Nadia Barbero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/679928/publications.pdf

Version: 2024-02-01

		201674	223800
85	2,400	27	46
papers	citations	h-index	g-index
89	89	89	3054
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Polymethine dyes for PDT: recent advances and perspectives to drive future applications. Photochemical and Photobiological Sciences, 2022, 21, 397-419.	2.9	23
2	Polymethine dyes-loaded solid lipid nanoparticles (SLN) as promising photosensitizers for biomedical applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120909.	3.9	7
3	Molecular insight into drugs binding to ctDNA: the fluorescence fast kinetic analysis of diclofenac and pentamidine. Monatshefte Fýr Chemie, 2022, 153, 105-111.	1.8	O
4	Interaction of squaraine dyes with proteins: Looking for more efficient fluorescent turn-on probes. Dyes and Pigments, 2021, 184, 108873.	3.7	18
5	The unseen evidence of Reduced Ionicity: The elephant in (the) room temperature ionic liquids. Journal of Molecular Liquids, 2021, 324, 115069.	4.9	27
6	Transparent and Colorless Dye-Sensitized Solar Cells Exceeding 75% Average Visible Transmittance. Jacs Au, 2021, 1, 409-426.	7.9	66
7	Unveiling the interaction between PDT active squaraines with ctDNA: A spectroscopic study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119224.	3.9	6
8	Polymeric Dopant-Free Hole Transporting Materials for Perovskite Solar Cells: Structures and Concepts towards Better Performances. Polymers, 2021, 13, 1652.	4.5	24
9	Sonodynamic Treatment Induces Selective Killing of Cancer Cells in an In Vitro Co-Culture Model. Cancers, 2021, 13, 3852.	3.7	11
10	Toward Sustainable, Colorless, and Transparent Photovoltaics: State of the Art and Perspectives for the Development of Selective Nearâ€Infrared Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2021, 11, 2101598.	19.5	73
11	Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chemistry, 2020, 22, 7168-7218.	9.0	272
12	Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies. Energies, 2020, 13, 5602.	3.1	19
13	In silico maturation of affinity and selectivity of DNA aptamers against aflatoxin B1 for biosensor development. Analytica Chimica Acta, 2020, 1105, 178-186.	5.4	33
14	Squaraine dyes as fluorescent turn-on sensors for the detection of porcine gastric mucin: A spectroscopic and kinetic study. Journal of Photochemistry and Photobiology B: Biology, 2020, 205, 111838.	3.8	13
15	Thiahelicene-grafted halloysite nanotubes: Characterization, biological studies and pH triggered release. Applied Surface Science, 2020, 520, 146351.	6.1	16
16	Ultrafast spectroscopy of transparent dye-sensitized solar cells designed for the near-infrared. , 2020, , .		0
17	Solid silica nanoparticles as carriers of fluorescent squaraine dyes in aqueous media: Toward a molecular engineering approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 123-130.	4.7	9
18	Mucin binding to therapeutic molecules: The case of antimicrobial agents used in cystic fibrosis. International Journal of Pharmaceutics, 2019, 564, 136-144.	5 . 2	18

#	Article	IF	Citations
19	Sodium Hydroxide Pretreatment as an Effective Approach to Reduce the Dye/Holes Recombination Reaction in P-Type DSCs. Frontiers in Chemistry, 2019, 7, 99.	3.6	5
20	Design and synthesis of symmetrical pentamethine cyanine dyes as NIR photosensitizers for PDT. Dyes and Pigments, 2019, 160, 806-813.	3.7	50
21	Squaraine Dyes: Interaction with Bovine Serum Albumin to Investigate Supramolecular Adducts with Aggregationâ€Induced Emission (AIE) Properties. Chemistry - an Asian Journal, 2019, 14, 896-903.	3.3	27
22	Excited state photophysics of squaraine dyes for photovoltaic applications: an alternative deactivation scenario. Journal of Materials Chemistry C, 2018, 6, 2778-2785.	5.5	25
23	Insight into the interaction of inhaled corticosteroids with human serum albumin: A spectroscopic-based study. Journal of Pharmaceutical Analysis, 2018, 8, 37-44.	5.3	16
24	Mesoporous silica nanoparticles incorporating squaraine-based photosensitizers: a combined experimental and computational approach. Dalton Transactions, 2018, 47, 3038-3046.	3.3	24
25	Exploring gold nanoparticles interaction with mucins: A spectroscopic-based study. International Journal of Pharmaceutics, 2018, 535, 438-443.	5.2	26
26	Drug release kinetics from biodegradable UV-transparent hollow calcium-phosphate glass fibers. Materials Letters, 2017, 191, 116-118.	2.6	13
27	Spectroscopic investigation of squaraine dyes. Proceedings of SPIE, 2017, , .	0.8	4
28	Electrolyte containing lithium cation in squaraine-sensitized solar cells: interactions and consequences for performance and charge transfer dynamics. Physical Chemistry Chemical Physics, 2017, 19, 27670-27681.	2.8	11
29	Near-infrared emitting single squaraine dye aggregates with large Stokes shifts. Journal of Materials Chemistry C, 2017, 5, 7732-7738.	5.5	32
30	Hollow resorbable fiber for combined light and drug delivery: fiber development and analysis of release kinetics. , $2017, \ldots$		0
31	Water based surfactant-assisted synthesis of thienylpyridines and thienylbipyridine intermediates. Dyes and Pigments, 2017, 137, 468-479.	3.7	4
32	Nonviral gene-delivery by highly fluorinated gemini bispyridinium surfactant-based DNA nanoparticles. Journal of Colloid and Interface Science, 2017, 487, 182-191.	9.4	31
33	ZnO Nanowire Application in Chemoresistive Sensing: A Review. Nanomaterials, 2017, 7, 381.	4.1	60
34	Dicyanovinyl and Cyano-Ester Benzoindolenine Squaraine Dyes: The Effect of the Central Functionalization on Dye-Sensitized Solar Cell Performance. Energies, 2016, 9, 486.	3.1	25
35	Terpyridine and Quaterpyridine Complexes as Sensitizers for Photovoltaic Applications. Materials, 2016, 9, 137.	2.9	50
36	Beneficial Effect of Electron-Withdrawing Groups on the Sensitizing Action of Squaraines for <i>p</i> -Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 16340-16353.	3.1	48

#	Article	IF	Citations
37	Highâ€Throughput Preparation of New Photoactive Nanocomposites. ChemSusChem, 2016, 9, 1279-1289.	6.8	18
38	Polymethine Dyes in Hybrid Photovoltaics: Structure–Properties Relationships. European Journal of Organic Chemistry, 2016, 2016, 2244-2259.	2.4	84
39	Photodynamic activity of thiophene-derived lysosome-specific dyes. Journal of Photochemistry and Photobiology B: Biology, 2016, 158, 16-22.	3.8	7
40	Nanomaterial $\hat{a} \in \text{``protein'}$ interactions: the case of pristine and functionalized carbon nanotubes and porcine gastric mucin. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	7
41	Low-Cost Electricity Production from Sunlight: Third-Generation Photovoltaics and the Dye-Sensitized Solar Cell., 2016,, 93-153.		0
42	Is it possible to study the kinetic parameters of interaction between PNA and parallel and antiparallel DNA by stopped-flow fluorescence?. Journal of Photochemistry and Photobiology B: Biology, 2016, 163, 296-302.	3.8	1
43	Solution Thermodynamics of highly fluorinated gemini bispyridinium surfactants for biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 507, 236-242.	4.7	9
44	A multi-technique comparison of the electronic properties of pristine and nitrogen-doped polycrystalline SnO ₂ . Physical Chemistry Chemical Physics, 2016, 18, 22617-22627.	2.8	7
45	Why Dyes Should Not Be Used to Test the Photocatalytic Activity of Semiconductor Oxides. Environmental Science & Environmental	10.0	107
46	Squaraines bearing halogenated moieties as anticancer photosensitizers: Synthesis, characterization and biological evaluation. European Journal of Medicinal Chemistry, 2016, 113, 187-197.	5.5	50
47	Synthesis, Physicochemical Characterization, and Interaction with DNA of Longâ€Alkylâ€Chain Gemini Pyridinium Surfactants. ChemPlusChem, 2015, 80, 952-962.	2.8	12
48	Multivariate analysis applied to Raman mapping of dye-functionalized carbon nanotubes: a novel approach to support the rational design of functional nanostructures. Analyst, The, 2015, 140, 5754-5763.	3.5	3
49	Microwave-Assisted Synthesis of Near-Infrared Fluorescent Indole-Based Squaraines. Organic Letters, 2015, 17, 3306-3309.	4.6	62
50	Mucin–drugs interaction: The case of theophylline, prednisolone and cephalexin. Bioorganic and Medicinal Chemistry, 2015, 23, 6581-6586.	3.0	29
51	The different kinetic behavior of two potential photosensitizers for PDT. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 299, 38-43.	3.9	19
52	Electrodeposited ZnO with squaraine sentisizers as photoactive anode of DSCs. Materials Research Express, 2014, 1, 015040.	1.6	44
53	Is the counterion responsible for the unusual thermodynamic behaviour of the aqueous solutions of gemini bispyridinium surfactants?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 249-254.	4.7	11
54	Nonviral Gene Delivery: Gemini Bispyridinium Surfactant-Based DNA Nanoparticles. Journal of Physical Chemistry B, 2014, 118, 13183-13191.	2.6	27

#	Article	IF	Citations
55	Catalytic hydrolysis of phosphodiesters by nucleophilic ions in gemini micellar media. Journal of Physical Organic Chemistry, 2014, 27, 613-621.	1.9	14
56	Panchromatic symmetrical squaraines: a step forward in the molecular engineering of low cost blue-greenish sensitizers for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 24173-24177.	2.8	41
57	Near-infrared absorbing squaraine dye with extended π conjugation for dye-sensitized solar cells. Renewable Energy, 2013, 60, 672-678.	8.9	34
58	A Simple Synthetic Route to Obtain Pure <i>Trans</i> â€Ruthenium(II) Complexes for Dyeâ€Sensitized Solar Cell Applications. ChemSusChem, 2013, 6, 2170-2180.	6.8	27
59	Kinetic study on effect of novel cationic dimeric surfactants for the cleavage of carboxylate ester. Journal of Physical Organic Chemistry, 2013, 26, 626-631.	1.9	16
60	Effect of polymers and temperature on critical micelle concentration of some gemini and monomeric surfactants. Journal of Chemical Thermodynamics, 2013, 62, 178-185.	2.0	37
61	Near-infrared Sensitization in Dye-sensitized Solar Cells. Chimia, 2013, 67, 129-135.	0.6	35
62	Interaction Between Cationic Gemini and Monomeric Surfactants: Micellar and Surface Properties. Journal of Nanofluids, 2013, 2, 316-324.	2.7	42
63	PCA and DOE analysis of intercalation yield into hydrotalcites by liquid-assisted grinding. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s637-s637.	0.3	0
64	PCA and DOE analysis of intercalation yield into hydrotalcites by liquid-assisted grinding. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s275-s275.	0.3	0
65	Symmetric vs. asymmetric squaraines as photosensitisers in mesoscopic injection solar cells: a structure–property relationship study. Chemical Communications, 2012, 48, 2782.	4.1	7 9
66	Physicochemical characterization of cationic gemini surfactants and their effect on reaction kinetics in ethylene glycol–water medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 411, 1-11.	4.7	25
67	Synthesis, optical characterization and crystal and molecular X-ray structure of a phenylazojulolidine derivative. Dyes and Pigments, 2012, 92, 1177-1183.	3.7	6
68	A transient kinetic study between signaling proteins: the case of the MEK–ERK interaction. Chemical Science, 2011, 2, 1804.	7.4	8
69	Micellization properties of mixed cationic gemini and cationic monomeric surfactants in aqueous-ethylene glycol mixture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381, 61-69.	4.7	43
70	Rollâ€ŧoâ€Roll Atmospheric Plasma Treatment: A Green and Efficient Process to Improve the Hydrophilicity of a PET Surface. ChemSusChem, 2010, 3, 591-596.	6.8	15
71	Raman analysis and mapping for the determination of COOH groups on oxidized single walled carbon nanotubes. Carbon, 2010, 48, 3391-3398.	10.3	22
72	A sensitive and practical fluorimetric test for CNT acidic site determination. Chemical Communications, 2010, 46, 1443.	4.1	16

#	Article	lF	CITATIONS
73	Synthesis and Characterization of Highly Fluorinated Gemini Pyridinium Surfactants. European Journal of Organic Chemistry, 2009, 2009, 3167-3177.	2.4	30
74	Fluorescence anisotropy analysis of protein–antibody interaction. Dyes and Pigments, 2009, 83, 225-229.	3.7	18
75	Synthesis and properties of cationic surfactants with tuned hydrophylicity. Journal of Colloid and Interface Science, 2009, 340, 269-275.	9.4	40
76	A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence. Dyes and Pigments, 2009, 80, 307-313.	3.7	132
77	Characterization of monomeric and gemini cationic amphiphilic molecules by fluorescence intensity and anisotropy. Dyes and Pigments, 2009, 82, 124-129.	3.7	36
78	Characterization of monomeric and gemini cationic amphiphilic molecules by fluorescence intensity and anisotropy. Part 2. Dyes and Pigments, 2009, 83, 396-402.	3.7	25
79	Thermodynamics and Biological Properties of the Aqueous Solutions of New Glucocationic Surfactants. Journal of Physical Chemistry B, 2008, 112, 9360-9370.	2.6	14
80	Unusual Behavior of the Aqueous Solutions of Gemini Bispyridinium Surfactants: Apparent and Partial Molar Enthalpies of the Dimethanesulfonates. Journal of Physical Chemistry B, 2008, 112, 12312-12317.	2.6	46
81	ZnO Nanowires for Dye Sensitized Solar Cells. , 0, , .		10
82	Near Infra-Red Dyes in Dye-Sensitized Solar Cells: from Panchromatic Absorption to Completely Transparent DSSCs. , 0 , , .		0
83	Toward non-intrusive BIPV: strategies for NIR-selective DSSCs. , 0, , .		0
84	Effect of Out-of-Plane Alkyl Chains in Dye-Sensitized Solar Cell Efficiency: a Structure-Property Relationship in Novel Perimidine-Based Squaraine Dyes. , 0, , .		0
85	Insights on component optimization to reach color neutral and highly transparent near-infrared dye sensitized solar cells., 0, , .		O