. Chemical Physics Letters, 2020, 738, 136868.                                  | 2.6  | 15        |
| 24 | Crystal chemistry of trioctahedral micas-2M1 from Bunyaruguru kamafugite (southwest Uganda).<br>American Mineralogist, 2012, 97, 430-439.                                              | 1.9  | 14        |
| 25 | Phlogopite from the Ventaruolo subsynthem volcanics (Mt Vulture, Italy): a multi-method study.<br>Mineralogical Magazine, 2007, 71, 519-537.                                           | 1.4  | 12        |
| 26 | Calcium-aluminum-silicate-hydrate "cement―phases and rare Ca-zeolite association at Colle Fabbri,<br>Central Italy. Open Geosciences, 2010, 2, 175-187.                                | 1.7  | 12        |
| 27 | Structure refinement and crystal chemistry of tokkoite and tinaksite from the Murun massif (Russia).<br>Mineralogical Magazine, 2017, 81, 251-272.                                     | 1.4  | 12        |
| 28 | Catalytic alcohol oxidation using cationic Schiff base manganeseIII complexes with flexible diamino bridge. Polyhedron, 2021, 193, 114873.                                             | 2.2  | 12        |
| 29 | The First Example of a Dinuclear Platinum(III) Complex with Three Bridging Ligands. European Journal of Inorganic Chemistry, 2006, 2006, 1635-1642.                                    | 2.0  | 11        |
| 30 | Yangzhumingite and phlogopite from the KvalÃ,ya lamproite (North Norway): Structure, composition and origin. Lithos, 2014, 210-211, 1-13.                                              | 1.4  | 11        |
| 31 | Alcohol Oxidations by Schiff Base Manganese(III) Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 480-490.                                                              | 2.0  | 11        |
| 32 | Armstrongite from Khan Bogdo (Mongolia): Crystal structure determination and implications for zeolite-like cation exchange properties. American Mineralogist, 2014, 99, 2424-2432.     | 1.9  | 10        |
| 33 | Structure and modeling of disorder in miserite from the Murun (Russia) and Dara-i-Pioz (Tajikistan)<br>massifs. Physics and Chemistry of Minerals, 2014, 41, 49-63.                    | 0.8  | 10        |
| 34 | Effects of a nitrogen seeded plasma on nanostructured tungsten films having fusion-relevant features. Nuclear Materials and Energy, 2020, 25, 100808.                                  | 1.3  | 9         |
| 35 | The effect of XPS background removing method on the appraisal of Ti and Fe: The case of phlogopites and brookite. American Mineralogist, 2014, 99, 139-148.                            | 1.9  | 8         |
| 36 | Structural anomalies in tobelite-2M <sub>2</sub> explained by high resolution and analytical electron microscopy. Mineralogical Magazine, 2016, 80, 143-156.                           | 1.4  | 8         |

Ernesto Mesto

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Fluorophlogopite-bearing and carbonate metamorphosed xenoliths from theCampanian Ignimbrite<br>(Fiano, southern Italy): crystal chemical, geochemical and volcanological insights. Mineralogical<br>Magazine, 2017, 81, 1165-1189.                               | 1.4 | 8         |
| 38 | 2M1-phlogopite from Black Hills (South Australia): The first case of configurational polytype in micas.<br>American Mineralogist, 2012, 97, 2016-2023.                                                                                                           | 1.9 | 7         |
| 39 | Hydrocarbons in phlogopite from Kasenyi kamafugitic rocks (SW Uganda): cross-correlated AFM,<br>confocal microscopy and Raman imaging. Scientific Reports, 2017, 7, 40663.                                                                                       | 3.3 | 7         |
| 40 | The correct assignment of stereochemistry in<br>di-μ-dichlorido-bis{bis[2-(5-benzylsulfonyl)-3-fluoro-2-(pyridin-2-yl)phenyl-ΰ2N,C1]iridium(III)} toluene<br>monosolvate. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 480-482. | 0.4 | 6         |
| 41 | Refinement of the Crystal Structure of Vlasovite from Burpala Massif (Russia). Crystallography<br>Reports, 2018, 63, 1092-1098.                                                                                                                                  | 0.6 | 6         |
| 42 | Single-crystal X-ray diffraction, EMPA, FTIR and X-ray photoelectron spectroscopy study of narsarsukite from Murun Massif, Russia. Mineralogical Magazine, 2017, 81, 339-354.                                                                                    | 1.4 | 5         |
| 43 | Armstrongite at non-ambient conditions: An in-situ high-pressure single-crystal X-ray diffraction study. Microporous and Mesoporous Materials, 2019, 274, 171-175.                                                                                               | 4.4 | 5         |
| 44 | Au/In <sub>2</sub> O <sub>3</sub> and Au/ZrO <sub>2</sub> composite nanoparticles via <i>in situ</i> sacrificial gold electrolysis. Materials Express, 2015, 5, 171-179.                                                                                         | 0.5 | 4         |
| 45 | Thermal stability and dehydration of armstrongite, a microporous zirconium silicate. Microporous and Mesoporous Materials, 2018, 272, 137-142.                                                                                                                   | 4.4 | 4         |
| 46 | Crystal-chemistry of micas belonging to the yangzhumingite-fluorophlogopite and<br>phlogopite-fluorophlogopite series from the Apuan Alps (northern Tuscany, Italy). Physics and<br>Chemistry of Minerals, 2020, 47, 1.                                          | 0.8 | 3         |
| 47 | THE MUSIC OF MOLECULES: NOVEL APPROACHES FOR STEM EDUCATION. EDULEARN Proceedings, 2016, , .                                                                                                                                                                     | 0.0 | 2         |
| 48 | Hydrogen-bonded and ï€-interaction assembly in two<br>8-alkoxycarbonyl-1,8-diazabicyclo[5.4.0]undec-7-enium chloride salts. Acta Crystallographica Section<br>C: Crystal Structure Communications, 2013, 69, 444-447.                                            | 0.4 | 1         |
| 49 | A new application of SIMS to the analysis of nitrogen in mica minerals: tobelite. IOP Conference Series:<br>Materials Science and Engineering, 2014, 55, 012014.                                                                                                 | 0.6 | 1         |
| 50 | Armstrongite at non ambient conditions: An in-situ high temperature single crystal X-ray diffraction study. Microporous and Mesoporous Materials, 2019, 275, 180-190.                                                                                            | 4.4 | 1         |
| 51 | THE SOUND OF SCIENCE(S): A SOUND-BASED PROJECT FOR INCLUSIVE STEAM EDUCATION AND SCIENCE COMMUNICATION. EDULEARN Proceedings, 2022, , .                                                                                                                          | 0.0 | Ο         |