
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6798974/publications.pdf Version: 2024-02-01

VASUSHI SAFRI

#	Article	IF	CITATIONS
1	The TGN/EE SNARE protein SYP61 and the ubiquitin ligase ATL31 cooperatively regulate plant responses to carbon/nitrogen conditions in Arabidopsis. Plant Cell, 2022, 34, 1354-1374.	6.6	11
2	<i>ENTREP/FAM189A2</i> encodes a new ITCH ubiquitin ligase activator that is downregulated in breast cancer. EMBO Reports, 2022, 23, e51182.	4.5	8
3	RNA polymerase II condensate formation and association with Cajal and histone locus bodies in living human cells. Genes To Cells, 2021, 26, 298-312.	1.2	13
4	TRIP12 promotes small-molecule-induced degradation through K29/K48-branched ubiquitin chains. Molecular Cell, 2021, 81, 1411-1424.e7.	9.7	43
5	MIND bomb 2 prevents RIPK1 kinase activity-dependent and -independent apoptosis through ubiquitylation of cFLIPL. Communications Biology, 2021, 4, 80.	4.4	13
6	A substrate-trapping strategy to find E3 ubiquitin ligase substrates identifies Parkin and TRIM28 targets. Communications Biology, 2020, 3, 592.	4.4	21
7	Ribosomal protein S7 ubiquitination during ER stress in yeast is associated with selective mRNA translation and stress outcome. Scientific Reports, 2020, 10, 19669.	3.3	21
8	The HOIL-1L ligase modulates immune signalling and cell death via monoubiquitination of LUBAC. Nature Cell Biology, 2020, 22, 663-673.	10.3	63
9	Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation. Nature Communications, 2020, 11, 1222.	12.8	82
10	RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1. Nature Structural and Molecular Biology, 2020, 27, 323-332.	8.2	97
11	Multi-Step Ubiquitin Decoding Mechanism for Proteasomal Degradation. Pharmaceuticals, 2020, 13, 128.	3.8	10
12	Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature, 2020, 578, 296-300.	27.8	204
13	Molecular bases for HOIPINs-mediated inhibition of LUBAC and innate immune responses. Communications Biology, 2020, 3, 163.	4.4	38
14	\hat{I}_\pm -synuclein strains that cause distinct pathologies differentially inhibit proteasome. ELife, 2020, 9, .	6.0	45
15	Stepwise multipolyubiquitination of p53 by the E6AP-E6 ubiquitin ligase complex. Journal of Biological Chemistry, 2019, 294, 14860-14875.	3.4	15
16	Methods to measure ubiquitin chain length and linkage. Methods in Enzymology, 2019, 618, 105-133.	1.0	14
17	Detection of ubiquitination activity and identification of ubiquitinated substrates using TR-TUBE. Methods in Enzymology, 2019, 618, 135-147.	1.0	6
18	Structural insights into ubiquitin recognition and Ufd1 interaction of Npl4. Nature Communications, 2019, 10, 5708.	12.8	28

#	Article	IF	CITATIONS
19	Collided ribosomes form a unique structural interface to induce Hel2â€driven quality controlÂpathways. EMBO Journal, 2019, 38, .	7.8	232
20	Specific Modification of Aged Proteasomes Revealed by Tag-Exchangeable Knock-In Mice. Molecular and Cellular Biology, 2019, 39, .	2.3	19
21	Ub-ProT reveals global length and composition of protein ubiquitylation in cells. Nature Communications, 2018, 9, 524.	12.8	50
22	K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1401-E1408.	7.1	213
23	Deubiquitinases USP5 and USP13 are recruited to and regulate heat-induced stress granules by deubiquitinating activities. Journal of Cell Science, 2018, 131, .	2.0	56
24	HERC2 Facilitates BLM and WRN Helicase Complex Interaction with RPA to Suppress G-Quadruplex DNA. Cancer Research, 2018, 78, 6371-6385.	0.9	41
25	InÂVivo Ubiquitin Linkage-type Analysis Reveals that the Cdc48-Rad23/Dsk2 Axis Contributes to K48-Linked Chain Specificity of the Proteasome. Molecular Cell, 2017, 66, 488-502.e7.	9.7	111
26	Structural basis for specific cleavage of Lys6-linked polyubiquitin chains by USP30. Nature Structural and Molecular Biology, 2017, 24, 911-919.	8.2	61
27	Structure of the Dnmt1 Reader Module Complexed with a Unique Two-Mono-Ubiquitin Mark on Histone H3 Reveals the Basis for DNA Methylation Maintenance. Molecular Cell, 2017, 68, 350-360.e7.	9.7	124
28	Ubiquitination of exposed glycoproteins by SCF ^{FBXO27} directs damaged lysosomes for autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8574-8579.	7.1	96
29	Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nature Communications, 2017, 8, 159.	12.8	249
30	Ubiquitin recognition by the proteasome. Journal of Biochemistry, 2017, 161, mvw091.	1.7	113
31	Inhibitory effects of local anesthetics on the proteasome and their biological actions. Scientific Reports, 2017, 7, 5079.	3.3	3
32	HTLV-1 Tax Induces Formation of the Active Macromolecular IKK Complex by Generating Lys63- and Met1-Linked Hybrid Polyubiquitin Chains. PLoS Pathogens, 2017, 13, e1006162.	4.7	30
33	Roles of chondroitin sulfate proteoglycan 4 in fibrogenic/adipogenic differentiation in skeletal muscle tissues. Experimental Cell Research, 2016, 347, 367-377.	2.6	20
34	The K48-K63 Branched Ubiquitin Chain Regulates NF-κB Signaling. Molecular Cell, 2016, 64, 251-266.	9.7	241
35	The Ankrd13 Family of Ubiquitin-interacting Motif-bearing Proteins Regulates Valosin-containing Protein/p97 Protein-mediated Lysosomal Trafficking of Caveolin 1. Journal of Biological Chemistry, 2016, 291, 6218-6231.	3.4	23
36	Nedd4-induced monoubiquitination of IRS-2 enhances IGF signalling and mitogenic activity. Nature Communications, 2015, 6, 6780.	12.8	64

#	Article	IF	CITATIONS
37	Liganded ERα Stimulates the E3 Ubiquitin Ligase Activity of UBE3C to Facilitate Cell Proliferation. Molecular Endocrinology, 2015, 29, 1646-1657.	3.7	11
38	The unexpected role of polyubiquitin chains in the formation of fibrillar aggregates. Nature Communications, 2015, 6, 6116.	12.8	75
39	Spatio-temporal Dynamics of the Proteasome. Seibutsu Butsuri, 2015, 55, 019-022.	0.1	0
40	A comprehensive method for detecting ubiquitinated substrates using TR-TUBE. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4630-4635.	7.1	97
41	Phosphorylated ubiquitin chain is the genuine Parkin receptor. Journal of Cell Biology, 2015, 209, 111-128.	5.2	217
42	Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation. Journal of Biological Chemistry, 2015, 290, 25199-25211.	3.4	50
43	Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Reports, 2015, 16, 192-201.	4.5	116
44	Mutations in the deubiquitinase gene USP8 cause Cushing's disease. Nature Genetics, 2015, 47, 31-38.	21.4	450
45	The E3 ubiquitin ligase TRIM23 regulates adipocyte differentiation via stabilization of the adipogenic activator PPARÎ ³ . ELife, 2015, 4, e05615.	6.0	59
46	Suppression of <scp>LUBAC</scp> â€mediated linear ubiquitination by a specific interaction between <scp>LUBAC</scp> and the deubiquitinases <scp>CYLD</scp> and <scp>OTULIN</scp> . Genes To Cells, 2014, 19, 254-272.	1.2	107
47	Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome. Nature Communications, 2014, 5, 3396.	12.8	111
48	Backbone 1H, 13C, and 15N assignments of yeast Ump1, an intrinsically disordered protein that functions as a proteasome assembly chaperone. Biomolecular NMR Assignments, 2014, 8, 383-386.	0.8	16
49	Structural Basis for Proteasome Formation Controlled by an Assembly Chaperone Nas2. Structure, 2014, 22, 731-743.	3.3	23
50	Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 2014, 510, 162-166.	27.8	1,185
51	Pba3–Pba4 heterodimer acts as a molecular matchmaker in proteasome α-ring formation. Biochemical and Biophysical Research Communications, 2014, 450, 1110-1114.	2.1	25
52	Weak interaction of an inhibitor in the 20S proteasome. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C487-C487.	0.1	0
53	Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2013, 436, 372-376.	2.1	19
54	The parallel reaction monitoring method contributes to a highly sensitive polyubiquitin chain quantification. Biochemical and Biophysical Research Communications, 2013, 436, 223-229.	2.1	66

YASUSHI SAEKI

#	Article	IF	CITATIONS
55	Structural Basis for Specific Recognition of Rpt1p, an ATPase Subunit of 26 S Proteasome, by Proteasome-dedicated Chaperone Hsm3p. Journal of Biological Chemistry, 2012, 287, 12172-12182.	3.4	30
56	Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1479-1484.	7.1	114
57	The proteasome: molecular machinery and pathophysiological roles. Biological Chemistry, 2012, 393, 217-234.	2.5	103
58	Assembly and Function of the Proteasome. Methods in Molecular Biology, 2012, 832, 315-337.	0.9	88
59	Insulin/insulin-like growth factor (IGF) stimulation abrogates an association between a deubiquitinating enzyme USP7 and insulin receptor substrates (IRSs) followed by proteasomal degradation of IRSs. Biochemical and Biophysical Research Communications, 2012, 423, 122-127.	2.1	33
60	Hyrtioreticulins A–E, indole alkaloids inhibiting the ubiquitin-activating enzyme, from the marine sponge Hyrtios reticulatus. Bioorganic and Medicinal Chemistry, 2012, 20, 4437-4442.	3.0	66
61	Proteasomal Degradation Resolves Competition between Cell Polarization and Cellular Wound Healing. Cell, 2012, 150, 151-164.	28.9	92
62	New crystal structure of the proteasome-dedicated chaperone Rpn14 at 1.6â€Ã resolution. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 517-521.	0.7	2
63	Mechanical Properties of Yarns Dyed by Pigments. Journal of Fiber Science and Technology, 2012, 68, 296-303.	0.0	0
64	The Catalytic Activity of Ubp6 Enhances Maturation of the Proteasomal Regulatory Particle. Molecular Cell, 2011, 42, 637-649.	9.7	64
65	SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature, 2011, 471, 633-636.	27.8	557
66	Pho85 Kinase, a Cyclin-Dependent Kinase, Regulates Nuclear Accumulation of the Rim101 Transcription Factor in the Stress Response of Saccharomyces cerevisiae. Eukaryotic Cell, 2010, 9, 943-951.	3.4	21
67	Crystal Structure of Yeast Rpn14, a Chaperone of the 19 S Regulatory Particle of the Proteasome. Journal of Biological Chemistry, 2010, 285, 15159-15166.	3.4	20
68	Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15856-15861.	7.1	140
69	Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2010, 396, 1048-1053.	2.1	63
70	Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO Journal, 2009, 28, 359-371.	7.8	220
71	Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature Cell Biology, 2009, 11, 123-132.	10.3	870
72	Multiple Proteasome-Interacting Proteins Assist the Assembly of the Yeast 19S Regulatory Particle. Cell, 2009, 137, 900-913.	28.9	157

#	Article	IF	CITATIONS
73	The Proteasome's Crown for Destruction. Molecular Cell, 2009, 34, 519-520.	9.7	1
74	Two hands for degradation. Nature, 2008, 453, 460-461.	27.8	15
75	Mammalian 26S Proteasomes Remain Intact during Protein Degradation. Cell, 2008, 135, 355-365.	28.9	36
76	c-Cbl-Dependent Monoubiquitination and Lysosomal Degradation of gp130. Molecular and Cellular Biology, 2008, 28, 4805-4818.	2.3	76
77	Human T-cell Leukemia Virus Type 1 HBZ Protein Bypasses the Targeting Function of Ubiquitination. Journal of Biological Chemistry, 2008, 283, 34273-34282.	3.4	30
78	The Assembly Pathway of the 19S Regulatory Particle of the Yeast 26S Proteasome. Molecular Biology of the Cell, 2007, 18, 569-580.	2.1	94
79	Unlocking the Proteasome Door. Molecular Cell, 2007, 27, 865-867.	9.7	16
80	Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity. Nature Structural and Molecular Biology, 2007, 14, 167-168.	8.2	105
81	Functional Analysis of Rpn6p, a Lid Component of the 26 S Proteasome, Using Temperature-sensitive rpn6 Mutants of the Yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 6537-6547.	3.4	63
82	Rpn7 Is Required for the Structural Integrity of the 26 S Proteasome of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 27168-27176.	3.4	49
83	Sem1p Is a Novel Subunit of the 26 S Proteasome from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 28807-28816.	3.4	120
84	Definitive evidence for Ufd2-catalyzed elongation of the ubiquitin chain through Lys48 linkage. Biochemical and Biophysical Research Communications, 2004, 320, 840-845.	2.1	53
85	Ubiquitin-like proteins and Rpn10 play cooperative roles in ubiquitin-dependent proteolysis. Biochemical and Biophysical Research Communications, 2002, 293, 986-992.	2.1	131
86	Identification of ubiquitin-like protein-binding subunits of the 26S proteasome. Biochemical and Biophysical Research Communications, 2002, 296, 813-819.	2.1	129
87	Developmentally regulated, alternative splicing of the Rpn10 gene generates multiple forms of 26S proteasomes. EMBO Journal, 2000, 19, 4144-4153.	7.8	45
88	Rapid Isolation and Characterization of the Yeast Proteasome Regulatory Complex. Biochemical and Biophysical Research Communications, 2000, 273, 509-515.	2.1	44
89	Purification and characterization of the 26S proteasome from cultured rice (Oryza sativa) cells. Plant Science, 1999, 149, 33-41.	3.6	17